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Summary 

Firsts the problem of proving the correctness of 
an operating system is defined. Then a simple model 
is presented. Several examples are given to show how 
this model allows derivation of proofs about small 
systems. 

I. The Problem 

i. Syst ems 

The notion of algorithms is by no means the pro- 
perty of the users of computers. Examples of algorithms 
are frequent in everyday life: the instructions on a 
shampoo bottle, a recipe to make a sauce bearnaise. 
Systems~ in the same sense as in operating systems, also 
surround us. We are familiar with: 

a library, 
a traffic lights 
a department store, 
the post office system~ 
the telephone networks 
an elevator, 
the 0S/360. 

Let us look at their basic similarities. 

i.i Users. The purpose of each of the systems 
considered as examples is to serve a family of users. 
There can be a finite number of users (e.g. students 
in the University) or an unbounded number of them (e.g. 
customers, cars~ programs). 

1.2 Simultaneity. The systems are composed of 
different parts or pieces of equipment that can work 
simultaneously, so that the behaviour of the system is 
(a priori) more than the action of a single unit with 
a single operation going on at a time. This simple 
idea is best explained by examples: all customers in a 
library are operating independently~ and independently 
of the employees who check out the books~ or bring back 
the books to the shelves. Cashiers, salespeople, 
accountants are all working at the same time in a 
department store. Card readers~ line printers, adders, 
multipliers~ memory banks~ discs are all in operation 
simultaneously in a computer system, and the fact that 
a multiplier is busy does not necessarily prevent a 
memory bank from sending information to the arithmetic 
unit. 

1.3 Service. Users~ to obtain satisfactions may 
require the service of more than one of the units that 
constitute the system. However, there may be con- 
straints on the order in which the customer wants these 
units to serve him (e.g. he wants to park his car 
before buying anything~ he needs to go to the bank 
before going to any other shop) and on what kind of 
service he expects from them (e.g. he wants to buy 
socks and ties of analogous color, he cannot buy goods 
worth more money than he has). Notice also that a 
customer cannot always hope to be served immediately 
and might have to wait in line. 

2. Systems Description 

There are two ways to describe a system; they 
will be ca]led the analytic description and the 
functional description. 

2.1 The Analytic Description. One can describe 
an elevator by presenting its design plans, or des- 
cribe a traffic light by exhibiting the circuitry of 
its control box. The analytic method of describing 
any system consists in laying bare the anatomy of the 
entire mechanism: the parts the system is made of and 
the connections between these parts. Of course, there 
are several levels of description for each part and 
one may not want to describe the internal mechanism of 
the accounting machine in order to depict properly the 
organization of the billing service. 

The analytic description of an operating system 
consists of the set of "systems programs" together 
with the hardware diagrams. 

2.2 The Functional Descril~tion. The functional 
description of a system is its description from the 
point of view of the users. A shopping center is 
supposed to "serve" customers, a traffic light is 
supposed to "regulate" traffic, the postal system is 
supposed to "route" letters. The user of an operating 
system expects the system to execute a certain number 
of tasks for him in accordance with the claims of the 
user' s manual. 

The language of functional description of a system 
is always different from the language of analytic 
description. To the author's knowledge, there is no 
existing investigation of what a reasonable functional 
language for operating systems should look like. 

2.3 Correctness. Intuitively, a system is cor- 
rect if it does what it is supposed to do. An eleva- 
tor works if, when a person in the elevator presses 
the button for floor x , the elevator will stop at 
floor x some time later. The (simplified) postal 
system works if any letter placed in a mailbox will 
arrive at its destination. How does one establish 
correctness? In the past, several methods have been 
used by systems designers to convince themselves of 
the soundness of their creation. The major approaches 
are listed below; their failure and/or impracticability 
motivate this paper. 

- Ex~0erimental method: Build the system as you 
think it should be. Observe its behaviour and 
adapt to its malfunctions. Advantages: the 
method involves no deep thinking and is suited 
to systems involving human beings. Drawbacks: 
it relies on trust in the designing team, the 
adaptation period may be long and costly and the 
system is never completely debugged. 

- Incremental method: Start with a schematic 
version, cheek it with the experimental method, 
progressively add new features. Advantages: at 
least something is produced~ if not the final 
product: Drawbacks: this method is not adapted 
to fast developments, and it produces "monsters" 
(e.g. Fortran). 

- Simulation: Build a reduced model of the system 
displaying what is supposed to be its main 
features. Ooerate this model under simulated 
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conditions, then use the experimental method. 
Advantages: the model can be built while the real 
system is being developed. Drawbacks: the method 
can be of very little use in establishing correct- 
ness since the model is a schematized version of 
the real system and probably eliminates all its 
delicate features. 

We propose to adapt to the case of systems the 
techniques for proving correctness of programs origi- 

nated by Floyd 3 . We will show that there are some 
systematic ways to analyze a system that eventually 
lead to a proof of its proper functioning. 

II. The Approach 

1. Analytic Descri~t ion 

We are going to use a particular analytic descrip- 
tion of systems that is similar to the representation 
of programs through flowcharts: a graph. In this 
graph, edges will represent communication lines, and 
nodes will represent processes that may operate inde- 
pendently. 

1.1 Communication Lines and Objects. A communi- 
cation line is a one-way path along which objects 
travel. There are many examples from everyday life: 
a one-way road along which cars travel• a bowling lane 
down which a bowling ball can be sent, a mail box in 
which letters can be dropped• a corridor in which peo- 
ple walk in one direction, a bus in a computer that 
transmits words of information from one unit to another. 

The objects traveling along a communication line 
are discrete~ but they can be of an arbitrarily complex 
nature. Typical objects we will use are bits, integers, 
bytes, letters• interrupt signals. The simplest ob- 
jects have no particular value but are only interesting 
by their presence or absence: they will be called 

"its". ~/ They are similar to the "tokens" considered 

by Holt 5 . 
Communication lines will be represented by oriented 

edges. To indicate the presence of an object on a line 
we will draw a heavy circle. (Figure i, Figure 2) 

Final 

; k./ 

A B 

Figure 2 

1.2 Multiplexers. We need a way to represent the 
merging of several communication lines into a single 
one. Objects are sent from A and B towards C 
(see Figure 5).and C in turn sends whatever it 
receives towards D . What exactly happens in C ? 
We make two assumptions: 

(i) Time is infinitely divisible. Thus it is 
impossible for C to see two objects arrive on 
L1 and L2 exactly at the same time. 

(ii) An object arriving at C on L1 or L2 
is instantaneously dispatched onto L3 • Thus 
objects are dispatched onto L3 in their order 
of arrival at C . 

~/ This term is due to Robin Milner. 
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Figure 3 

1.3 Queues and Capacity of the Line. A road may 
have several lanes, but the lines we will consider 
have only one lane. On a line then, objects cannot 
pass each other. If objects U and V are placed on 
the line that connects A to B at point A in this 
order, then U will always arrive at B before V • 
If objects keep pouring into the line at A and they 
are not removed from the line at B , a queue will 
form at B . We 9an consider it as a list (in the 
sense of McCarthy °) whose head is the first element 
arriving at B • The capacity of the communication 
line connecting A to B is the maximum length of 
the queue that can be formed at B . It is a physical 
characteristic of the line. For example, the capacity 
of a mailbox is the maximum ntunber of letters that may 
be dropped into it• the capacity of a road linking 
point A to point B is the number of cars that may 
be bumper to bumper on this road. If a line is repre- 
sented by an oriented edge, and objects on this line 
by circles drawn on this edge, the capacity of the 
line is the maximum number of circles that may be 
drawn on this edge. Lines we will consider wi]_l 
usually have capacity 1 , 2 • or infinite. 

1.4 Nodes. Vertices of the graph will be of two 
kinds : 

- Multiplexers• described above. 
- Nodes, representing processes. 

Nodes may represent arbitrary processes with the 
following characteristics : 

(i) Communication between nodes is done 
exclusively through conmlunieation lines. The 
coordination of the activities of the nodes is 
realized by the traffic of objects along the 
connecting communication lines. All connections 
between nodes must then be explicit. 

(ii) A node can be in two states: idle 
(waiting) or active. 

(iii) If all the input queues of a node are 
non-empty, and if the node is idle• it will 
eventually make the transition from idle to 
active. This means that no process can "go 
on strike" forever. 

Examples of nodes are given in Figure 4. ~/ 

~/ Note that priority scheduling can be achieved by 
interposing suitable nodes on communication lines. 



Node symbol 

Figure 4 

Node description 

l /2 
ADDER Waits for an input on i and an input on 2 , both 

integers; sends the sum of the inputs on 3 ; deletes 
the previous set of inputs. Returns to wait. 

DUPLICATOR Waits for an input on i ; sends two copies of this 
input, one on 2 and one on 3 • Deletes the 
previous input and goes back to wait. 

( i ~j 2 DEMULTIPLEXER Waits for an integer on I that can be i or 2 
and for an 'it' on J ; sends an 'it' on the line 
corresponding to the input on I . Deletes previous 
inputs and returns to wait. 

MERGE Waits for inputs on i and 2 . Sends the largest 
on 3 and deletes it from input line. Returns to 
wait. 

r l 
FJLSE GENERATOR Waits for an 'it' on i . Then sends continuously 

'its' on 2 forever. 

1 

3 

SKIP Waits for an object on i and a boolean on 2 . 
Sends on 3 the object on i if the input on 2 
is True. Deletes inputs. Returns to wait. 

1 

2 

REVERSE Waits for a list on 1 . Sends its reverse on 
Deletes previous input and returns to wait. 

(continued on next page) 

2 . 
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M~4 

MEMORY BANK Waits for an 'it' on 1 and an integer on 2 . 
Sends the quantity stored in M~ at the integer 
on 2 onto line 3 • Deletes inputs and returns 
to wait. 

F 

TEST Waits for an object on 1 . If it verifies the 
predicate ~ sends this object on T and deletes 
from input, else sends it on F and deletes from 
input. Returns to wait. 

4 

FOR Waits for 3 integers on lines l, 2, 3, say 
a , b , c . Then For i:=a step b until c 
send i on 4 ; returns to wait. 

Figure 4 

1.5 Input and Output Lines. A system communi- 
cates with the outer world via input lines and output 
lines. Only the extremity (resp. the origin) of an 
input line (resp. output line) is a vertex of the 
graph that represents the system. 

We are now able to build systems that make sense. 

In Figure 5 we show a system adapted from Holt 5 to 
perform pipeline computations. It has two input lines 
I1 and I2 ~ two output lines O1 and 02 and 12 
nodes that may be active simultaneously. 

2. Functional Description 

2.1 Input Condition. We feed a system by placing 
sequences of objects on its input lines. The input 
condition of the system is a condition that these 
sequences must verify. For example, the system in 
Figure 5 is designed to accept inputs on I1 and I2 
that are arbitrary sequences of integers; but for the 
system in Figure 6, line I1 must be fed with an 
increasing sequence of integers, line I2 has to be 
presented a zero and line I3 may be fed with an 
arbitrary sequence of objects. 

2.2 Outl~ut Condition. We expect a system to 
produce outputs on its output lines. The output con- 
dition of the system is a predicate relating the out- 
put sequences to the input sequences. For the system 
in Figure 5, let us call {x] and {y} the input 
sequences on Ii and 12 . The output condition we 

want is that on Ol the sequence [_~_C__Z] will be 
~rx + sy ~ 

produced and on 02 the sequence [-~--~] • 
~rx + sy ~ 

2.3 Correctness of a System. The correctness 
of a system is defined with respect to an input 
condition I and an output condition 0 : if a 
system, when fed with sequences of inputs satisfying 
condition I actually produces sequences of outputs 
satisfying condition 0 , it is ca]led correct. 

We are not prepared at this point to present a 
general theory of the correctness of systems. But 
we will show some actual proofs of correctness of 
small systems and exhibit some methods used in these 
proofs without claiming their universal validity. 

3. Sample Proofs 

3ol A System for Pipeline Computation. We shall 
analyze the system of Figure 5 which is designed to 
compute continuously for each pair of inputs (x~y) 

a pair of outputs Cnx-my ~+my] . The system 
rE+ sy ' rx+ sy ~ 

requires a sequence of integers to be fed on input 
lines I1 and I2 . Call these sequences Ix} 
and {y] . From the definition of the nodes of the 
system we can easily deduce the sequences of numbers 
that can pass through any line of the system, 
including the output lines O1 and 02 . Through L1 
and L2 flow Ix], through L3 and L4 ~y], etc. 
Going down towards the output lines we see that 

[nx -my~ flows through O1 and [r~x++~sy] through 
rx + sy ~ 

02. From the assumption that no node "goes on strike" 
we can deduce that the output sequences actually 
arrive on the output lines. 

Let us assume that we do not know anything about 
the speed of execution of the various nodes of the 
system. If we may feed the system with arbitrarily 
long sequences of integers~ then every line of the 
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L 3 

L~ 

L~\ L6 

01 

Lll 

r2 

L- 

0 2 

wait for input; 
multiplY input b~ r 
(resp. s )- Delete 
input ; return to 
wait • 

Wait for input 
multiplY input by n 
(resp.~ m) • sena 2 
copies on the output 
lines • Delete input 
return to wait. 

wait on two inputs; 
perform binary operation; 
send on output and delete 
inputs ; return to wait. 

Figure 5 
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I 1 I3 

~ A  

C L 3 

L1 ) ~_4 
B 

• D 

01 

Figure 6 

Waits for an input i • Then sends 
continuously consecutive integers 
starting with i • 

Waits on line i and 2. If arguments 
are different it sends a False on 
line 4 and deletes the head of 
queue 2 else it sends a True on 3 
and 4~ deletes inputs from 1 and 2. 
Then it goes back to wait. 

This system selects from input 

line I 3 the objects whose index 

is in I 1 and outputs them. 
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system must have an unbounded capacity. The proof is 
trivial by induction and relies on two properties of 
this particular system: 

(i) its graph is loop-free; 
(ii) the nodes of the system output infinite 

sequences when fed with infinite sequences. 

3.2 A Merging System. Let us consider an arbi- 
trary tree of Merge nodes (described in Figure 4), 
for example, the tree of Figure 7. Let us assume we 
feed this system by inputting to the leaves of this 
tree ordered sequences of positive integers followed 
by a 0 . We want to prove that this system performs 
the merging of all the input sequences, whatever their 
lengths are. The proof proceeds in two steps: 

(i) For an individual node: By induction on the 
lengths of the input lines: when a Merge 
node is fed with decreasing sequences of 
positive integers followed by a zero it 
outputs the merge of the two input sequences 
with one zero missing. 

(ii) For a tree of nodes: By induction on the 
structure of the tree. 

! 
12 I I 13 14 15 16 17 18 

Figure 7 

3.3 A First Graph With a Loop. The system on 
Figure 6 is designed to extract from a sequence of 
objects (e.g. magnetic tape records) input on I3 
those objects whose position is mentioned in a list of 
numbers input on I1 . The system needs a sequence of 
increasing numbers on I1 , a zero on I2 as well as 
an arbitrary sequence of objects on I3 • A complete 
proof of its correctness is now presented. 

(a) On L2 only True objects travel. Thus on 
L1 an initial segment of I1 passes through. On 
L3 , an infinite sequence of consecutive integers is 
placed. The sequence produced on L4 will be a 
sequence of True and False and a True occurs in this 
sequence only if its index appeared on L1 , thus 
was in I1 . If objects appear on O1 , they have an 
index in I1 . 

(b) The hypothesis on ll is now needed: By 
induction we can prove that all the elements of I1 
will cause the creation of a True on line L4 , thus 
the outputs on 01 will be all the objects from I2 

with index on I1. 

(c) What happens if the condition on I1 is 
abandoned? 

Either -- The first integer on ll is negative. 
False objects flush through L4 , and 
no output is ever going to be produced. 

or -- There is a first number on I1 that is 
smaller than its predecessor. From 
then on, only False objects will appear 
on L4 , causing the output line to dry 
up. 

Remark: In the subgraph containing nodes B and C , 
there is never more than one object. Thus line L1 
and L2 need only to have capacity 1 , whatever the 
speeds of nodes B and C are. Furthermore, it is 
clear that B and C cannot be active at the same 
time. We will generalize the remark in the next 
paragraph. 

3.4 Mutual Exclusion. 

(a) It is very simple to prevent a node from 
sending more objects on a line than its capacity 
allows. Before sending an output, the node has to 
wait until it receives a clearance (see Figure 8). 
A clearance is issued by the next node when it removes 
an object from the line. At the beginning, we just 
initialize the line with K clearances, if K is the 
capacity of the line. 

h 

k "its" at the beginning 

A waits before sending anything 
on L until it gets clearance. 
B returns clearance after 
removing an object on L . 

FiNe8 

(b) If two nodes A and B send objects to a 
multiplexer C that dispatches objects towards D 
(see Figure 9), and the line from C to D has a 
capacity K ~ we have to provide a mechanism to pre- 
vent A and B from sending more than K objects 
towards C . We will issue K clearances and make 
each one available to the first of A or B that 
requests one. Clearances will be returned to the 
system at D when appropriate. We are led naturally 
to the system of Figure lO. 

(c) We define a semaphore as a system with one 
demultiplexer and two multiplexers organized as in 
Figure ll. In (b) we have essentially given a con- 
structive justification of this notion. The reader 
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Figure 9 

returns 
clearance 

Figure i0 

93 

2 ) 

( 

Figure ii 

can convince himself that our notion of semaphore is 
identical to the notion of general semaphore of 

D i j k s t r a  2 . 

(d) In Figure 12, we have modeled the mutual 
exclusion rob~, a generalization of the problem 
solved in (b). We can r ~  that processes Ti and 
T2 are mutually excluded (i.e., not active simultan- 
eously) if an 'it' is placed on line L , since the 
system enclosed in dotted lines always contains one 
and only one object, only one of Ti and T2 can be 
active at any given time. 

I < 
) 

[ 

> 
L 

Figure 12 

(e) Mutual exclusion is clearly a property that 
may be desired of a system and is in fact part of the 
intuitive idea of how a correct system must operate. 
However, we have defined correctness of a system as a 
property concerning only the output lines and not the 
internal nodes. To reconcile these two points of 
view, we simply consider that nodes communicate with 
the outer world only through communication lines, and 
that if the outer world is interested in their states 
it must receive information on them via communication 
lines. Then a property of mutual exclusion becomes a 
property of certain output lines of a system. 

(f) We can now suggest an approach to the most 
general exclusion problem: if we want to show that in 
a set of N processes, only n are active at anytime, 



we look for an information cycle in which we could 
prove that there can not be more than n objects ,! 
traveling, on which these N processes may be waitin 

III. Conclusion 

In this paper, we have tried to capture the notion 
of discrete system, with the intent of systematizing 
the checking of operating systems. We have explained 
what a formal notion of correctness for operating 
systems can be. This notion subsumes the notion of 
correctness for a sequential program in a fairly 
natural manner. Simple cases have been systematically 
analyzed. Deadlock questions, and mutual exclusion 
problems have been shown tractable in a very formal 
way and the structure of Dijkstra's semaphores has 
been completely formalized. 

However, we have limited our study to systems 
comprising a finite number of processes. We have good 
hope that the same approach will be fruitful in the 
case where the number of units working simultaneously 
is unbounded. 
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