
inTune: Coordinating Multicore Islands to Achieve Global
Policy Objectives

Priyanka Tembey Ada Gavrilovska
Georgia Institute of Technology

Karsten Schwan

Abstract
Multicore platforms are moving from small numbers of
homogeneous cores to ‘scale out’ designs with multiple
tiles or ‘islands’ of cores residing on a single chip, each
with different resources and potentially controlled by
their own resource managers. Applications running on
such machines, however, operate across multiple such
resource islands, and this also holds for global properties
like platform power caps. The inTune software architec-
ture meets the consequent need to support platform-level
application requirements and properties. It (i) provides
the base coordination abstractions needed for realiz-
ing platform-global resource management and (ii) offers
management overlays that make it easy to implement di-
verse per-application and platform-centric management
policies. A Xen hypervisor-level implementation of
inTune supports policies that can (i) pro-actively pre-
pare for increased or decreased resource usage when the
inter-island dependencies of applications are known, or
(ii) re-actively respond to monitored overloads, thresh-
old violations or similar. Experimental evaluations on
a larger-scale multi-core platform demonstrate that its
use leads to notable performance and resource utiliza-
tion gains: such as a reduction in the variability across
request response times for a three-tier web server by up
to 40%, and completion time gains of 15% for parallel
benchmarks.

1 Introduction
As systems integrate more heterogeneous resources and
scale out to many cores, it is imperative that their di-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.

TRIOS’13, November 03 2013, Farmington, PA, USA Copyright 2013
ACM 978-1-4503-2463-2/13/11$15.00.
http://dx.doi.org/10.1145/2524211.2524213

verse resource managers coordinate to achieve platform-
global properties and/or to run applications efficiently.
In this paper, we present inTune: a set of system-level
coordination abstractions and mechanisms that let re-
source managers interact with each other to achieve
global properties and make it convenient for applications
to interact with them via standard interfaces.

To sustain 2x performance growth with every chip
generation, many-core architectures are evolving be-
yond high core counts and complex memory hierarchies
to ‘scale-out’ architectures, such as with the ‘tiles of
cores’ approach [17], to directly address scalability con-
cerns for hardware cache coherence and thermal design
power (TDP) bounds [18, 36]. Similar scalability con-
cerns with routing a single global clock across the chip
within limited power bounds and at ever increasing core
frequencies, may lead to emergence of multi-clock sets
of cores mapped to independent clocks and voltage/fre-
quency domains [19, 30].

Hardware designs with such on-chip networked tiles
of independent, disaggregated nodes give rise to soft-
ware architectures structured as clusters of multiple, in-
dependent resource managers on a single chip [14, 15].
With the emergence of core and memory heterogene-
ity [24, 2] supported by specialized runtimes or cus-
tom device drivers (e.g., GPGPU platforms), these inde-
pendent managers may also be heterogeneous. Further,
even without hardware heterogeneity, multiple func-
tionally different resource managers (e.g., real-time vs.
throughput-oriented CPU schedulers) may manage spa-
tially multiplexed CPU core-sets on a single platform
to meet the requirements of highly diverse applications,
like high throughput web services vs. real-time services
like VOIP [22].

Systems with multiple distinct resource manager enti-
ties have been built to support heterogeneity in hardware
resources [20, 29] and to enhance scalability [7, 15, 14].
Efficiently running applications on such systems, how-
ever, requires dealing with two fundamental issues.

I. Maintaining global properties. Applications may
operate across multiple resource domains, and their re-
source managers schedule application components inde-
pendently unaware of overlaying end-to-end application

properties. How can applications obtain and maintain
their desired levels of performance given the resource
managers’ independent scheduling decisions? Coordi-
nating independent schedulers has been shown impor-
tant for high-throughput graphics codes, between CPU
threads and their GPU activities [16], and for parallel
systems so that program threads avoid undue levels of
timing variation for synchronization [15]. How to ad-
ditionally maintain platform-level properties, like main-
taining system-wide power caps across proposed inde-
pendent voltage/frequency domains of cores [30] using
coordinated power allocation [27, 28]? Stated in terms
of systems functionality, what are the system-level co-
ordination abstractions and supports needed to let in-
dependent managers interact to obtain these goals and
maintain these properties?

II. Diverse and independent managers. Consider ap-
plications running on a single platform with multiple
resource managers, with their own scheduling policies
and maintaining their own threading or resource abstrac-
tions. How do they interact with these managers, via
which interfaces, and/or can managers hide such com-
plexity by coordinating with each other on an applica-
tion’s behalf?

Figure 1 shows an example that maintains global
properties for a multicore platform on which different
sets of software-partitioned cores are managed by inde-
pendent and functionally different CPU scheduler enti-
ties. In this case, scheduler diversity serves to meet dif-
ferent functionality requirements, i.e., the need for real-
time vs. throughput-centric core scheduling. Yet as typ-
ical for larger scale web applications, a single such code
spans multiple of these core sets and their managers and
so, it becomes difficult to maintain its desired end-to-end
properties. From this example, we derive the follow-
ing objectives for our research: (i) the need for standard
abstractions and interfaces that provide applications or
higher level policy managers the means to efficiently and
conveniently interact with a platform’s diverse resource
managers, and (ii) the need for interaction – coordina-
tion – across different managers to provide to even a sin-
gle application the composite levels of service needed to
run it with the performance it requires.

The inTune systems software presented in this pa-
per provides an efficient framework for managing appli-
cations and their performance properties on many-core
systems organized as multiple resource sets, termed re-
source islands, with their own island managers. Our re-
search makes the following three key contributions.
1. inTune implements resource islands, as a system-
level abstraction that places a subset of resources under
the control of a specified resource manager. With is-
lands, one can partition multicore hardware for reasons
of scalability, e.g., the ’tiles’ in the Intel SCC chip, for

Need for

coordination

Need for

coordination

Application property spanning multiple managers: e.g., requests/sec

Real-time
scheduler

Fair-share
scheduler

Fair-share
scheduler

Manycore Platform

Subset of cores Subset of cores

Application
component

Application
component

Application
component

Need for standard interfaces / abstractions

Subset of cores

Figure 1: How to maintain global properties in multi-
resource-manager manycore platforms?

reasons of hardware heterogeneity, e.g., for commodity
vs. accelerator cores, or to enable functionally differ-
ent schedulers using software partitions. The example
studied in this paper are islands created as software par-
titions for multiple CPU sets managed by distinct sched-
uler functions, to suit the varied needs of server and par-
allel applications using a multicore platform.
inTune islands are dynamic partitions of multicore re-
sources, so that within the limits defined by underlying
hardware capabilities (e.g., cache coherence, or archi-
tectural incompatibilities), they can be flexibly sized to
meet applications’ elastic resource demands.
2. The inTune framework – offers system-level func-
tionality that provides APIs and base mechanisms for
inter-island coordination. Its mechanisms permit island
managers to independently manage their resources, but
then: (i) extend island-level resource managers, by pair-
ing them with per-island coordinators that then interact
with each other (and with their respective ‘native’ re-
source managers) using inTune APIs to achieve platform
global properties, thus (ii) abstracting away from appli-
cations the heterogeneous resource management imple-
mentations of different islands.
3. Management overlays – are inTune’s system-level
representations of application and platform properties.
They (i) encapsulate and maintain state that defines the
specific property of interest (e.g., performance require-
ment of an application or platform utilization cap), (ii)
define the linkages across the inTune coordinators in-
volved in carrying out actions that serve to obtain and
maintain the property, and (iii) can use proactive or re-
active methods for policy implementation by invoking
inTune coordination mechanisms.

The inTune abstractions and methods in this work are
implemented with the Xen hypervisor [6], for multicore
platforms with independent sets of CPU islands man-
aged by distinct scheduler functions. The hypervisor-
based implementation serves the purpose of exploring
potential platform enhancements without reliance on
specific guest OS features or functionality. inTune’s
methods and principles, however, can also be imple-

mented in other system infrastructures, including in the
operating system [23], or in island-based microkernels
with island resources managed by library OSs [12].

We next present technical evidence of the importance
and utility of the inTune approach for efficiently running
applications on multi-island platforms (see Section 2).
This is followed by Section 3 describing the inTune ar-
chitecture and its components. Section 4 explains the
inTune implementation, followed by experimental eval-
uations in Section 5. Section 6 summarizes prior related
work with conclusions and future work appearing at the
end.

2 Motivation for Islands and in-
Tune

In order to highlight the use of islands and inter-island
coordination to efficiently run an application across sys-
tems comprising multiple resource islands on a single
hardware platform, Figure 2 demonstrates the perfor-
mance effects seen for a representative parallel applica-
tion, Fluidanimate from the PARSEC application suite
when run in different configurations as follows. Flu-
idanimate, like other parallel codes, operates in multiple
CPU-intensive phases implemented via explicit barrier
synchronization. For this code, it is important to min-
imize its performance variability in each phase, so that
all of its threads simultaneously reach the barrier.

On a 12-core hyperthreaded x86 Westmere processor
platform, we execute copies of Fluidanimate codes in-
side each of three virtual machines with 512MB memory
and configured with different number of VCPUs for the
following two scenarios: (1) when the platform is un-
derloaded and there is no CPU contention i.e., each VM
is configured with 4 VCPUs (the left set of bars in the
figure), and (2) when the platform is overloaded, such
as in the event of a higher degree of workload consol-
idation i.e., each VM is configured with 8 VCPUs (the
set of bars on the right). For each scenario, we compare
mean application completion times along with observed
deviation in (i) the default – the NoIslands case running
native Xen credit scheduler, to (ii) a case where CPU
resources are partitioned into smaller cells – the Islands
case (with six cores each) – and (iii) a case where islands
are elastic because there is explicit coordination across
their individual schedulers, the goal being to achieve is-
land right-sizing during an application’s CPU-intensive
phases – the IntuneIslands case.

The figure shows performance improvements with a
higher number of application threads in the overloaded
scenario for all three cases. However, we observe high
amounts of variability in Fluidanimate completion times
in the NoIslands case, particularly in the overloaded

Figure 2: Islands reduce performance variability and
at increased loads, coordination helps in island right-
sizing.

configuration. Use of partitioned CPU-sets in the Is-
lands case lowers these levels of performance variabil-
ity – which suggests that even at these moderate scales,
islands are important. However, in the overloaded con-
figuration in the Islands case, due to insufficient CPU
resources or due to lack of knowledge of workloads’
worst-case requirements, application performance may
actually deteriorate due to infeasible static right-sizing
of islands (as denoted by higher completion times). This
implies that coordination across islands is critical to
more flexibly size islands by trading resources, in order
to meet application performance needs. This is shown
via both improved completion times and lower variabil-
ity values in the IntuneIslands case.

In general, Section 5 shows that performance advan-
tages gained from using inTune abstractions can be strik-
ing – leading to a reduction in the variability across re-
quest response times for a three-tier web server by up
to 40%, and completion time gains of 15% for parallel
benchmarks.

3 inTune Architecture
The inTune software architecture is an efficient frame-
work for implementing platform-level and application-
centric management for future many-core systems com-
prised of multiple, distinct resource islands. Platform-
global properties are met using the following key design
components of the inTune architecture:

3.1 Resource Islands
Figure 3 illustrates the main inTune components for a
representative four-island, general-purpose, multi-core
NUMA platform. A resource island is a system level
representation of a subset of the resources (e.g., CPU,
memory) present on the multicore platform in Figure 3,
which in this case, can be initialized to naturally match

Hardware Abstraction Layer
Namespace Mgmt

Island-A
(CPU Scheduler)

Island-B
(CPU Scheduler)

Island-C
(CPU Scheduler)

Island-D
(CPU Scheduler)

inTune
coordinator

inTune
coordinator

inTune
coordinator

inTune
coordinator

inTune
messages

VM-2VM-1

Management Overlay-2Management Overlay-1

VM-1 VM-2 VM-3

System-level
Monitor: CPU Util

Application-level Monitor: Performance
property: requests/sec, completion times

inTune
calls

inTune
calls

inTune
messages

inTune
messages

System
level

App
level

Figure 3: inTune architecture components.

the multi-socket (4 sockets) nature of this machine. Each
socket however can be configured to host multiple is-
lands. The CPU resource within each island is managed
independently by a scheduler (e.g., credit-based, best ef-
fort, or real-time), determined at the time of island cre-
ation, and is not visible to other islands.

For island creation, a boot kernel initially performs
discovery of resources, namely, enlisting the CPUs,
memory, and devices in the global namespace of the en-
tire platform. A single hypervisor image booting on all
cores performs this task. Using this globally available
shared namespace, CPU islands are created by group-
ing subsets of CPUs, assigning a single CPU scheduler
to each, via a global platform manager entity (e.g., the
privileged domain in our hypervisor-based model – not
shown in the figure for clarity). The global manager also
updates the shared namespace with mappings between
islands and resources they manage. Memory islands
may be defined by assigning NUMA memory node map-
pings to an island in a NUMA multicore platform. The
global platform manager also instantiates a coordinator
thread entity per resource island, primarily to interface
with other islands in the system.

3.2 Management Overlays
Achieving platform-level properties, like power caps,
and application properties, like requests/sec for multi-
tier web services, requires actions that span multiple re-
source islands. Island resource managers, however, are
unaware of those, and so, will schedule application com-
ponents in an isolated and independent manner. This
encourages scalable operation, but can detrimentally af-
fect application performance (see Section 2) and prevent
meeting platform needs. Responding to this issue, man-
agement overlays (i) encapsulate and maintain the state
that defines desired global platform or application prop-
erties, at system-level, and in addition, they (ii) actuate
inter-island coordination methods to achieve their spe-

cific properties.
In our hypervisor-based implementation, application-

centric overlays (see Overlays-1 and 2 in Figure 3) com-
prise (i) the collection of component VMs used by a sin-
gle application, (ii) the performance property (e.g., re-
quests/sec, response times) specified at overlay-creation
time, (iii) performance monitor threads implemented at
the system-level and/or application-level that periodi-
cally monitor resource management state pertaining to
the performance property, and finally (iv) system inter-
faces that the monitor threads use to request resource
(CPU, memory) reconfigurations in order to maintain
this property. These requests are then translated into
inter-island coordination actions at the system-level.

Creating overlay components. A global platform
manager creates an application-centric overlay by first
creating the application VMs and mapping them to re-
source islands. Overlay VMs are registered using a
unique overlay identifier with each constituent island.
Further, each constituent island is made aware of the
mapping between overlay VMs and other peer islands
of the overlay. Affinity of application VMs to islands
is determined by island properties, including available
number of cores, memory size, and scheduler function.
Islands are queried for these properties to decide ini-
tial VM-island mappings. An individual VM within an
overlay may not span island boundaries to preserve iso-
lation of the VM and the island resource management.
An island’s resources, however may be shared by mul-
tiple distinct overlays (see Island-C in Figure 3 hosting
VMs of Overlay-1 and -2). The overlay monitors are
then started at the system level (Overlay-2 in Figure 3)
or application-level (Overlay-1 in Figure 3) to period-
ically monitor performance state, and to request recon-
figuration of resources for component VMs. Finally, the
platform manager also creates the necessary inter-island
communication channels among islands within an over-
lay (e.g., amongst Islands-A, B and C in Overlay-1 and
between Islands C and D in Overlay-2 in Figure 3).

The global platform manager is hence primarily re-
sponsible for creating the various components of over-
lays and passing relevant overlay state to constituent is-
lands. inTune’s current design hence delegates the run-
time overlay management overhead of (i) interfacing
with the overlay monitor for its resource re-adjustment
requests, and (ii) translating those requests into subse-
quent actuations of inter-island interactions, to island co-
ordinators instead of a centralized global manager. We
make this design choice favoring scalability of overlay
management for future manycore platforms, however in-
Tune’s architecture does not prohibit more centralized
implementations.

Example overlay properties and their management.
Overlay-1 in Figure 3 is comprised of the three VMs

Island-A
(CPU Scheduler)

inTune
coordinator

Overlay
Monitor
Thread

(1) Monitors state
(e.g., metrics related

to perf. property)

(3) Route inTune action
to island hosting VM_id

Island-B
(CPU Scheduler)

inTune
coordinator

(4) inTune_message (Overlay_id, VM_id,
Resource_adjustment_request)

(2) inTune_call (Overlay_id, VM_id,
Resource_adjustment_request)

System
level

Figure 4: Overlay management actions using inTune API.

representing Web (VM-1), Application (VM-2), and
Database (VM-3) tiers, each running in separate islands
- A, B and C. The property implemented by this web-
server overlay is to maintain the 99th percentile of its re-
sponse time latencies within a pre-defined upper bound.
In its current realization, the overlay relies on the web-
server VM (VM-1) to use intelligent application-level
request classification [5], and to monitor/detect changes
in request traffic patterns. Based on such data, the over-
lay’s internal policy then advises tuning of resource al-
locations for the backend server VMs (VMs 2 and 3),
or it may request to increase its own resource alloca-
tions. Under heavy request loads (such as during request
spikes) and/or with workload consolidation, driven by
the web server’s observations, it may also request for ur-
gent, boosted scheduling of the backend server VM to
avoid undue request processing lags.

Figure 4 shows how overlay resource allocation re-
quests are propagated to its constituent islands. Upon
observing events pertaining to the maintenance of
its property, the overlay monitor initiates an inTune
API call to tune or urgently adjust resource alloca-
tions that are then executed entirely at the system-
level. Application-level overlay monitors specify this
request in the form: inTune call(Overlay-id, VM-id,
resource adjustment request) (specific inTune calls are
further explained in Section 3.3). This assumes that the
overlay monitor knows how the application components
are mapped to overlay VMs and their identifiers. Over-
lay monitors however need not be aware of underlying
islands, as these requests will always be directed to the
local island, which will further actuate inter-island co-
ordination on behalf of the overlay, if necessary. An
overlay monitor’s resource reconfiguration request of the
form (Overlay-id, VM-id, resource adjustment request)
is then translated into an inter-island coordination mes-
sage of the form: (Overlay-id, Island-id, VM-id, re-
source adjustment request) at the island-level by the is-
land’s local inTune coordinator using knowledge of is-
land -to -overlay VM mapping initiated at overlay cre-
ation time.

The application-centric overlay described above uses
application-level monitoring to implement proactive
policies for maintaining properties expressed in terms

inTune coordinator

Messaging
Endpoint

Register/
Deregister

Overlay VMs

Tune (+/-)
resource

allocations

Trigger
resource for
Overlay VM

Borrow
resources

Stub

Island
Resource
Manager

Register/
Deregister

Tune
Trigger
Borrow/
Release

Peer
Island

Overlay
Monitor

inTune API
call

Send/ Receive
inTune messages

Coordination actions
influence island
resource mgmt

Figure 5: inTune coordinator and inTune messages.

relevant to the application. More generally, overlay poli-
cies can also be based on system-level monitoring, and
they can use reactive vs. proactive methods for actuation.
Overlay-2 in Figure 3, for instance, uses observation-
based monitors in the Xen hypervisor, which we have
added to more conveniently gather per-VM performance
and resource utilization state (i.e., using performance
counters).

We next describe the inTune coordination API and the
inTune coordinator design.

3.3 Coordination with inTune
In order to obtain and maintain global overlay properties
distributed across multiple distinct islands, island-local
events in an overlay must be able to influence resource
management actions in remote islands within the over-
lay, and external events must be able to influence local
island management. With inTune, any actuated coordi-
nation action directed toward a remote island is propa-
gated via explicit communications. Such message-based
coordination ensures that inTune can operate both across
strongly (via shared memory) and weakly (via PCI) con-
nected resource islands.

Message channels are used for communication across
island coordinators. Their platform-dependent realiza-
tion may use message queues implemented in shared
memory regions or DMA operations across the PCIe in-
terconnect (e.g., as for the prototype x86-IXP platform
used in our prior work [34]). Each active overlay uses an
independent set of transmit and receive message chan-
nels (see Section 3.2) between pairs of all its constituent
islands, the purpose being to cleanly isolate different
overlays’ coordination actions. These message channels
are created at overlay creation time by the global plat-
form manager. Each constituent island is also initiated
with routing state to reach other islands in the overlay,
and differentiates between sets of message channels by
their overlay identifier.

An inTune coordinator (see Figure 5) is respon-

sible for (1) interfacing with the overlay monitor that
requests resource re-adjustments to maintain platform-
and/or application-level policies leading to inter-island
coordination actions. (2) carrying out the necessary ex-
plicit communications across islands, to coordinate ad-
visory coordination actions across islands, and (3) im-
plementing stub-like functionality for an island, so as to
translate remote messages into local resource manage-
ment actions. To achieve this, each island’s coordinator
implements the following set of abstractions, illustrated
in Figure 5:
1. inTune coordination messages – implement the
inter-island coordination mechanisms supported in in-
Tune, summarized in Table 1. As seen in Section 3.2, the
occurrence of certain events in an overlay (e.g., a peak
in client requests at the front-end web server, or when
an overlay exhausts its CPU resource) leads to resource
re-adjustment requests from overlay monitors. These re-
quests are translated into inTune coordination messages
at the island-level. The subsequent coordination result-
ing from sending/receipt of these messages amongst is-
lands of an overlay along with their self-reconfiguration
serves to accomplish the overlay’s resource adjustment
requests, and hence the overlay performance property.
inTune supports the following messages – tune, trigger,
borrow and release to let an island convey coordination
actions that may influence resource allocation decisions
in peer islands, in response to its local overlay requests.

Motivation behind inTune API. Inter-island coordi-
nation APIs in future islands-based systems should pos-
sess the following properties: (i) The API needs to be
expressive enough to successfully translate resource ad-
justment requests from application and/or platform over-
lays, so as to meet their properties. (ii) The API should
be generic and should support a unifying set of abstrac-
tions to be applicable to heterogeneous resource man-
agers of varied resource types (e.g., CPU, memory). (iii)
The API actions should be implemented with low over-
heads for those resource types.

In choosing to support the specific messages – tune,
trigger, borrow, release in the current inTune coordina-
tion API, we account for the range of resource adjust-
ment request types that overlays may use (for ease of
expression), the properties of resource-types managed
by islands (for generality) and the overheads of imple-
menting them. We classify resource adjustment requests
as those that pertain to (i) increase/decrease or tuning
of resource shares for overlays over subsequent time pe-
riods of application runtime and, (ii) urgent provision-
ing or triggering of resource shares for time-critical use.
Tuning of resource shares is limited by island resource
capacity. Additional resource adjustment beyond an is-
land’s capacity may necessitate borrowing, and then re-
leasing of resources from other islands. Urgent provi-

sioning of resources may be requested in a time-shared
preemptible system, and is translated into a trigger mes-
sage. We believe the API comprising of tune, trigger,
borrow, release is also generic and can be applied to
varied resource types such as CPU and memory. We
next discuss coordination messages in further detail and
consider their overheads and generality when applied to
different resource types.

When an island uses tune coordination messages to
influence a remote island’s management, it permits one
island to non-preemptively request dynamic adjustment
– tuning – of the resource shares assigned to a virtual
machine in an overlay in a remote island for a specific
resource. This makes it straightforward to increase/de-
crease a particular resource allocation given to a re-
mote VM, without specifying actual ‘amount’ parame-
ters. This also enables tune to non-intrusively integrate
external events with an island’s resource management
decisions, without complete knowledge of the algorithm
used by the island’s resource manager. A successful tune
action for the CPU resource at the remote island involves
increasing/decreasing CPU shares of a particular overlay
VM along with modifying CPU scheduler state in the re-
mote island. Similarly, tuning of memory resources may
add/release memory pages for the overlay VM using bal-
looning techniques [35], along with appropriate changes
to the VM’s page tables. A successful tune call may be
followed by additional such calls from the overlay moni-
tor, if allocations are still insufficient. The remote island
sends a negative acknowledgement if it fails to carry out
the tune action.

trigger, on the other hand, has pre-emptive seman-
tics. If permitted, a trigger requests immediate execu-
tion of some overlay VM in the remote island. trigger
may be used to deal with time-critical runtime decisions,
where island run-queues are reordered to boost a VM’s
VCPUs. Implementing trigger for the CPU resource
involves possibly pre-empting the current VCPU task,
saving its state and reordering scheduler run-queues to
boost the target VM’s VCPUs. Preempting memory is
a heavy-weight operation which may involve saving and
restoring a VM’s address space. Triggering memory re-
source hence has practical limitations.

tuning a VM’s resource shares is limited by the is-
land’s resource capacity. borrow and release are further
used to flexibly re-size islands, i.e., to request resources
from an external island and add them to the pool of the
local island, and to then either release them voluntarily
or upon request. When resource borrowing is caused by
some specific management overlay, the first attempt is to
borrow resources (e.g., CPU cores) from other islands in
the same overlay (e.g., in the same multi-tier web appli-
cation). If a ‘borrow’ request is not satisfied within an
overlay, current policy is to borrow resources beyond the

overlay from the island that has the maximum available
capacity. To determine idle capacity, previous research
offers many design alternatives, including continued dis-
tribution of resource freelists across all islands [9]. To
avoid incurring the overheads of such periodic updates,
our current design resorts to explicit resource utilization
queries to other islands when local utilization exceeds
some limit. Borrowing resources to re-size islands is
limited by hardware properties such as cache coherence
and core architecture. In our current platforms where is-
lands are software partitions of homogeneous cores, bor-
rowing of cores is a relatively low overhead operation
that involves (i) freeing up cores by migrating running
tasks to other cores in the lender island, and then further
(ii) updating borrower island state to reflect addition of
cores to its capacity. We evaluate inTune overheads in
Section 5.2.3. Finally, the register and deregister actions
are used to notify the inTune co-ordinators of an overlay
component’s entry into or exit from an overlay.
2. Messaging endpoint – via which the coordinator
communicates with peer coordinators. A messaging
endpoint is set up during island creation. Routing infor-
mation about the other island coordinators in an overlay
is made available to the endpoint at the time of overlay
creation (see Section 4). The endpoint drives the send-
ing and receipt of coordination messages on the mes-
saging channels connecting coordinators. Since an is-
land can be part of multiple overlays, the messaging end-
point also implements an arbitration algorithm when de-
queuing coordination messages from multiple overlays
(round robin and priority-based in current design).
3. Scheduler stub – is a set of functions that translate
the information carried in inTune messages to appropri-
ate actions in the target island, and vice versa. For in-
stance, a tune call pertaining to the CPU resource will
make the stub adjust the CPU shares of VMs according
to its own credit system. Such actions will be in accor-
dance with the management state and constraints in the
target island.

Arbitration. When islands are part of multiple over-
lays, an island’s inTune coordinator may receive re-
quests with conflicting control actions, e.g., that com-
pete with other overlay components for an island’s lim-
ited resources, or conflict with the island’s platform-
centric objectives (e.g., its CPU caps). The current
inTune coordinator supports two methods for arbitrat-
ing across conflicting requests: (1) a simple round-
robin method to execute incoming requests, and (2) a
priority-based method that executes requests in order
of decreasing overlay priority. Based on these arbitra-
tion methods at the island-level, the coordinator exe-
cutes a ‘winner’ request and sends back negative ac-
knowledgements to conflicting requests. Arbitration can
be further optimized, for instance by including the use

Coordinator
and Monitor

Coordinator
and Monitor

Coordinator
and Monitor

Coordinator
and Monitor

Dom0

VM VM VM VM

CPU Pool CPU Pool CPU Pool CPU Pool

CPU Pool
Scheduler

CPU Pool
Scheduler

CPU Pool
Scheduler

CPU Pool
Scheduler

Shared memory queues for inTune messages
Hypercalls

inTune overlay
and Policy

control

Xen Hypervisor

Figure 6: inTune components in Xen hypervisor.

of historical information to deal with repeated oscilla-
tions (e.g., core ping-ponging between two islands due
to borrow-release). Under certain conditions, like re-
peatedly declined (i.e., ‘nack’d’) requests (five succes-
sive ones in the current prototype), arbitration decisions
are forwarded and handled by the global platform man-
ager. Finally, an overlay’s use of one resource in an
island may need to be arbitrated against other resource
managers. For instance, a CPU borrow request may need
to be arbitrated against the overlay’s potential memory
bandwidth use, as it may interfere with other overlays
sharing the memory bandwidth. Arbitration across two
application overlays competing to borrow a third island’s
CPU resources is described in Section 5.3.

4 Implementation
Islands and inTune have been implemented in the Xen
hypervisor, on two different platforms: 8- and 12-core
x86-based machines. The hypervisor is extended to con-
struct multiple scheduling islands (see Figure 6) com-
prised of pools of CPU, each with a separate, possibly
functionally different, CPU scheduler to manage the al-
location of the island’s cores. The initial configuration
of islands, and scheduler assignment is performed by a
global manager running as a user-level process in the
privileged domain, Dom0. Beyond island creation its
actions include defining inTune overlays by creating and
mapping application VMs to islands. After overlay ini-
tialization, the Dom0 manager is needed only for (infre-
quent) global arbitration across multiple overlays. All
of its actions, initiated from Dom0, are implemented as
hypercalls.

Two periodic threads, implemented as Xen softirq
contexts on the first CPU in every island, are respon-
sible for per-island monitoring and as the per-island in-
Tune coordinator respectively. A monitor thread period-
ically (every 30ms – which is the Xen scheduling epoch)

tune (resource type, increase request/decrease request, overlay id, island id, vm id) request increase/decrease of resources allocated to a
given overlay VM; the actual change to resource allocation is determined locally at the remote island

trigger (resource type, overlay id, island id, vm id) request immediate boost to resources allocated to a given overlay VM;

borrow preferred (resource type, overlay id, island id, request amount) request to temporarily gain exclusive access to resources currently
managed by target remote island.

borrow any undirected borrow request to multiple islands and then choose based on available utilization.

release (resource type, overlay id, island id) release resource to lender island.

Table 1: inTune Coordination messages.

calculates island CPU utilization as part of system-
level observations of overlay progress (Section 3.2).
Any inTune coordinator implementation is inherently
manager-specific, because it must translate inTune mes-
sages into actions understood by the island’s resource
manager. One of our current implementations is a coor-
dinator for the Xen Credit scheduler. Regarding the in-
Tune messages described in Section 3.3, a tune message
translates to tuning the CPU cap allocation, which is a
parameter that is already supported by the credit sched-
uler. A trigger results in boosting a VCPU to the front
of a CPU runqueue, but only if it has sufficient cred-
its to spare in the current scheduling epoch. We added
this functionality to the Xen Credit scheduler. For re-
sizing island resources via the borrow mechanism, the
implementation sends resource utilization queries to all
islands within its overlay, and then to other islands, and
borrows from the one having maximum available capac-
ity. The coordinator thread polls for incoming inTune
messages every 30ms and, based on feedback from the
local monitor maintaining island utilization state, applies
external control actions locally, if possible. A negative
acknowledgement message is sent back to the messag-
ing island in case the control action cannot be applied
due to local constraints.

Management overlays. Management overlays encap-
sulate the platform-level or application-centric proper-
ties and run the methods used for obtaining these prop-
erties. When creating an overlay, the global manager
in Dom0 first retrieves island information (e.g., cur-
rent load in islands and available resource capacity). It
then performs a basic matching of overlay resource re-
quirements to underlying island resources (i.e., admis-
sion control) and updates state regarding the overlay’s
mapping to islands. The constituent island coordinators
are then notified by registering the overlay and overlay
VMs, establishing pairwise message channels among the
corresponding islands, and initiating the island messag-
ing endpoints with routing state (shared memory point-
ers) to reach remote islands in the overlay. Message
channels are implemented as producer-consumer mes-
sage rings. The global manager also initiates hypervisor-
level monitors that may be distributed across islands and
maintain island-local monitoring state like island utiliza-

tion, but it assumes monitoring within the application to
be initiated by the application itself. A combination of
such hypervisor-level monitors and/or application-level
monitoring periodically updates and checks overlay state
pertaining to the overlay property to be attained. An ex-
ample application-level monitor keeps track of incom-
ing request streams for a web-server overlay, and in
reaction to observed traffic patterns, requests resource
re-allocations to backend components. This particular
monitor implementation is simple and attributes to an
additional 50 lines of code to the existing web-server
code used in Section 5.2.1.

To trigger overlay operations in response to changes
to application- or platform-level property, we add inTune
coordination hypercalls to overlay monitors that invoke
local island coordinators, as was shown in Figure 4. Xen
hypercalls to local islands will include the inTune di-
rective (tune, trigger, borrow) and an additional overlay
VM identifier, for which resource allocation needs to be
adjusted. In our simplified current overlay implementa-
tion, we assume that the overlay monitor exactly knows
its resource type needs while specifying an inTune re-
quest. Our application-level monitors are implemented
in the same language runtime as the application (see Sec-
tion 5.2). However, we then use language-specific exten-
sions to invoke the xen-level ‘C’ inTune hypercall API.

An overlay implementation need not be island-aware,
as further translation of a VM identifier to an island host-
ing the VM is performed at the local island, using initial
state known at overlay creation time. Inter-island inter-
actions are performed directly by island coordinators.

Since an island may be a part of multiple overlays, ar-
bitration may be needed to mediate across multiple pol-
icy overlays; we currently use round-robin and priority-
based arbitration. Upon successive negative acknowl-
edgements the global manager is invoked for veto con-
trol.

5 Experimental Evaluation
Jointly, inTune resource islands, inter-island coordi-
nation, and management overlays serve to realize
application- and system-level policy objectives on scale-
out multicore systems. This is demonstrated with ex-

perimental evaluations performed on two platforms: (1)
a 8-core hyperthreaded dual socket Nehalem x86 host
and (2) a 12-core hyperthreaded dual socket Westmere
x86 host, both running the Xen 4.0 hypervisor. Exper-
iments use the RUBiS enterprise benchmark, PARSEC
and Sequoia parallel benchmarks, Apache Web servers,
and Map-Reduce codes. A platform efficiency metric is
used to evaluate inTune’s resource management mech-
anisms. The metric measures application performance
against resource utilization, where a higher platform ef-
ficiency value using inTune signifies its benefits.

5.1 Meeting Global Platform Properties
Consider a platform CPU cap, as an example of a spe-
cific platform level property. We achieve this global
property as a sum of per-island CPU caps,
Experiment setup. We run the inTune prototype on a
12-core hyperthreaded Intel X5660 Westmere machine,
which for this example, is initially configured into four
islands of three cores each. We use parallel benchmarks
from the PARSEC suite to generate CPU load within
each island. In three islands, we deploy one PARSEC
application per VM; we leave the first island for Dom0
execution. Given our virtualized environment, three pos-
sible relationships may hold for the total number of
VCPUs(nVCPU) and total number of PCPUs(nPCPU):
(i) nVCPU < nPCPU, (ii) nVCPU = nPCPU, or (iii)
nVCPU > nPCPU. For brevity of presentation, we re-
port a case in which the number of PCPUs in an island
is kept constant and equal to 6, changing the number
of VCPUs for each deployed VM as 4,6, and 8 for the
three cases. The number of PARSEC application threads
inside the VM is always equal to the number of VM
VCPUs, to avoid oversubscribing within a VM. Every
CPU island is managed by a separate Xen credit sched-
uler and has its own inTune coordinator. Given that the
platform has 24 threads, the maximum CPU utilization
is 2400. The global property is to maintain the CPU cap
at 2000, by specifying an initial platform-wide overlay
with a per-island CPU cap of 500.
Coordination is needed to achieve platform properties
like CPU caps. We first compare the coordinated man-
agement approach (labeled IntuneIslands) with the na-
tive Xen scheduler (NoIslands) with respect to their abil-
ities to maintain platform-wide properties. The NoIs-
lands case is the default Xen case, where a single Xen
scheduler manages the entire platform. We observe that
with inTune coordination, we can continuously ensure
the platform-wide CPU cap of 2000, whereas with the
default case, this property is violated. In this experi-
ment, coordination among islands is triggered in reac-
tion to events. The platform overlay in this case creates
local monitors for each island, to track its local CPU

cap (refer to Section 3.2). When a local monitor de-
tects a violation of its local cap, this indicates that the
island has exceeded its resource capacity, and so, the
monitor actuates the local inTune coordinator’s borrow
mechanism to borrow a core from a peer island. Overlay
monitors in both lender and borrower islands, then, re-
calculate their local CPU caps without any central con-
troller intervention. The cap enforcement is subject to
availability of idle capacity on the platform. Note that
the parallel applications used in this experiment exhibit
collective phases of computation, followed by relatively
idle phases. With inTune, even without knowledge about
such application behavior, solely by monitoring CPU
utilization, we are able to detect the presence of idle
capacity on islands, so that this capacity can then be
made available to islands with greater CPU demand. As
stated earlier, we conclude from the experiment that co-
ordination is a necessary means for obtaining desired
platform-level properties.
Utility of island elasticity. Figures 7a, 7b, 7c show the
mean completion times of the three benchmark appli-
cations along with standard deviation bars for all three
nVCPU:nPCPU configurations. The first and third set
of bars in each figure correspond to the NoIslands and
IntuneIslands cases described above. The second set
of bars shows times for ‘uncoordinated islands’ (Is-
lands), where no coordination takes place across the
islands’ CPU managers. The following obversations
can be made about the results shown in the figure.
When nVCPU<=nPCPU, in Figures 7a and 7b, we
observe that island creation reduces the level of per-
formance variation seen in the default NoIslands case
by close to 15%, and it also shows small gains in av-
erage completion times. IntuneIslands shows similar
performance as Islands, as the use of borrow is never
triggered for the case of nVCPU<=nPCPU. However,
when nVCPU>nPCPU (see Figure 7c), the use of un-
coordinated islands may result in performance degrada-
tion, since we are statically partitioning the platform,
thereby restricting the CPU resources available to appli-
cations. In fact, as seen in the IntuneIslands case in Fig-
ure 7c, with the use of inTune’s mechanisms for borrow-
ing and releasing resources, flexibly resizing islands re-
duces performance variation from 10% to less than 0.2%
and achieves close to 16% improvements in mean com-
pletion time compared to the centralized NoIslands case.
From Figure 8, we see that with inTune, these gains in
performance variation are primarily because of reduced
VCPU wait times for individual VMs in the IntuneIs-
lands case compared to the NoIslands case, sometimes
by up to 20%, as when nVCPU>nPCPU, indicating that
re-adjustment of island size reduces runqueue lengths,
thereby scheduling VCPUs in a more timely manner.

In Table 2, we show the aggregate performance in-

(a) VCPU<PCPU, nVCPU=4 (b) VCPU=PCPU, nVCPU=6 (c) VCPU>PCPU, nVCPU=8

Figure 7: PARSEC: average completion times. BS: Blackscholes FA: Fluidanimate

(a) VCPU<PCPU, nVCPU=4 (b) VCPU=PCPU, nVCPU=6 (c) VCPU>PCPU, nVCPU=8

Figure 8: PARSEC: average VCPU wait times.

NoIslands inTune
Completion Times(min) 11.88 9.98

Avg CPU Utilization 938 1040
Platform Efficiency 8.97 9.63

Table 2: PARSEC – platform efficiency.

formation, and the resulting platform efficiency for the
nVCPU>nPCPU case. With inTune, average CPU uti-
lization increases equivalent to one hardware thread,
but this increased resource utilization at the appropri-
ate time(s) also delivers lower completion times. The
outcome is a higher platform efficiency value (1/ (CPU-
Utilization*Completion-time)), thus meeting our global
policy objective with application performance benefits.

5.2 Application Overlays
We next show how inTune’s management overlays and
system-level coordination abstractions help achieve per-
formance properties for applications spanning across
multiple islands, e.g., in scale-out platforms.

5.2.1 Ensuring Predictable Response Times for
Multi-tier Web Applications

As a representative multi-tier web application, we use
RUBiS, a well-studied auction website prototype mod-
eled after eBay, comprised of an Apache webserver

Base
(req/s)

RUBiS-2
(req/s)

RUBiS-3
(req/s)

Throughput 75req/s 110req/s 126req/s
Avg CPU Utilization 385 475 492
Avg session time(s) 473 454 440
Platform Efficiency 0.19 0.23 0.26

Table 3: RUBiS – Throughput Results.

frontend, a Tomcat Servlets application server, and a
MySQL database server backend, all deployed in sep-
arate Xen hardware virtual machines. Each component
VM with three VCPUs is deployed in its own separate
island of 2 cores each. Dom0 is deployed in a dual-
core island of its own. A RUBiS client is deployed on a
separate x86 dual-core host, with 2 GB physical RAM.
The standard RUBiS benchmark client has two workload
profiles: browsing (read) mix and bid/browse/sell (read-
write) mix. From previous work [5] and our own pro-
filing, we know that the browsing mix results in a large
amount of web-server and application server processing
with practically no database processing. For the read-
write mix, database-intensive processing is initiated at
the server end. We use this analysis to drive coordina-
tion policies that use inTune’s methods.

Overlay setup and coordination methods. This par-
ticular realization of the RUBiS application overlay uses
proactive policies to actuate inTune coordination by ex-

Figure 9: RUBiS Min-Max Response Times. Coordina-
tion helps in peak response latency alleviation.

ploiting the application knowledge gained from offline
profiling (Overlay-1 in Section 3.2). We modify the
Apache webserver to classify incoming client requests
into bid and browse-type requests, and to also count
the numbers of requests of each type every 30 seconds.
Depending on the request traffic pattern in the previ-
ous sample, the webserver propagates this information
via a tune hypercall to the hypervisor-resident inTune
coordinator on its island. The coordinator then sends
a tune coordination message either to the application
or the database island, as appropriate. Resource re-
allocation within islands due to actuation of tune pro-
gresses between three states: (1) no-coordination – a
case when there is no coordination and resources are al-
located under a RUBiS-3/2 policy with all three applica-
tion VMs capped at 1.5 cores within their 2-core islands,
(2) RUBiS-2 – a case when only inTune’s tune messages
are used, and the initial allocation changes from 1.5 to 2
cores for the application or the database server; and (3)
RUBiS-3 – a case when both tune and borrow mes-
sages are used, and the CPU allocation further changes
to a RUBiS-3 one, with 3 cores for either the application
or the database server island, depending on the incom-
ing request pattern. As a result of the receipt of the tune
message, the remote island CPU scheduler may change
its CPU allocations from RUBiS-3/2 to RUBiS-2, and
vice versa, or go a step further, and make a borrow re-
quest, so its allocation can be changed to RUBiS-3. The
RUBiS-3/2 policy is representative of cases where web-
server resource usage may be capped initially for lower
client request rates, and subsequently adapted based on
varying load requirements [10].
Elasticity: from ‘tuning’ to ’borrowing’. Figure 9
shows the min-max response times for different types of

RUBiS requests in a read-write browsing mix workload
with 480 simultaneous client sessions and the normal-
ized average latency benefits of the RUBiS-3 configura-
tion over RUBiS-3/2. We experiment with varying num-
bers of simultaneous sessions, starting from 180. On
our testbed, the baseline RUBiS-3/2 configuration can
sustain up to 360 sessions, beyond which a tune co-
ordination reconfigures the application and database re-
source allocations to RUBiS-2 state. Upon increasing the
number of sessions to 480, the application and database
server reach maximum CPU utilization in their islands
under a RUBiS-2 allocation. Tuning works only up to
capacity limits, so this is when a borrow request is used
to get another core to go to RUBiS-3 allocation.

We also observe that RUBiS-2 and RUBiS-3 exhibit re-
duced variation for almost all request types, sometimes
by up to 60%, as in case of the ‘PutBid’ request type.
The average response latency gains, also presented in
Figure 9 (see right-side Y axis) for the RUBiS-3 allo-
cation as a percentage value decrease over the baseline
RUBiS-3/2, show similar trends of decreased response
times when the application and database servers receive
appropriate CPU allocations for the corresponding re-
quest types, sometimes by up to 70%.

Note that for two of the request types, ‘PutBid’ and
‘PutComment’, response time latencies for RUBiS-3
case are higher than that of RUBiS-2. We attribute this
increase to the slight overheads experienced when bor-
rowing and releasing cores (Borrow preferred and Bor-
row any mechanisms take 291 and 494 nanoseconds to
complete), and the fact that our classification engine is
not very sophisticated. However, even with this sim-
ple classifier, we are able to see substantial benefits
due to the flexible resource allocation achieved via in-
Tune’s mechanisms. Table 3 shows additional perfor-
mance metrics for the RUBiS benchmark, where the use
of inTune-based coordination clearly results in improved
performance and more efficient utilization of platform
resources. The platform efficiency metric in Table 3 jus-
tifies the resulting higher CPU utilization with increased
application throughput and lowered response time, thus
demonstrating the importance of using inTune mecha-
nisms for coordinated management. We conclude that
inter-island coordination plays an important role in reg-
ulating and optimizing the performance of web and dat-
acenter applications.

5.2.2 Latency-sensitive Codes

It is not just the aggregate resource availability that de-
termines application performance, but in addition, it
is important ’how’ and ’when’ applications’ use of is-
land resources is scheduled. We demonstrate this via
an inTune-realized coscheduling policy for applications

Uncoordinated inTune
Time(ms) %Var Time(ms) %Var

Completion Times
(mpi barrier) 1580 ±6.0 1361 ±2.93

Completion Times
(BS 32 1) 4122 ±0.2 4197 ±3.2

Completion Times
(BS 32 2) 4117 ±0.1 4207 ±3.1

Table 4: MPI collectives overlay.

running across multiple islands, making use of inTune’s
trigger mechanism.

Overlay setup. We use the MPI Barrier benchmark,
part of the Sequoia parallel benchmark suite [32], which
times MPI barrier operations for a specified number
of iterations across all processes in its communication
world. We divide 16 MPI processes among 2 VMs, each
with 8 VCPUs and 256M memory. In inTune parlance,
this MPI world of 2 VMs becomes our application level
overlay to which policy objectives may be applied. Each
VM is assigned to a separate 4-core island on a 12-core
hyperthreaded Intel Westmere machine. The remaining
4 cores are reserved for Dom0. Each island’s CPU re-
sources are managed by separate credit schedulers. We
launch two compute-intensive Blackscholes benchmarks
in separate 8 VCPU VMs, and assign each one to the cre-
ated islands, so that every island has two VMs, one run-
ning MPI and the other running Blackscholes. Table 4
shows the barrier performance results of this experiment.

Coordination: coscheduling using trigger. It is
well-known that the performance of applications using
collective operations like barriers is improved when par-
ticipating processes are coscheduled. To achieve this,
we permit the MPI application overlay (or the communi-
cation stacks they use) to explicitly initiate coordination,
by providing them with hypercalls directed at the inTune
coordinator. Using these hypercalls, the application can
inform its island’s coordinator to trigger all VMs in the
MPI overlay. The local coordinator then sends appro-
priate trigger messages to islands that contain the other
VMs to be coscheduled; using the routing information
distributed at the time of overlay creation (Section 3).

As seen from Table 4, with such coordination, barrier
completion time is reduced by 13%, compared to the un-
coordinated case, and we also observe reduced variation
across consecutive barrier runs. Such trigger-based co-
ordination could negatively affect other workloads, but
the two Blackscholes VMs experience tolerable perfor-
mance degradation (less than 4%), which is less than
the cumulative advantage seen for the coscheduled MPI
VMs. The slight variation for MPI VMs in the inTune
case can be attributed to ‘advisory’ control design prin-
ciple used by the coordinator; this means that an attempt
to coschedule VCPUs may not always succeed for rea-

sons of fairness within the credit scheduling algorithm.
Note, however, that even the worst case performance
remains better than the uncoordinated case. We con-
clude that inTune interfaces and coordination support
help performance-critical codes define relevant policies
to improve their performance.

5.2.3 inTune overheads

The overheads of our inTune implementation consist of:
(i) messaging overheads – i.e., time to create an inTune
message by assembling all relevant parameters, send the
message to the target island by copying to the appropri-
ate shared memory channel, and then receive the mes-
sage, again by copying from the shared memory channel,
in our implementation; (ii) arbitration overheads – i.e.,
time to arbitrate among multiple requests; (iii) schedul-
ing of software interrupt at the target island to schedule
the inTune coordinator thread, and finally (iv) executing
the specific coordination action.

Considering messaging overheads and specific coor-
dination action overheads, a tune call needs 212ns, trig-
ger needs 293ns, borrowing in a two-island overlay re-
quires 381ns, and from among all six islands (of two
cores each) needs 594ns (due to additional message rout-
ing decision costs). By comparing to a ‘null’ message,
which takes 150ns, we observe the enqueueing and de-
queueing of inTune messages on the shared memory
channel represent a dominant factor of total cost. These
overheads can be reduced by leveraging future hardware
support (e.g., like fast messaging support for control ex-
changes on Intel’s SCC chip) or by better mapping in-
Tune’s explicit message-based communications to the
underlying hardware interconnects [7]. Scheduling of
software interrupts on our Westmere platform incurs ad-
ditional overheads between 200-400ns. This only ac-
counts for dispatch overhead, not potential cache misses,
etc.

A potential variable cost is incurred due to arbitra-
tion across multiple overlays that may queue up within
one scheduling epoch of the inTune coordinator (30ms).
The total number of simultaneous resource readjustment
requests at a coordinator is the sum of requests sent
by each overlay mapped to an island within the previ-
ous 30ms interval. These may also include previously
‘nack’d’ requests. In order to place a bound on this sum,
a limit may be applied to the total number of outstand-
ing requests an overlay sends in a time-interval, while
using techniques like exponential back off [33] to delay
sending subsequent requests. We are still exploring such
optimizations to better scale our arbitration methods as
the number of overlays and islands scale.

Figure 10: Apache Web server throughput scales with
increasing number of cores, especially when its ‘borrow’
request is prioritized over other overlays.

5.3 Arbitration among Policy Overlays

In the presence of multiple management overlays, there
may be multiple control requests to an island’s coordina-
tor that (i) compete for the island’s available resources,
or (ii) conflict with the island’s local objectives (e.g., lo-
cal CPU caps). Such situations require arbitration, as
demonstrated by the next use-case in which inTune arbi-
trates across competing application overlays attempting
to borrow a third island’s CPU resources.
Arbitrating between two competing overlays. Consider
the inTune prototype running on the 12-core Westmere
system (with disabled hyperthreading), initially config-
ured into 4 islands. Dom0 occupies the first island of
4 cores. The second island of 4 cores hosts one VM
running the Blackscholes application (of 2 threads) from
the PARSEC suite. The third and fourth islands have 2
cores each and host a 4-VCPU Apache v2.4 Web server
application and a 4-VCPU Phoenix Map-reduce Word-
count [31] application VM, respectively. Each applica-
tion VM is configured with 2GB of memory, and runs
Ubuntu Linux kernel version 3.0.2. The Apache Web
server VM services incoming requests for a 14KB static
image from an external client system running httperf,
while the Word-count application VM processes a 1GB
text file using four Map and Reduce threads. At the be-
ginning of the experiment, the 4-core Blackscholes is-
land is least utilized and has an available capacity of
3 cores. The Apache Web server island starts capping
its CPU resource, and hence experiences a throughput
degradation when the httperf request rate starts exceed-
ing 1500 requests/second, as seen in the ‘Baseline’ con-
figuration in Figure 10. The Word-count island also
caps its CPU, and both the Web-server and Word-count
islands attempt to borrow a CPU core each from the
Blackscholes island. The Blackscholes island satisfies
both requests, reconfiguring itself to 2 cores, and lend-

ing one core each to both requesting islands. ‘Borrow-1’
in Figure 10 shows the Web-server throughput scaling
with an additional core – by 10% compared to ‘Baseline’
and sustains almost double the ‘Baseline’ throughput at
higher request rates.

A further increase in the httperf request rate causes the
web-server island to again start capping CPU, matched
with a similar capping of CPU in the Word-count island,
causing both islands to again send ‘borrow’ requests to
the Blackscholes island. However, as the Blackscholes
island has only one core available, its inTune coordina-
tor needs to arbitrate between the two requests. With
round-robin arbitration, the Blackscholes island satis-
fies the Word-count island’s request, denying a core to
the Webserver island (see ‘Borrow-1-RR’ case in Fig-
ure 10). However, we noticed that the Word-count ap-
plication does not gain much with an additional core
(completion time reduces by 20% with the first bor-
row request, but improves by only an incremental 5%
with the second borrowed core). Hence, we next ex-
periment with priority-based arbitration, which priori-
tizes the Web-server overlay over the Word-count over-
lay, thereby lending the available core to the Web-server
island, instead (see throughput gains and scaling for
‘Borrow-2-Priority’ case in Figure 10 – sustaining al-
most four times the throughput at higher request rates).
We conclude that arbitrating across competing over-
lay requests is a necessary and important function of
the inTune coordinator, enabling it to make better deci-
sions while maintaining application and platform prop-
erties, especially in resource-constrained, consolidated
systems.

Discussion. In the current implementation of our in-
Tune prototype, the arbitration policy supported by the
inTune coordinator (round-robin vs. priority-based) is
configurable and can be chosen via the global platform
manager at the time of coordinator initialization. As
seen in Section 3, if an overlay’s requests are succes-
sively nack’d over five intervals of 30ms by an island’s
inTune coordinator due to insufficient resources, the in-
Tune coordinator invokes the global platform manager
for overall arbitration. Current policy of the global plat-
form manager is to initiate capping CPU usage of an-
other overlay chosen at random, and to re-allocate avail-
able CPU resource to the ‘starved’ overlay. We are ex-
ploring more sophisticated arbitration policies for the
platform manager that provide weighted performance
degradation for all applications [26]. In the event of in-
sufficient resources to provide acceptable performance
levels to all applications, necessary interactions with
higher-level schedulers and load balancers (at the data-
center level) should take place.

Finally, the overall fairness and stability of the inTune
coordinator can be further enhanced by accounting for

the history of previous decisions.

5.4 Summary of Evaluation

Evaluation use-cases demonstrate the utility of inTune,
and address the two issues in managing the resources of
scale-out platforms introduced in Section 1.

Maintaining platform-centric and application per-
formance properties. Section 5.1 shows for multi-island
many-core systems, a platform-wide property of CPU
cap can be implemented, using inTune policy overlays
and its borrow and release mechanisms. Sections 5.2.2
and 5.2.1 demonstrate the necessity of trigger, tune,
and borrow for implementing application-specific over-
lay properties. In all such cases, trigger and tune are
the initial mechanisms of choice, with borrowing and
realizing used when capacity limits are reached. We
can also claim, based on the results seen in these use-
cases, that coordination using inTune (i) is important
for managing platforms and meeting application perfor-
mance requirements (supported by the consistently im-
proved performance and lower performance variation we
see with coordinated islands compared to the centralized
Xen scheduler) and (ii) is sufficiently versatile for repre-
senting a variety of higher level policies for island-based
platforms. In Section 5.3, we additionally demonstrate
the ability of the inTune coordinator to arbitrate amongst
multiple consolidated overlays. Arbitration will be par-
ticularly important in consolidated data center systems,
to ‘better’ allocate resources when realizing multiple
properties with resource-constrained platforms.

Standard interfaces for diverse resource managers.
With the coexistence of multiple, functionally differ-
ent and/or heterogeneous resource managers becoming
the norm in data center systems, we argue that rather
than trying to design one scheduler to deal with all plat-
form resources [8], using multiple scheduler islands and
adding inter-island coordination interfaces is preferable.
With this approach, custom interfaces and interactions
exist only to ’translate’ control actions between spe-
cific resource managers (e.g., real-time vs. credit-based
schedulers) and the controllers with which they inter-
act, whereas controllers interact via well-defined and -
proven techniques based on the principles of online sys-
tem control [25] and elasticity.

6 Related Work
Resource islands. The concept of resource islands used
in Helios [29] has its roots in earlier work that includes
Cellular-Disco [15], Hive [11], and K42 [21]. While He-
lios [29] uses satellite kernels to account for heteroge-
neous runtimes, Hive [11] uses resource-partitions for

fault-containment, and K42 [21] uses them to exploit lo-
cality. The implementation of islands via hypervisors
in our work is similar to the cell-partitions approach fol-
lowed in the Cellular-Disco system [15], with the key ad-
ditional contribution of general system-level support for
abstractions and methods to coordinate these islands for
achieving management goals. These abstractions per-
mit arbitrary interactions amongst coordinating islands
compared to fixed gang-scheduling in the Cellular-Disco
system. Also, inTune accommodates cross-VM applica-
tion dependencies and hence, coordinates VCPUs across
VMs, not limited to a single VM. inTune complements
micro- and exo-kernels [12], by building resource man-
agement abstractions on top of a minimal kernel using
message passing and its contributions related to resource
management apply to systems software in general: in-
cluding island-based microkernels with island resources
managed by library OSs [12]. Recent work includes
the Tessellation OS [23] that creates space-time parti-
tions (STPs) encapsulating applications and OS services
within ‘resource containers’ [4] for performance isola-
tion. STPs are complementary to our resource-level ab-
straction - ‘resource-islands’ where STPs may be time-
multiplexed by OS-level island schedulers, similar to our
hypervisor-based islands scheduling application VMs.
In addition, applications need not be aware of the island
abstraction, as STPs are exported to applications.

Messaging and coordinated scheduling. Commu-
nication primitives and messaging abstractions for re-
source management have been studied for grids and
clusters – CCL [3] and Condor [13] being two widely-
studied examples. In recent research, the use of message
passing and RPC for inter-core communication has seen
renewed interest in Barrelfish [7]. inTune adopts some
lessons from such prior work in terms of its loose cou-
pling across resource managers, but it extends the mes-
saging based system of Barrelfish [7] with additional se-
mantics focused on resource management. Also rele-
vant to our work are the two-level scheduling problems
discussed in previous research using scheduler activa-
tions [1], specifically in terms of our approach of ex-
changing only relevant and limited information about
resource islands via relaying selective control, a similar
approach is used by scheduler activations between user
and kernel-level schedulers.

From multi-agent systems to inTune. The choice of
the abstractions and coordination primitives supported
by the inTune architecture is not accidental. Instead,
since inTune is intended to enable and support coor-
dination, its features are defined based on a substan-
tial body of work in system controls and multi-agent
systems. In particular, in reference to distributed con-
trol theory and multi-agent systems for power engineer-
ing [25], inTune coordinators are similar to intelligent

agents in that they are: (1) proactive, initiating their own
local control actions, (2) reactive, such that they can re-
act to local monitored events; (3) social, such that they
communicate management actions with other coordina-
tors; (4) autonomous, such that they have local control
and treat external control as ‘advisory’.

7 Conclusions and Future Work
A key problem for future large-scale and heterogeneous
multicore platforms is how to manage applications and
their performance properties spanning across their mul-
tiple ‘resource islands’, each with their own resource
managers and methods. InTune realizes an approach and
framework for developing and evaluating future man-
agement methods, using as a guiding theme, coordi-
nated management in which there are explicit interac-
tions between different islands’ resource managers taken
on behalf of applications to maintain their properties. in-
Tune lets islands cooperate using standard interfaces and
mechanisms on behalf of applications hence abstracting
away their implementation details.

inTune is implemented as an extension of the Xen hy-
pervisor, and its management overlays using message-
based coordination primitives are shown to operate on
the Intel Nehalem x86-based manycore machine used in
this paper. Experimental evaluations for both web and
parallel applications demonstrate the utility and impor-
tance of the coordinated islands approach in meeting ap-
plications’ end-to-end needs (with improved throughput,
predictability, and lower response times) than when us-
ing a single homogeneous Xen hypervisor. In ongoing
work, we are also exploring its use for meeting platform-
level objectives like power budgets [28] and optimizing
arbitration methods for stability and management effi-
ciency.

Acknowledgements
We would like to thank our shepherd, Andrew Baumann
and other anonymous reviewers for their useful insight
and feedback for improving this paper. We would also
like to thank Vishakha Gupta, and Dilma Da Silva for
their comments on earlier versions of this paper and in-
Tune in general. This research has been supported in
part by the NSF via CCF-1161969, and by Intel Corp.

References
[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and

H. M. Levy. Scheduler Activations: Effective Kernel
Support for the User-Level Management of Parallelism.
ACM TOCS, 1992.

[2] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Oper-
ating System Implications Of Fast, Cheap, Non-volatile
Memory. In Proceedings of the 13th USENIX conference
on Hot topics in operating systems, 2011.

[3] V. Bala, J. Bruck, S. Member, R. Cypher, P. Elustondo,
A. Ho, C. tien Ho, S. Kipnis, and M. Snir. CCL: A
Portable and Tunable Collective Communication Library
for Scalable Parallel Computers. IEEE Transactions on
Parallel and Distributed Systems, 1995.

[4] G. Banga and P. Druschel. Resource Containers: A New
Facility For Resource Management in Server Systems.
OSDI ’99.

[5] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
Magpie for Request Extraction and Workload Modelling.
In OSDI, 2004.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the Art of Virtualization. In SOSP, 2003.

[7] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The Multikernel: A New OS Architecture
for Scalable Multicore Systems. In SOSP, 2009.

[8] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev,
M. F. Kaashoek, R. Morris, and N. Zeldovich. An Anal-
ysis of Linux Scalability to many cores. In OSDI, 2010.

[9] A. Butt, R. Zhang, and Y. C. Hu. A Self-Organizing
Flock of Condors. In SC ’03, 2003.

[10] A. Chandra, W. Gong, and P. Shenoy. Dynamic resource
allocation for shared data centers using online measure-
ments. In IWQoS 2003, pages 381–398. Springer, 2003.

[11] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teo-
dosiu, and A. Gupta. Hive: Fault Containment for
Shared-memory Multiprocessors. SIGOPS Oper. Syst.
Rev., 1995.

[12] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An
Operating System Architecture for Application-level Re-
source Management. In SOSP, 1995.

[13] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke. Condor-G: A Computation Management
Agent for Multi-Institutional Grids. Cluster Computing,
2002.

[14] B. Gamsa, O. Krieger, J. Appavoo, and M. Stumm. Tor-
nado: Maximizing Locality and Concurrency in a Shared
Memory Multiprocessor Operating System. In OSDI,
1999.

[15] K. Govil, D. Teodosiu, Y. Huang, and M. Rosenblum.
Cellular Disco: Resource Management using Virtual
Clusters on Shared-memory Multiprocessors. ACM
Trans. Comput. Syst., 2000.

[16] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ran-
ganathan. Pegasus: Coordinated Scheduling in Virtual-
ized Accelerator Systems. In Usenix ATC, 2011.

[17] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan,
G. Ruhl, D. Jenkins, et al. A 48-Core IA-32 Message-
Passing Processor with DVFS in 45nm CMOS. ISSCC,
2010.

[18] W. Huang, K. Rajamani, M. Stan, and K. Skadron. Scal-
ing with Design Constraints - Predicting the Future of
Big Chips. In IEEE Micro, 2011.

[19] A. Iyer and D. Marculescu. Power and Performance
Evaluation of Globally Asynchronous Locally Syn-
chronous Processors. In Proceedings of the 29th An-
nual International Symposium on Computer Architec-
ture, 2002.

[20] V. Kazempour, A. Kamali, and A. Fedorova. AASH: An
Asymmetry-aware Scheduler for Hypervisors. In VEE,
2010.

[21] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wis-
niewski, J. Xenidis, D. Da, S. M. Ostrowski, M. Butrico,
M. Mergen, A. Waterland, and V. Uhlig. K42: Building
a Complete Operating System. In EuroSys, 2006.

[22] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and
S. Yajnik. Supporting Soft Real-time Tasks in the Xen
Hypervisor. In VEE, 2010.

[23] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and
J. Kubiatowicz. Tessellation: Space-Time Partitioning in
a Manycore Client OS. In HotPar, 2009.

[24] G. H. Loh. 3D-Stacked Memory Architectures for Multi-
core Processors. In ISCA, 2008.

[25] S. McArthur, E. Davidson, V. Catterson, A. Dimeas,
N. Hatziargyriou, F. Ponci, and T. Funabashi. Multi-
Agent Systems for Power Engineering Applications Part
I: Concepts, Approaches, and Technical Challenges. In
IEEE Transactions on Power Systems, 2007.

[26] A. Merchant, M. Uysal, P. Padala, X. Zhu, S. Singhal,
and K. Shin. Maestro: Quality-of-Service in Large Disk
Arrays. In Proceedings of the 8th ACM international
conference on Autonomic computing (ICAC), 2011.

[27] A. K. Mishra, S. Srikantaiah, M. T. Kandemir, and C. R.
Das. CPM in CMPs: Coordinated Power Management in
Chip-Multiprocessors. In SuperComputing, 2010.

[28] R. Nathuji and K. Schwan. VPM Tokens: Virtual
Machine-aware Power Budgeting in Datacenters. Cluster
Computing, 2009.

[29] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,
and G. Hunt. Helios: Heterogeneous Multiprocessing
with Satellite Kernels. In SOSP, 2009.

[30] K. Niyogi and D. Marculescu. Speed and Voltage Selec-
tion for GALS Systems Based on Voltage/frequency Is-
lands. In Proceedings of the 2005 Asia and South Pacific
Design Automation Conference, ASP-DAC ’05, 2005.

[31] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating MapReduce for multi-core
and multiprocessor systems. In HPCA, 2007.

[32] https://asc.llnl.gov/sequoia/
benchmarks/#phloem, 2008. ASC Sequoia
Benchmark Codes.

[33] N.-O. Song, B.-J. Kwak, J. Song, and M. Miller. En-
hancement of IEEE 802.11 Distributed Coordination

Function With Exponential Increase Exponential De-
crease Backoff Algorithm. In Vehicular Technology Con-
ference, 2003. VTC 2003-Spring. The 57th IEEE Semian-
nual. IEEE, 2003.

[34] P. Tembey, A. Gavrilovska, and K. Schwan. A Case for
Coordinated Resource Management in Heterogeneous
Multicore Platforms. In Workshop on the Interaction
between Operating Systems and Architecture, WIOSCA,
2010.

[35] C. Waldspurger. Memory Resource Management in the
VMWare ESX Server. In OSDI, 2002.

[36] B. Zhai, D. Blaauw, D. Sylvester, and K. Flautner. Theo-
retical and Practical Limits of Dynamic Voltage Scaling.
In DAC, 2004.

