
AN APPROACH TO SYST~4S CORRECTNESS

Gilles Kahn
Computer Science Department

Stanford University
Stanford, California

Summary

Firsts the problem of proving the correctness of
an operating system is defined. Then a simple model
is presented. Several examples are given to show how
this model allows derivation of proofs about small
systems.

I. The Problem

i. Syst ems

The notion of algorithms is by no means the pro-
perty of the users of computers. Examples of algorithms
are frequent in everyday life: the instructions on a
shampoo bottle, a recipe to make a sauce bearnaise.
Systems~ in the same sense as in operating systems, also
surround us. We are familiar with:

a library,
a traffic lights
a department store,
the post office system~
the telephone networks
an elevator,
the 0S/360.

Let us look at their basic similarities.

i.i Users. The purpose of each of the systems
considered as examples is to serve a family of users.
There can be a finite number of users (e.g. students
in the University) or an unbounded number of them (e.g.
customers, cars~ programs).

1.2 Simultaneity. The systems are composed of
different parts or pieces of equipment that can work
simultaneously, so that the behaviour of the system is
(a priori) more than the action of a single unit with
a single operation going on at a time. This simple
idea is best explained by examples: all customers in a
library are operating independently~ and independently
of the employees who check out the books~ or bring back
the books to the shelves. Cashiers, salespeople,
accountants are all working at the same time in a
department store. Card readers~ line printers, adders,
multipliers~ memory banks~ discs are all in operation
simultaneously in a computer system, and the fact that
a multiplier is busy does not necessarily prevent a
memory bank from sending information to the arithmetic
unit.

1.3 Service. Users~ to obtain satisfactions may
require the service of more than one of the units that
constitute the system. However, there may be con-
straints on the order in which the customer wants these
units to serve him (e.g. he wants to park his car
before buying anything~ he needs to go to the bank
before going to any other shop) and on what kind of
service he expects from them (e.g. he wants to buy
socks and ties of analogous color, he cannot buy goods
worth more money than he has). Notice also that a
customer cannot always hope to be served immediately
and might have to wait in line.

2. Systems Description

There are two ways to describe a system; they
will be ca]led the analytic description and the
functional description.

2.1 The Analytic Description. One can describe
an elevator by presenting its design plans, or des-
cribe a traffic light by exhibiting the circuitry of
its control box. The analytic method of describing
any system consists in laying bare the anatomy of the
entire mechanism: the parts the system is made of and
the connections between these parts. Of course, there
are several levels of description for each part and
one may not want to describe the internal mechanism of
the accounting machine in order to depict properly the
organization of the billing service.

The analytic description of an operating system
consists of the set of "systems programs" together
with the hardware diagrams.

2.2 The Functional Descril~tion. The functional
description of a system is its description from the
point of view of the users. A shopping center is
supposed to "serve" customers, a traffic light is
supposed to "regulate" traffic, the postal system is
supposed to "route" letters. The user of an operating
system expects the system to execute a certain number
of tasks for him in accordance with the claims of the
user' s manual.

The language of functional description of a system
is always different from the language of analytic
description. To the author's knowledge, there is no
existing investigation of what a reasonable functional
language for operating systems should look like.

2.3 Correctness. Intuitively, a system is cor-
rect if it does what it is supposed to do. An eleva-
tor works if, when a person in the elevator presses
the button for floor x , the elevator will stop at
floor x some time later. The (simplified) postal
system works if any letter placed in a mailbox will
arrive at its destination. How does one establish
correctness? In the past, several methods have been
used by systems designers to convince themselves of
the soundness of their creation. The major approaches
are listed below; their failure and/or impracticability
motivate this paper.

- Ex~0erimental method: Build the system as you
think it should be. Observe its behaviour and
adapt to its malfunctions. Advantages: the
method involves no deep thinking and is suited
to systems involving human beings. Drawbacks:
it relies on trust in the designing team, the
adaptation period may be long and costly and the
system is never completely debugged.

- Incremental method: Start with a schematic
version, cheek it with the experimental method,
progressively add new features. Advantages: at
least something is produced~ if not the final
product: Drawbacks: this method is not adapted
to fast developments, and it produces "monsters"
(e.g. Fortran).

- Simulation: Build a reduced model of the system
displaying what is supposed to be its main
features. Ooerate this model under simulated

86

conditions, then use the experimental method.
Advantages: the model can be built while the real
system is being developed. Drawbacks: the method
can be of very little use in establishing correct-
ness since the model is a schematized version of
the real system and probably eliminates all its
delicate features.

We propose to adapt to the case of systems the
techniques for proving correctness of programs origi-

nated by Floyd 3 . We will show that there are some
systematic ways to analyze a system that eventually
lead to a proof of its proper functioning.

II. The Approach

1. Analytic Descri~t ion

We are going to use a particular analytic descrip-
tion of systems that is similar to the representation
of programs through flowcharts: a graph. In this
graph, edges will represent communication lines, and
nodes will represent processes that may operate inde-
pendently.

1.1 Communication Lines and Objects. A communi-
cation line is a one-way path along which objects
travel. There are many examples from everyday life:
a one-way road along which cars travel• a bowling lane
down which a bowling ball can be sent, a mail box in
which letters can be dropped• a corridor in which peo-
ple walk in one direction, a bus in a computer that
transmits words of information from one unit to another.

The objects traveling along a communication line
are discrete~ but they can be of an arbitrarily complex
nature. Typical objects we will use are bits, integers,
bytes, letters• interrupt signals. The simplest ob-
jects have no particular value but are only interesting
by their presence or absence: they will be called

"its". ~/ They are similar to the "tokens" considered

by Holt 5 .
Communication lines will be represented by oriented

edges. To indicate the presence of an object on a line
we will draw a heavy circle. (Figure i, Figure 2)

Final

; k./

A B

Figure 2

1.2 Multiplexers. We need a way to represent the
merging of several communication lines into a single
one. Objects are sent from A and B towards C
(see Figure 5).and C in turn sends whatever it
receives towards D . What exactly happens in C ?
We make two assumptions:

(i) Time is infinitely divisible. Thus it is
impossible for C to see two objects arrive on
L1 and L2 exactly at the same time.

(ii) An object arriving at C on L1 or L2
is instantaneously dispatched onto L3 • Thus
objects are dispatched onto L3 in their order
of arrival at C .

~/ This term is due to Robin Milner.

87

C

L3

D

Figure 3

1.3 Queues and Capacity of the Line. A road may
have several lanes, but the lines we will consider
have only one lane. On a line then, objects cannot
pass each other. If objects U and V are placed on
the line that connects A to B at point A in this
order, then U will always arrive at B before V •
If objects keep pouring into the line at A and they
are not removed from the line at B , a queue will
form at B . We 9an consider it as a list (in the
sense of McCarthy °) whose head is the first element
arriving at B • The capacity of the communication
line connecting A to B is the maximum length of
the queue that can be formed at B . It is a physical
characteristic of the line. For example, the capacity
of a mailbox is the maximum ntunber of letters that may
be dropped into it• the capacity of a road linking
point A to point B is the number of cars that may
be bumper to bumper on this road. If a line is repre-
sented by an oriented edge, and objects on this line
by circles drawn on this edge, the capacity of the
line is the maximum number of circles that may be
drawn on this edge. Lines we will consider wi]_l
usually have capacity 1 , 2 • or infinite.

1.4 Nodes. Vertices of the graph will be of two
kinds :

- Multiplexers• described above.
- Nodes, representing processes.

Nodes may represent arbitrary processes with the
following characteristics :

(i) Communication between nodes is done
exclusively through conmlunieation lines. The
coordination of the activities of the nodes is
realized by the traffic of objects along the
connecting communication lines. All connections
between nodes must then be explicit.

(ii) A node can be in two states: idle
(waiting) or active.

(iii) If all the input queues of a node are
non-empty, and if the node is idle• it will
eventually make the transition from idle to
active. This means that no process can "go
on strike" forever.

Examples of nodes are given in Figure 4. ~/

~/ Note that priority scheduling can be achieved by
interposing suitable nodes on communication lines.

Node symbol

Figure 4

Node description

l /2
ADDER Waits for an input on i and an input on 2 , both

integers; sends the sum of the inputs on 3 ; deletes
the previous set of inputs. Returns to wait.

DUPLICATOR Waits for an input on i ; sends two copies of this
input, one on 2 and one on 3 • Deletes the
previous input and goes back to wait.

(i ~j 2 DEMULTIPLEXER Waits for an integer on I that can be i or 2
and for an 'it' on J ; sends an 'it' on the line
corresponding to the input on I . Deletes previous
inputs and returns to wait.

MERGE Waits for inputs on i and 2 . Sends the largest
on 3 and deletes it from input line. Returns to
wait.

r l
FJLSE GENERATOR Waits for an 'it' on i . Then sends continuously

'its' on 2 forever.

1

3

SKIP Waits for an object on i and a boolean on 2 .
Sends on 3 the object on i if the input on 2
is True. Deletes inputs. Returns to wait.

1

2

REVERSE Waits for a list on 1 . Sends its reverse on
Deletes previous input and returns to wait.

(continued on next page)

2 .

88

l 112

M~4

MEMORY BANK Waits for an 'it' on 1 and an integer on 2 .
Sends the quantity stored in M~ at the integer
on 2 onto line 3 • Deletes inputs and returns
to wait.

F

TEST Waits for an object on 1 . If it verifies the
predicate ~ sends this object on T and deletes
from input, else sends it on F and deletes from
input. Returns to wait.

4

FOR Waits for 3 integers on lines l, 2, 3, say
a , b , c . Then For i:=a step b until c
send i on 4 ; returns to wait.

Figure 4

1.5 Input and Output Lines. A system communi-
cates with the outer world via input lines and output
lines. Only the extremity (resp. the origin) of an
input line (resp. output line) is a vertex of the
graph that represents the system.

We are now able to build systems that make sense.

In Figure 5 we show a system adapted from Holt 5 to
perform pipeline computations. It has two input lines
I1 and I2 ~ two output lines O1 and 02 and 12
nodes that may be active simultaneously.

2. Functional Description

2.1 Input Condition. We feed a system by placing
sequences of objects on its input lines. The input
condition of the system is a condition that these
sequences must verify. For example, the system in
Figure 5 is designed to accept inputs on I1 and I2
that are arbitrary sequences of integers; but for the
system in Figure 6, line I1 must be fed with an
increasing sequence of integers, line I2 has to be
presented a zero and line I3 may be fed with an
arbitrary sequence of objects.

2.2 Outl~ut Condition. We expect a system to
produce outputs on its output lines. The output con-
dition of the system is a predicate relating the out-
put sequences to the input sequences. For the system
in Figure 5, let us call {x] and {y} the input
sequences on Ii and 12 . The output condition we

want is that on Ol the sequence [_~_C__Z] will be
~rx + sy ~

produced and on 02 the sequence [-~--~] •
~rx + sy ~

2.3 Correctness of a System. The correctness
of a system is defined with respect to an input
condition I and an output condition 0 : if a
system, when fed with sequences of inputs satisfying
condition I actually produces sequences of outputs
satisfying condition 0 , it is ca]led correct.

We are not prepared at this point to present a
general theory of the correctness of systems. But
we will show some actual proofs of correctness of
small systems and exhibit some methods used in these
proofs without claiming their universal validity.

3. Sample Proofs

3ol A System for Pipeline Computation. We shall
analyze the system of Figure 5 which is designed to
compute continuously for each pair of inputs (x~y)

a pair of outputs Cnx-my ~+my] . The system
rE+ sy ' rx+ sy ~

requires a sequence of integers to be fed on input
lines I1 and I2 . Call these sequences Ix}
and {y] . From the definition of the nodes of the
system we can easily deduce the sequences of numbers
that can pass through any line of the system,
including the output lines O1 and 02 . Through L1
and L2 flow Ix], through L3 and L4 ~y], etc.
Going down towards the output lines we see that

[nx -my~ flows through O1 and [r~x++~sy] through
rx + sy ~

02. From the assumption that no node "goes on strike"
we can deduce that the output sequences actually
arrive on the output lines.

Let us assume that we do not know anything about
the speed of execution of the various nodes of the
system. If we may feed the system with arbitrarily
long sequences of integers~ then every line of the

89

L~
L 3

L~

L~\ L6

01

Lll

r2

L-

0 2

wait for input;
multiplY input b~ r
(resp. s)- Delete
input ; return to
wait •

Wait for input
multiplY input by n
(resp.~ m) • sena 2
copies on the output
lines • Delete input
return to wait.

wait on two inputs;
perform binary operation;
send on output and delete
inputs ; return to wait.

Figure 5

90

I 1 I3

~ A

C L 3

L1) ~_4
B

• D

01

Figure 6

Waits for an input i • Then sends
continuously consecutive integers
starting with i •

Waits on line i and 2. If arguments
are different it sends a False on
line 4 and deletes the head of
queue 2 else it sends a True on 3
and 4~ deletes inputs from 1 and 2.
Then it goes back to wait.

This system selects from input

line I 3 the objects whose index

is in I 1 and outputs them.

91

system must have an unbounded capacity. The proof is
trivial by induction and relies on two properties of
this particular system:

(i) its graph is loop-free;
(ii) the nodes of the system output infinite

sequences when fed with infinite sequences.

3.2 A Merging System. Let us consider an arbi-
trary tree of Merge nodes (described in Figure 4),
for example, the tree of Figure 7. Let us assume we
feed this system by inputting to the leaves of this
tree ordered sequences of positive integers followed
by a 0 . We want to prove that this system performs
the merging of all the input sequences, whatever their
lengths are. The proof proceeds in two steps:

(i) For an individual node: By induction on the
lengths of the input lines: when a Merge
node is fed with decreasing sequences of
positive integers followed by a zero it
outputs the merge of the two input sequences
with one zero missing.

(ii) For a tree of nodes: By induction on the
structure of the tree.

!
12 I I 13 14 15 16 17 18

Figure 7

3.3 A First Graph With a Loop. The system on
Figure 6 is designed to extract from a sequence of
objects (e.g. magnetic tape records) input on I3
those objects whose position is mentioned in a list of
numbers input on I1 . The system needs a sequence of
increasing numbers on I1 , a zero on I2 as well as
an arbitrary sequence of objects on I3 • A complete
proof of its correctness is now presented.

(a) On L2 only True objects travel. Thus on
L1 an initial segment of I1 passes through. On
L3 , an infinite sequence of consecutive integers is
placed. The sequence produced on L4 will be a
sequence of True and False and a True occurs in this
sequence only if its index appeared on L1 , thus
was in I1 . If objects appear on O1 , they have an
index in I1 .

(b) The hypothesis on ll is now needed: By
induction we can prove that all the elements of I1
will cause the creation of a True on line L4 , thus
the outputs on 01 will be all the objects from I2

with index on I1.

(c) What happens if the condition on I1 is
abandoned?

Either -- The first integer on ll is negative.
False objects flush through L4 , and
no output is ever going to be produced.

or -- There is a first number on I1 that is
smaller than its predecessor. From
then on, only False objects will appear
on L4 , causing the output line to dry
up.

Remark: In the subgraph containing nodes B and C ,
there is never more than one object. Thus line L1
and L2 need only to have capacity 1 , whatever the
speeds of nodes B and C are. Furthermore, it is
clear that B and C cannot be active at the same
time. We will generalize the remark in the next
paragraph.

3.4 Mutual Exclusion.

(a) It is very simple to prevent a node from
sending more objects on a line than its capacity
allows. Before sending an output, the node has to
wait until it receives a clearance (see Figure 8).
A clearance is issued by the next node when it removes
an object from the line. At the beginning, we just
initialize the line with K clearances, if K is the
capacity of the line.

h

k "its" at the beginning

A waits before sending anything
on L until it gets clearance.
B returns clearance after
removing an object on L .

FiNe8

(b) If two nodes A and B send objects to a
multiplexer C that dispatches objects towards D
(see Figure 9), and the line from C to D has a
capacity K ~ we have to provide a mechanism to pre-
vent A and B from sending more than K objects
towards C . We will issue K clearances and make
each one available to the first of A or B that
requests one. Clearances will be returned to the
system at D when appropriate. We are led naturally
to the system of Figure lO.

(c) We define a semaphore as a system with one
demultiplexer and two multiplexers organized as in
Figure ll. In (b) we have essentially given a con-
structive justification of this notion. The reader

92

Figure 9

returns
clearance

Figure i0

93

2)

(

Figure ii

can convince himself that our notion of semaphore is
identical to the notion of general semaphore of

D i j k s t r a 2 .

(d) In Figure 12, we have modeled the mutual
exclusion rob~, a generalization of the problem
solved in (b). We can r ~ that processes Ti and
T2 are mutually excluded (i.e., not active simultan-
eously) if an 'it' is placed on line L , since the
system enclosed in dotted lines always contains one
and only one object, only one of Ti and T2 can be
active at any given time.

I <
)

[

>
L

Figure 12

(e) Mutual exclusion is clearly a property that
may be desired of a system and is in fact part of the
intuitive idea of how a correct system must operate.
However, we have defined correctness of a system as a
property concerning only the output lines and not the
internal nodes. To reconcile these two points of
view, we simply consider that nodes communicate with
the outer world only through communication lines, and
that if the outer world is interested in their states
it must receive information on them via communication
lines. Then a property of mutual exclusion becomes a
property of certain output lines of a system.

(f) We can now suggest an approach to the most
general exclusion problem: if we want to show that in
a set of N processes, only n are active at anytime,

we look for an information cycle in which we could
prove that there can not be more than n objects ,!
traveling, on which these N processes may be waitin

III. Conclusion

In this paper, we have tried to capture the notion
of discrete system, with the intent of systematizing
the checking of operating systems. We have explained
what a formal notion of correctness for operating
systems can be. This notion subsumes the notion of
correctness for a sequential program in a fairly
natural manner. Simple cases have been systematically
analyzed. Deadlock questions, and mutual exclusion
problems have been shown tractable in a very formal
way and the structure of Dijkstra's semaphores has
been completely formalized.

However, we have limited our study to systems
comprising a finite number of processes. We have good
hope that the same approach will be fruitful in the
case where the number of units working simultaneously
is unbounded.

Acknowledgment

My friends Denis Seror and Mark Smith helped me
considerably to formulate the ideas of this paper. I
thank them wholeheartedly for their merciless criti-
cisms.

References

[1] Adams, D. "A computation model with data flow
sequencing." Ph.D. dissertation. Stanford
University, Computer Science Dept. December 1968.

[2] Dijkstra, E.W. "Cooperating sequential
processes." EWD123, Math. Dept.s Technological
University, Eindhoven, The Netherlands, 1965.

[3] Floyd, R.W. "Assigning meaning to programs."
Proceedings of Symposia in Applied Mathematics.
American Mathematical Society, Vol. 19, (1967),
19-32.

[4] Holt, A.W. "Final report of information system
theory project." Applied Data Research, Inc.,
Princeton, N. J., 1968.

[5] Holt, A. W. and Commoner, F. "Events and conditionsM
Applied Data Research, Inc., New York, N. Y., 1970.

[6] McCarthy, J. et al. "LISP 1.5 Programming Manual."
M.I.T. Computation Center, Cambridge, Mass. (1965).

[7] Seror, D. "D.C.P.L. A distributed control pro-
gramming language." Ph.D. dissertation. Computer
Science Dept., University of Utah, August 1970.

~/ This method was used with success to solve Dijkstra's
5 diners problem and formally prove the validity of
the solution found.

94

