
Proceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 17-22.

T h e C A P p ro j ec t - an i n t e r i m e v a l u a t i o n

R.M.Needham
Computer Laboratory, University of Cambridge

The CAP project has included the design and

construction of a computer with an unusual and very detailed

structure of memory protection, and subsequently the

development of an operating system which fully exploits the

protection facilities. The present paper passes the work in

review and draws conclusions about good and bad aspects of

the system. The basic architecture of the CAP machine is

described in [1] and a largely prospective description of the

protection system is given in [2].

The project was started as an experiment in hardware

memory protection. A computer was to be designed in which

operating system development was easy, in which ruggedness

was produced by a much more fine-grained network of

firewalls than was (or is) usual, and in which the full range of

protection facilities was available to the writers of subsystems.

Simplicity of mechanism was a very important goal, although

some emphasis was placed on flexibility of protection policy.

The intention may be summed up as: to provide a

system which, without unreasonable overheads, applied in the

most rigorous manner attainable the principle of minimum

privilege as it relates to access to memory. This intention has

been to a very large extent achieved. In the computer and

operating system as constructed, no compromise has been

necessary on fine-grainedness of the protection, and all of the

facilities are available to the ordinary user. With fine-grained

protection goes a need for very frequent changes of protection

environment. It had originally been hoped that such changes

of protection environment would be sufficiently cheap that,

for example, were it desired one could have a change of

protection environment for every character read from an input

file. Whether or not it was sensible to wish to do that, in the

result it has proved unreasonably costly to do so, and

protection environment changes only occur once per line.

Outline of Protection Support

The basic unit of protection in the CAP is the segment

which is a contiguous set of words of memory from 0 to

65535 in length in incremenets of one word. The next higher

unit of protection is the protected procedure. Each protected

procedure has its own fully encapsulated address space, that is,

the memory location referred by an address depends upon the

protected procedure in which that address is used. The

interpretation of capabilities for segments is done by hard

logic in the capability unit, and the interpretation of Enter

capabilities for protected procedures by microprogram. The

mciroprogram is also responsible for loading the associatively

selected capability register in the capability unit.

The division of responsibility between capability unit

and microprogram has proved satisfactory. Support in hard

logic for segment capabilities is essential if performance is to

be maintained, whereas it would be too complicated for

protected procedure call and return. The microprogram

support for these latter functions, and for associated

operations to do with moving capabilities, gives the speed and

ruggedness which are necessary if frequent changes of

protection environment are to be tolerable. There is no kernel

in the software sense, although the parts of the microprogram

which are concerned with capability manipulation (as against

input/output or just doing instructions) may perhaps be

regarded as corresponding to a kernel. They amount to some

1500 micro-orders out of a total of some 3200. It is

characteristic of the capability-handling microprogram that it

regards all in-core data structures with complete suspicion and

does not rely for its consistent and specified performance on

the integrity of any data supplied by the operating system.

Since all the system data structures are constructed out of

regular segments, a substantial amount of the checking is

performed by the capability unit, but some has to be done by

sequential microprogram. It would have been possible to make

some of the capability handling operations faster by omitting

checks, which would amount to embodying in the

microprogrma the assumption that operating system

conventions had been adhered to, and accepting the risk that if

they had not then the microprogram could behave in an

unspecified way. The decision not to make assumptions about

system data structures was deliberately taken, and is regarded

as justified on grounds of good design, it has sometimes led

to apparent inefficiencies, as the following example shows.

17

It is described in a companion paper [1] how, when

the microprogram detects something which should lead to a

trap in a running process, entry is forced to the coordinator.

The coordinator then causes entry to a particular protected

procedure called FAULTPROC in the offending process. This

somewhat roundabout operation is a consequence of the

principle of suspicion between the microprogram and in-core

data structures. For the microprogram to force entry to

FAULTPROC directly there would have to be available, in a

known place, an enter capability for it. Furthermore, since the

traps handled by FAULTPROC include that one which is

interpreted by the operating system as indicating that an

at tempt has been made to load a capability for a segment

which is not in memory, it would have to be known that the

segments of FAULTPROC itself were all in memory. The

presence of the enter capability for FAULTPROC in the right

place, and the presence of its segments in memory, are matters

of operating system conventions rather than of architectural

design, and the microprogram would have to behave in a

reasonable manner if the convention were not followed. The

error handling required for this purpose in the microprogram

would be impracticably complicated and quite di f ferent f rom

the regular error handling, particularly bearing in mind that

some traps may validly occur in FAULTPROC itself. The only

way in which this complexity would be avoided would be to

verify on each entry to a process from the coordinator that the

requisite apparatus was present and in good order. To do this

would make the process entry sequence intolerably long. Some

verification of the same general class is done in the present

system - - for example, it is verified that the register dump

area is not merely readable so that register values can be

restored for the process being entered but writable so that they

may later be preserved - - and any substantial addit ion would

be too much. Accordingly, the microprogram causes entry to

the coordinator whenever a trap occurs because this is an

action which can be guaranteed to be possible without giving

rise to fur ther traps. It is still a major system error if the

enter capability for FAULTPROC is misplaced or if its segments

are not in memory, but the effects of such an error are clearly

ascribable to the operating system software rather than to the

microprogram, and changes in operating system convent ion do

not lead to a requirement for consequential changes to the

m icroprogram.

An Extended Kind of Capability

Capabili t ies for segments are presented to the

addressing hardware, and ENTER capabilities to the

microprogram. The idea has been extended to include

capabilities which cannot validly be presented to either, but

which may be presented to protected procedures as a sign of

authori ty to request some action. These capabilities are known

as software capabilities, they are kept in capability segments

just like segment capabilities and ENTER capabilities, and may

be retrieved from the fi l ing system in just the same way. They

furnish a powerful way of unifying the t reatment of various

kinds of privilege or permission with the general capability

structure in various circumstances where direct use of the

general mechanism would appear wasteful. Two classes of use

of software capabilities may be distinguished.

a) Software capabilities are sometimes used to specify

the objects on which a protected procedure is to act. For

example, a procedure called SETUP creates message channels

between processes. A software capability contains the

identif ier of a particular channel and is a sign of authori ty to

create, as the case may be. the sending or receiving end of it.

Notice that the software capability here is not a form of

representation of an abstract object, but a permission to make

o n e .

b) Software capabilities are sometimes used to

authorize use of specific options in the use of a single

protected procedure. It sometimes happens that a number of

actions require almost the same program, but it is nevertheless

desirable to separate the privileges to call for them. The

operations "create capability" and "update capabili ty" form an

example.

In both of the above instances the use of software

capabilities could have been avoided by having more protected

procedures. However, protected procedures require capabili ty

segments, and the use of software capabilit ies saves several

tens of them per process. The existence of large numbers of

capability segments leads to adminis t ra t ive overheads which

are well worth avoiding if it is possible to do so without loss

of protection. The importance of this point was not

sufficiently appreciated in the early design stages.

Effectiveness of Protected Procedures and Objects

Consider a simple protected procedure called SETUP.

This exists to set up message communicat ion routes between

processes. Its list of capabilit ies is as follows:

3 code segments, of which two are parts of the ALGOL68C

library shared with all other ALGOL613C procedures, and

one is the code of SETUP itself (under 500 compiled

instructions)

1 workspace segment - - the stack

1 segment shared among all instances of SETUP in

di f ferent processes; it contains a global table of existing

message channels

2 permission capabilities, of which one is to create

entries in the process resource list, and the other is to

create new message channels

SETUP may be called by anyone. It accepts as

arguments software capabilities relating to particular logical

18

channels, and its task is to bring the current process into

connection with a logical channel, if necessary creating the

channel itself. It verifies that the capability presented to it is

of the correct type, consults its global table to see whether the

channel exists, and uses its permissions to call ECPROC, a more

privileged procedure, to do what setting up is needed. No

enter capability for ECPROC is required in the above list, since

such a capability is globally available, all actions of ECPROC

being protected by a requirement for software capabilities.

From this description of the action of SETUP, we may

draw a number of observations about the mechanism.

1. Small domains

SETUP is a very short program, and the control paths

through it are also short, but it is practical and sensible to

treat it as a separate protected procedure given the

microprogram support for moving between domains of

protection. Similar remarks apply to ECPROC.

2. Minimum privilege

SETUP can only do the job intended. It has no other

privilege and no bug in it could cause it, for example, to alter

an existing capability.

3. Explicitness o f privilege

It is immediately clear f rom inspection of the

capabilities available to SETUP just what it may and may not

do. It is a great deal quicker, in cases of doubt, to look at the

capability list than at the code itself. It was noticed that for

debugging purposes, a software capability had been made

available to SETUP which gave the drastic permission to cause

the whole system to stop, and that this permission had not

been removed. Once noticed, it was removed without

difficulty. It may be remarked, that although tidiness required

the removal of the code which exercised the departed privilege,

it was not necessary to remove the code at once to get rid of

the protection error, since the code would have failed in

execution.

4. Ease o f testing

SETUP provides a small number of simple services. It

is thus easy to test because one can proceed exhaustively

through the significantly different types of call. This is a

further consequence of the practicability of small domains for
which the hardware encapsulation is known to be complete.

Protected Objects

The implementation of protected objects in CAP is by

means of protected procedures. A typical example of a

protected object is a file directory; the ony way in which

anyone may use it (other than the file system restart

procedure) is by means of an instance of a protected procedure

known as a directory manager which has the directory bound

into it. A user program may have a number of directories

available to it; they appear as distinct ENTER capabilities for

distinct instances of the directory manager. The instances differ in

the content of their R-capability segments. See [1].

A theoretical deficiency of this protected object

mechanism is that there is no general way to disassemble a

protected object. For example, there is no method by which a

procedure can take an instance of the directory manager and

extract the whole or a part of the directory itself, or by which

it can cause the directory manager to deliver the directory

segment as a result, it would be awkward for this reason to

provide operations which intrinsically require the use of two

or more directory segments and which need, for protection

reasons, to be performed by the directory manager or a similar

protected procedure. This theoretical deficiency has not

caused any difficulty in the construction of our operating

system. It is believed that the reason is the f ine grain of

protec'tion, which has the consequence that protected objects

are all very simple. The procedures which perform the

permitted operations upon the objects perform all of them

rather than some of them and the simplicity of the object

avoids any need for partial disassembly as provided in the

Hydra system, where the protected objects can be altogether

more complex and high-level structures.

Other Aspects of Protected Procedures

A recent addition to ENTER capabilities is the use of

access bits in them. The field which contains access bits in a

segment capability may contain in an ENTER capability a b i t -

pattern which is notified to the called procedure in a register.
The bi t -pat tern may be amended by the REFINE instruction in

just the same way as the access bits for a segment capability.

This mechanism enables the services which a procedure will

give to vary between different copies of its ENTER capability,

accepting or rejecting requests on the basis of the access bits

used.

The operating system designer has a number of

possibilities open to him if he wishes to provide several

services using similar programs which should not all have to

be available at the same time. Firstly, he may set up quite

separate protected procedures, and arrange that their ENTER

capabilities are distributed appropriately. Secondly, he may

provide a single ENTER capability and protect the individual

funct ions by software capabilities. Thirdly, he may provide a

single ENTER capability and protect the individual funct ions

by its access bits. The designer chooses the mechanism to use

on the basis of economy of apparatus. Software capabilities are

appropriate where the number of options is large or where the

capabiltiies themselves contain some data - as in the case of

SETUP's argument capability. Access bits are appropriate

19

where the options are few, and distinct enter capabilities where

the sections of program or data unique to particular options

are substantial.

An aspect of the protected procedure system which we

now consider to be unfor tunate is the stack implementat ion

underlying tile call of protected procedures. The stack

implementat ion has latent problems of overflow which are

tiresome to deal with properly, and there is no good reason for

it. A non-stack implementat ion would probably be better

since there is no occasion for recursive invocation of the same

protection domain, as dist inct f rom a di f ferent instance of a

domain - - e.g. the directory manager for another directory. In

the design phase we thought that instances would arise where

protected procedure A, for example, called B which called A,

but the system has just not worked out that way, so we now

consider the flexibili ty unjustified in relation to the

complication caused.

Programming Considerations

With the exception of a few hundred words of

assembly code, the ent ire system has been written in ALGOL68C.

The special operations connected with the protection system

have been provided as library routines, as have some operating

system primitives such as "send message". It had originally

been intended to extend the language so that such instruct ions

as ENTER, MOVE CAPABILITY, REFINE CAPABILITY, RETURN, etc.,

would be compiled in-line. This was not done for lack of

effort, and the approach adopted is now considered to be

advantageous, since it enables us to make use of the extensive

machine- independent parts of the compiler, which lessens our

software maintenance commitment .

Every protected procedure in the operating system is

an ALGOL68 complete program, not an ALGOL68C procedure.

This is important, because calling conventions between

protected procedures can be decided on system grounds, not

language grounds. It also helps to avoid the system becoming

a single-language one; BCPL is now fully available, though the

original intent ion to write parts of the operating system in it

has not been pursued. BCPL has been used quite extensively

for user programs.

Each protected procedure has its own workspace (stack,

and, where necessary, heap). This local storage persists f rom

one call of the protected procedure to the next, unless the

procedure explicitly creates and destroys it. This was taken as

the default case because almost all operating system procedures

have storage which should persist in the way indicated - -

indeed, if they did not, there is no obvious reason why they

should need to be protected at all. It has been found

convenient to take advantage of the persistence of local

storage, and of the fact that each protected procedur is a

complete program, by implementing a kind of coroutine

mechanism. In the ALGOL68C library there is a subrout ine

called re turn which includes a RETURN instruction. The

library subroutine is so arranged that when the protected

procedure is next ENTERed, control resumes at the instruction

after the RETURN instruction. This leads to exit f rom the

re turn subroutine, and resumption of the main program at the

point immediately following the call. The effect is that when

a protected procedure is f i rs t called it is started at the

beginning, but subsequent calls pick up where the last one left

off. As a result, a typical protected procedure has the

structure:

BEGIN

init ial ization code

END

DO # tO inf ini ty

CASE first argument IN

services offered

ESAC

re turn (result)

OD;

The init ial ization code is only executed once. If

constraints are to be imposed on the succcssion of calls to the

procedure they may be achieved by putting calls of re turn

elsewhere. A very similar structure is found in the main

programs for services provided as separate processes activated

by message:

BEGIN

init ial ization code

END;

OO # to inf ini ty #

WHILE messages(input)=0 DO waitevent OD;

receive message with reply (a,b,c,d);

CASE a IN

services offered

ESAC;

return reply (p,q,r,s);

OD:

The similarity of structure makes it relatively easy to give

effect to policy changes as to whether particular services

should be provided as protected procedures or in separate

processes.

We have been extremely satisfied with ALGOL68C. The

combinat ion of its powerful compi le- t ime checks with the

run- t ime protection of the capability system has had the result

that a great many system procedures have worked correctly

once they would do anything at all.

Virtual Memory System

1. Swapp ing Aspec t s

The CAP was not designed as a paged machine. This

20

decision was consistent with the emphasis on protection of

small units of information, which, as has been said, may be

only a few words long. The consequence, however, has been

that there have been severe problems of real store

management. The store allocator has to handle requests for

sequential memory ranging from half -a-dozen words to 32K,

and the number of very small segments is large. Capabili ty

segments of from six to twelve words are common and a user

process may easily have forty of them. There are two

undesirable consequences: firstly, there is f ragmentat ion on

the disc, and secondly, the t ime taken to clear a store region by

swapping out is increased by the multiplicity of separate

transfers and latencies. Work is in hand to mitigate these

problems by amalgamating all capability segments of a process

into one or two reasonably sized units for swapping purposes.

The architecture is helpful here, since a number of dist inct

entries in the Process Resource List may all be defined in

terms of the same senior capability which, as explained

elsewhere, is the unit of swapping.

Although careful programming is improving store

management, it must be admitted that the organizational

problems of a multiplicity of small segments are a drawback

of the general approach.

2. Structural Aspects

The CAP virtual memory [1,3] is composed of segments

of three types: regular segments, directory segments, and

procedure control blocks. It is structured by means of system

internal names which function as pointers. A user program

may retrieve capabilities for virtual memory objects explicitly

by means of a directory manager or implicitly, by retrieving a

procedure control block (PCB) which is turned into an instance

of protected procedure by the linker.

The procedure control block is the most characteristic

part of the system. It contains the specification of a protected

procedure in which existing virtual memory objects are

referred to either by system internal name, or by fi le title.

The existence of a reference to an object by system internal

name in a PCa implies that the object cannot be destroyed, just

as does a reference to such an object in a fi le directory. The

possibility of retention by internal name in a PCB requires that

the fi l ing system restart procedure look at PCBs as well as

directories when performing its consistency check. It is

slightly unfor tunate that this was not realized sooner, since the

internal formats of directories and PCBs could have been made

much more similar, with consequent simplification.

It would not be diff icul t in principle to include in the

structure other types of segments which contain system

internal names; however, the complexities which would be

produced in the restart procedure have deterred us f rom doing

so, and new data structures are instead built out of the existing

types of object. Ideally, there would be a single fo rmat for

segments in which system internal names were found, and such

segments would contain nothing else. Directories and PCas

would each consist of pairs of segments one of which

contained nothing but system internal names, the other

containing pointers to specific system internal names together

with, in the case of directories textnames and access

information, and in the case of PCB's the data specifying the

size and other contents of the PCB segment. The funct ional

analogy between system internal name segments and capabili ty

segments would be closer. We were deterred f rom this

approach by the consequent intensif icat ion of the diff icult ies

mentioned earlier in the section on swapping, since the

number of small segments would be much increased.

The user has to be aware of the existence of system

internal names for two reasons. Firstly, when he is, by means

of the appropriate protected procedure, making a new PCB, he

needs to say whether he would like a particular const i tuent

object to be linked by system internal name or by f i le title.

Secondly, if he has two preserved capabilities there is no

general way for him to discover whether or not they are

capabilities for the same object other than to obtain and to

compare their system internal names. This is not entirely

satisfactory; there has been debate as to whether the present

system whereby the internal name is accessible for this

purpose should be retained or whether to change to a less

eff icient but purer system whereby a user has to present a pair

of capabilities to a protected procedure which will discover

and report to him whether they are identical or not. There is

no loss of protection in allowing the user to see system

internal names, but their values should be of no interest to

him.

Filing System

Some structural aspects of the f i l ing system have been

covered by implication in the foregoing, and a general

description is given in [3] . The original intent ion had been to

provide a more conventional f i l ing system in which a

directory served to regulate, by access lists or otherwise, the

issue of capabilities for filed objects. The only objects which

could be filed would be new ones into which some

informat ion had been recorded. Such fil ing systems have

mechanisms for renaming and some kinds of sharing by means

of links or other devices. To have constructed such a fi l ing

system would have been in no way incompatible with the

objectives of the project as given at the outset of this paper.

We chose instead to implement the system described, as being

interestingly di f ferent and generally compatible with

capability ideas in the extreme sense; any capability which

comes into a user's possession may be preserved permanently

if desired. A system internal name in a directory or PCB may

be thought of simply, and accurately, as the preserved form of

a capability; its integrity is protected by the procedures which

21

encapsulate the two types .of segment.

Several consequences follow for the user as unusual

and interesting features,

1) Segments can exist whose capabilities are not preserved in

any directory but only in a PCB. The access controls on such

segments are uncomfortable for system programmers, which is

probably a good thing. There is no way of accessing them

except via the appropriate protected procedure, and nobody

who can ci rcumvent the restriction. No accident such as the

leakage of a password can enable a user to have direct access.

2) A user can bind an existing version of a segment to his

program with the assurance that it will cont inue to be

available. This may be regarded as beneficial, since new

versions of compilers, translators, libraries, and other utilities

are commonly unreliable. This facility is the obverse of the

lack of means for revocation of access.

3) It is possible to create directories, or structures of

directories, which are not themselves retained anywhere, and

which will disappear when they become inaccessible via any

current capability. The existence of an object of type

directory does not imply any connect ion with a master or root

directory.

Conclusions and Further Work

The principal dangers foreseen at the outset of the CAP

project were that an at tempt to incorporate the desired degree

of protection into a practical system might fail under a weight

of complexity and mechanism, and that the basic protection

design might prove inadequate for the requirements of a real,

rather than a toy, operating system. It is now clear that these

dangers have been avoided. Much remains to be found out,

under various heads.

1) Relationship of ordinary users to the system

It has been demonstrated that the system does not impede

ordinary users when developing ordinary programs. It remains

to be demonstrated whether or not the protection features are q

of value to users developing elaborate program subsystems.

2) Quantitative evaluations

It is only when a substantial amount of regular

computat ion, as against system development computat ion, is

done that it becomes meaningful to a t tempt empirical studies

of the costs and effectiveness of the protection features.

3) Restructuring

A claimed benefi t f rom the explicitness and precision of

the protection in CAP is that system restructuring is easier than

it would otherwise be. Experience to date suggests that this is

so, but valuable insight will be gained f rom such substantial

rearrangements are are inevitably suggested in hindsight.

4) Clean-up problems

The deliberate lack of dist inct ion between system

procedures and ordinary procedures accentuates the need for

thorough understanding of the techniques related to premature

terminat ion of computations, fai lure to complete sequences of

operations, etc. It is no longer appropriate, for example, to

hold off the effect of a console 'quit ' signal until the affected

process is no longer running in the operat ing system, since the

moment of leaving the system is not defined.

Acknowledgements

The CAP project is supported by the Science Research

Council. The operat ing system and associated programs are

the outcome of design and implementat ion work by numerous

people, notably A.D. Birrell, J.S. Fenton, D.W. Payne, C.J.

Slinn, and R.J.B. Taylor, with many cont r ibut ions f rom later

research students and from others interested in bui lding

systems.

References

[1] "The Cambridge CAP computer and its protection

system," R.M. Needham and R.D.H. Walker

(SOSP6, 1977).

E2] "Protection Systems and Protection

Implementat ions", R.M. Needham (FJCC, 1972).

E3] "The CAP fil ing system," R.M. Needham and A.D.

Birrell (SOSP6, 1977).

22

