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MERT is a multi-environment real-time operating system for the Digital Equipment 
PDP-iI/45 and 11/70 computers. It is a structured operating system built on top of a 
kernel which provides the basic services such as memory management, process scheduling, 
and trap handling needed to build various operating system environments. Real-time 
response to processes is achieved by means of preemptive priority scheduling. The file 
system structure is optimized for real-time response. Processes are built as modular 
entities with data structures that are independent of all other processes. Interpro- 
cess communication is achieved by means of messages, event flags, shared segments, and 
shared files. Process ports are used for communication between unrelated processes. 
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I. Introduction 

As operating systems become more 
sophisticated and complex, providing more 
and more services for the user, they be- 
come increasingly difficult to modify and 
maintain. Fixing a "bug" in some part of 
the system may very likely introduce 
another "bug" in a seemingly unrelated 
section of code. Changing a data struc- 
ture is likely to have major impact on the 
total system. It has thus become increas- 
ingly apparent over the past years that 
adhering to the principals of structured 
modularity (1),(2) is the correct approach 
to building an operating system. The 
influence of a process must be confined to 
an environment which is well protected 
from the rest of the system and must never 
affect the state of other environments. 

MERT is an executive which provides 
an environment which is more conducive for 
the implementation of operating systems 
than a raw machine. The executive estab- 
lishes an extended instruction set via 
system primitives vis-a-vis the virtual 
machine approach of CP 67. Operating sys- 
tems are implemented on top of MERT and 
define the services available to user pro- 
grams. The operating systems are indepen- 
dent. Communication and synchronization 
primitives and shared memory permit vary- 
ing degrees of co-operation between in- 
dependent operating systems. 

The MERT system runs on the DEC 
PDP-i1/45 and PDP-Ii/70 computers (3). 
These computers provide an eight-level 
hierarchical interrupt structure with 
priority levels numbered from 0 (lowest) 
to 7 (highest). Associated with the in- 
terrupt structure is the programmed inter- 
rupt register which permits the processor 
to generate interrupts at priorities of 
one through seven. The programmed inter- 
rupt serves as the basic mechanism for 
driving the system. 

The PDP-iI computer is a 16-bit word 
machine with a direct address space of 32K 
words. The memory management unit on the 
PDP-II/45 and PDP-ii/70 computers provides 
a separate set of address mapping and 
access control registers for each of the 
processor modes: kernel, supervisor and 
user. Furthermore, each virtual address 
space can provide separate maps for in- 
struction references (called I-space) and 
data references (D-space). The MERT sys- 
tem makes use of all three processor modes 
(kernel, supervisor and user) and both the 
instruction and data address spaces pro- 
vided by these machines. 

The basic computer hardware resources 
consist of the actual memory, the CPU and 
the various I/O devices. The first level 
(see Fig. i) of the operating system 
structure, called the kernel, controls and 
allocates these resources. The kernel 
consists of a set of highly privileged 
procedures and therefore must be very 
reliable. 
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The second level of software consists 
of kernel-mode processes which comprise 
the various I/O device drivers. Each pro- 
cess at this level has access to a limited 
number of I-space base registers in the 
kernel mode, providing a firewall between 
it and sensitive system data accessible 
only using D-space mode. 

At the third software level are the 
various operating system supervisors which 
run in supervisor mode. These processes 
provide the environments which the user 
sees and the interface to the basic kernel 
services. 

At the fourth level are the various 
user procedures which execute in user mode 
under control of the supervisory environ- 
ments. The primitives available to the 
user are provided by the supervisory en- 
vironments which catch the user traps. 
Actually the user procedure is merely an 
extension of the supervisor process. This 
is the highest level of protection provid- 
ed by the computer hardware. 

One of the basic design goals of the 
system was to build modular and indepen- 
dent processes having data structures and 
tables which are known only to the partic- 
ular process. Fixing a "bug" or making 
major internal changes in one process does 
not affect the other processes with which 
it communicates. The work described here 
builds on previous operating system 
designs described by Dijkstra (I) and 
Srinch Hansen (2). The primary differ- 
ences between this system and previous 
work lies in the rich set of inter-process 
communication techniques and the extension 
of the concept of independent modular 
processes, protected from other processes 
in the system, to the basic I/O and real 
time processes. It can be shown that mes- 
sages are not an adequate communication 
path for some real-time problems (4). 

Controlled access to shared memory, and 
software generated interrupts are often 
required to maintain the integrity of a 
real time system. The communication prim- 
itives were selected in an attempt to bal- 
ance the need for protection with the need 
for real time response. The primitives 
include event flags, message buffers, 
inter-process system traps, process ports 
and shared segments. 

This paper gives a detailed descrip- 
tion of the system design including the 
kernel, and a definition and description 
of processes and of segments. A detailed 
discussion of the communication primitives 
follows. The structure of the file system 
is then discussed along with how the file 
manager and time-sharing processes make 
use of the communication primitives. Some 
trade-offs are given that have been made 
for efficiency reasons thereby sacrificing 
some protection. Some operational statis- 
tics are also included here. 

2 .  Segments 

We define a logical segment as a 
piece of contiguous memory, 32 to 32K 
16-bit words long, which can grow in in- 
crements of 32 words. Associated with 
each segment are an internal segment iden- 
tifier and an optional global name. The 
segment identifier is allocated to the 
segment when it is created and is used for 
all references to the segment. The global 
name uniquely defines the initial contents 
of the segment. A segment is created on 
demand and disappears when all processes 
which are linked to it are removed. The 
contents of a segment may be initialized 
by copying all or part of a file into the 
segment. Access to the segment can be 
controlled by the creator (parent) as fol- 
lows: 
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i) The segment can be private - that 
is, available only to the creator. 

2) The segment can be shared by the 
creator and some Or all of its 
descendents (children). This is 
accomplished by passing the seg- 
ment id to a child. 

3) The segment can be given a name 
which is available to all 
processes in the system. The name 
is a unique 32-bit number which 
corresponds to the actual location 
on secondary storage of the 

initial segment data. Processes 
without a parent-child relation- 
ship can request the name from the 
file system and then attempt to 
create a segment with that name. 
If the segment exists, the segment 
id is returned and the segment 
user count is incremented. Other- 
wise the segment is created and 
the process initializes it. 

3. Processes 

A process is a collection of related 
logical segments executed by the proces- 
sor. Processes are divided into two 
classes, kernel and supervisor, according 
to the mode of the processor while execut- 
ing the segments of the process. 

Kernel processes are driven by 
software and hardware interrupts, execute 
at processor hardware priority 2 to 7, are 
locked in memory, and are capable of exe- 
cuting allprivileged instructions. Ker- 
nel processes are used to control peri- 
pheral devices and handle functions with 
stringent real-time response requirements. 
The virtual address space of each kernel 
process begins with a short header which 
defines the virtual address space and 
various entry points (see Figure 2). Up 
to 12K words (segmentation registers 3 - 
5) of instruction space and 12K words of 
data space are available. All kernel 
processes share a common stack and can 
read and write the I/O registers. 

To reduce duplication of common sub- 
programs used by independent kernel 
processes and to provide common data areas 
between independent cooperating kernel and 
supervisor processes, three mechanisms for 
sharing segments are available. 

The first type of shared segment, 
called the system library, is available to 
all kernel processes. The routines in- 
cluded in this library are determined by 
the system administrator at system genera- 
tion time. The system library begins at 
virtual address 140~0(8) (segmentation 
register 6) and is present whether or not 
it is used by any kernel processes. 

The second type of shared segment, 
called a public library, is assigned to 
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segmentation registers four or five of the 
process instruction space. References to 
routines in the library are satisfied when 
the process is formed, but the body of the 
segment is loaded into memory only when 
the first process which accesses it is 
loaded. 

A third sharing mechanism 9.1lows a 
parent to pass the id of a segme~£ that is 
included in the address space of a kernel 
process when it is created. This form of 
sharing is useful when a hierarchy of 
cooperating processes is invoked to accom- 
plish a task. 

All processes which execute in super- 
visor mode and user mode are called super- 
visor processes. These processes run at 
processor priority zero or one and are 
scheduled by the kernel scheduler process. 
The segments of a supervisor may be kept 
in memory, providing response on the order 
of several milliseconds, or supervisor 
segments may be swappable, providing a 
response time of hundreds of milliseconds. 

The virtual address space of a super- 
visor consists of 32K words of instruction 
space and 32K words of data space in both 
supervisor and user modes. Of this 128K, 
at least part of each of three segmenta- 
tion registers (12K) must be used for 
access to: 

I) the process control block, a seg- 
ment typically 128 words long, 
which describes the entire virtual 
address space of the process to 
the kernel and provides space to 
save the state of the process dur- 
ing a context switch. 
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2) the process supervisor stack and 
data segment. 

3) the read-only code segment of the 
supervisor. 

The rest of the address space is 
controlled by the supervisor through EMT 
traps to the kernel. 

4. The Kernel 

The concept of an operating system 
nucleus or kernel has been used in several 
systems. However, each system has included 
a different set of logical functions (5), 
(6). In this section the logical struc- 
ture of the MERT kernel is discussed. The 
modules which are considered part of the 
nucleus are distinguished from the memory 
management and scheduler processes. A 
discussion of the scheduling policy is 
also given. 

4.1 Kernel Modules and Processes 

The kernel consists of a process 
dispatcher, a trap handler, and routines 
(procedures) which implement the system 
primitives. Approximately 5.5K words of 
code are dedicated to these modules. 

The process dispatcher is responsible 
for saving the current state -and setting 
up and dispatching to all kernel 
processes. It can be invoked by an inter- 
rupt from the programmed interrupt regis- 
ter, an interrupt from an external device, 
or an inter-process system trap from a 
supervisor process (an EMT trap). 

The trap handler fields all traps and 
faults and, in most cases, transfers con- 
trol to a trap handling routine in the 
process which caused the trap or fault. 

The kernel primitives can be grouped 
into eight logical categories. These 
categories can be subdivided into those 
which are available to all processes and 
those which are available only to supervi- 
sor processes. The primitives which are 
available to all processes are: 

I) Interprocess communication a n d  
synchronization primitives. These 
include sending and receiving of 
messages and events, waking up 
processes which are sleeping on a 
bit pattern, and setting the sleep 
pattern. 

2) Attaching to and detaching from 
interrupts. 

3) Setting a timer to cause a time- 
out event. 

4) Manipulation of segments for the 
purposes of I/O. This includes 
locking and unlocking segments and 
marking segments altered. 

5) Setting and getting the time of 
day. 

The primitives available only to supervi- 

s o t  p r o c e s s e s  a r e :  

6) P r i m i t i v e s  which alter the attri- 
butes of the segments of a pro- 
cess. These primitives include 
creating new segments, returning 
segments to the system, adding and 
deleting segments from the process 
address space, and altering the 
access permissions. 

7) Altering scheduler-related parame- 
ters by road blocking, changing 
the scheduling priority, or making 
the segments of the process 
nonswap or swappable. 

8) Miscellaneous services such as 
reading the console switches. 

Closely associated with the kernel 
are the memory management and scheduler 
processes. These two processes are spe- 
cial in that they reside in the kernel 
segments. In all other respects they fol- 
low. the discipline established for kernel 
processes. 

The memory manager process communi- 
cates with the rest of the system via mes- 
sages and is capable of handling three 
types of requests: 

I) Setting the segments of a process 
into the active state, making 
space by swapping or shifting oth- 
er segments if necessary. 

2) Loading and locking a segment con- 
tiguous with other locked segments 
to reduce memory fragmentation. 

3) Deactivating the segments of a 
process. 

The scheduler process is responsible 
for scheduling all supervisor processes. 
The main responsibility of the scheduler 
is to select the next process to be exe- 
cuted. The actual loading of the process 
is accomplished by the memory manager. 

4.2 Dissatchin9 and Scheduling Policy 

The system maintains seven process 
lists, one for each processor priority at 
which software interrupts can be triggered 
using the programmed interrupt register. 
All kernel processes are linked into one 
of the six lists for processor priorities 
two through seven; all supervisor 
processes are linked to the processor 
priority one list. The occurrence of a 
software interrupt at priorities two 
through seven causes the process dispatch- 
er to search the corresponding process 
list and dispatch to all processes which 
have one or more event flags set. The 
entire list is searched for each software 
interrupt. 

All software interrupts at processor 
priority one, which are not for the 
currently active process, cause the 
dispatcher to send a wakeup event to the 
scheduler process. The scheduler uses a 
byte in the system process tables to main- 
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rain the scheduling priority of each pro- 
cess. This byte is manipulated by the 
scheduler as follows: 

I) Incremented when a process re- 
ceives an event. 

2) Increased by ten when awakened by 
a kernel process. 

3) Decremented when the process 
yields control due to a roadblock 
system call. 

4) Lowered according to an exponen- 
tial function each successive 
time the process uses its entire 
time slice (becomes compute 
bound). 

The process list is searched for the 
highest priority process which is ready to 
run and if this process is higher priority 
than the current process, the new process 

will preempt the current process. A 
pointer to the preempted process is saved 
in the process control block of the 
preempting process. This pointer is used 
to return control to the interrupted pro- 
cess. 

To minimize thrashing and swapping, 
the scheduler uses a "will receive an 
event soon" flag which is set by the pro- 
cess when it road blocks. This flag is 
typically set when a process road blocks 
awaiting completlon of I/O which is ex- 
pected to finish in a short time relative 
the length of a time slice. The scheduler 
will keep the process in memory for the 
remainder of its time sllce. When memory 
becomes full and all processes which re- 
quire loadlng are of sufficiently low 
priority, the scheduler stops making load 
requests until one of the processes being 
held times out. 

5. Inter-Process Communication 

A structured system requires a well- 
defined set of communication primitives to 
achieve inter-process communication and 
synchronization. The MERT system makes 
use of the following communication primi- 
tives to achieve this end: 

(I) event flags 
(2) message buffers 
(3) EMT traps 
(4) shared memory 
(5) files 
(6) process ports 

Each of these is discussed in further 
detail here. 

5.1 E v e n t  F!a~s 

Event flags are an efficient means of 
communication between processes for the 
transfer of small quantities of data. Of 
the 16 possible event flags per process, 
eight are predefined by the system for the 
following events: wakeup, timeout, message 

arrival, hangup, interrupt, quit, abort 
and initialization. The other eight event 
flags are definable by the processes using 

the event flags as a means of communica- 
tion. Events are sent by means of the 
kernel primitive: 

event(procid, event) 

When control is passed to the process at 
its event entry point the event flags are 
in its address space. 

LINK 
r 

FROM PROCESS NUMBER 

TO PROCESS NUMBER 
i J 

TYPE I 1 I I I i !. I SIZE 

I DENI'I FI ER 
" , n , 1  

I 

SEQUENCE NUMBER I STATUS 
I 

MESSAGE 

DATA 

Figure 3 Message Format 

5.2 Message Buffers 

The use of message buffers for 
inter-process communication was introduced 
in the design of the RC4~B operating sys- 
tem (2). The SUE project (7) also used a 
message sending facility and the related 
device called a mailbox to achieve process 
synchronization. We introduce here a set 
of message buffer primitives which provide 
an efficient means of inter-process com- 
munication and synchronization. 

A kernel pool of message buffers is 
provided, each of which may be up to a 
multiple of seven times 16 words in size. 
Each message consists of a six word header 
and the data being sent to the receiving 
process. The format of the message is 
specified in Figure 3. The primitives 
available to a process consist of: 

alocmsg(nwords) 
queuem(message) 
queuemn(message) 
dequeuem(process) 
dqtype(process) 
messink(message) 
.freemsg(message) 
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To open a communication channel between 
two processes P1 and P2, P1 must allocate 
a message buffer using aloe, fill in 
the appropriate data in the me~sage header 
and data areas and then send the message 
to process P2 using ue~. Efficiency is 
achieved by allowing PY-t6 send multiple 
messages before waiting for an ack- 
nowledgement (answer). The acknowledge- 
ment to these messages is returned in the 
same buffer by means of the messink primi- 
tive. The message buffer address space is 
freed up automatically if the message is 
an acknowledgement to an acknowledgement. 
Buffer space may also be freed explicitly 
by means of the freemsg primitive. When 
no answer is expected back from a process, 
the gueuemn primitive is used. 

Synchronization is achieved by put- 
ting the messages on P2"s message input 
queue using the link word in the message 
header and send~ P2 a message event 
flag. This will immediately invoke the 
scheduling of process P2 if it runs at a 
higher priority than PI. Process P1 is 
responsible for filling in the from 
process number, the to pr>ocess number, the 
type and the identif~r fields in the mes- 
sage header. The type field specifies 
which routine P2 must execute to process 
the message. A type of "-I" is reserved 
for acknowledgement messages to the origi- 
nal sender of the message. The status of 
the processed message is returned in the 
status field of the message header, a 
non-zero value indicating an error. The 
status of -I is reserved for use by the 
system to indicate that process P2 does 
not exist or was terminated abnormally 
while processing the message. The 
seguence number field is used solely for 
debugging p~oses. The identifier field 
may be planted by P1 to be used to identi- 
fy and verify acknowledgement messages. 
This word is not modified by the system. 

Process P2 achieves synchronization 
by waiting for a message. In general a 
process may receive any message type from 
any process by means of the degueuem prim- 
itive. However P2 may request a messaJe 
type by means of dqtype in order to pro- 
cess messages in a certain sequence for 
internal process management. In each case 
the kernel primitive will return a 
success/fail condition. In the case of a 
fail return, P2 has the option of road- 
blocking to wait for a message event or of 
doing further processing and looking for 
an input message at a later time. 

5.3 ,EM? Trap§ 

The emulator trap (EMT) instruction 
is used not only to implement the system 

primitives, but also to provide a mechan- 
ism by which a supervisor and kernel pro- 
cess can pass information. The supervisor 
process passes the process number of the 
kernel process with which it would like to 

communicate to the kernel. The kernel 
then dispatches to the kernel process 
through its EMT entry point, passing the 
process number of the calling supervisor 
process and a pointer to an argument list. 
The kernel process will typically access 
data in the supervisor process address 
space by setting part of its virtual ad • 
dress space to overlap that of the shper- 
visor. This method of communication is 
used mainly to pass characters from a time 
sharing user to the kernel process which 
controls communications equipment. 

5.4 Shared Memor Y 

Supervisor processes may share memory 
by means of named as well as unnamed seg- 
ments. Segments may be shared on a super- 
visor as well as a user level. In both 
cases pure code is shared as named seg- 
ments. In the case of a time-sharing 
supervisor (described in a later section), 
a segment is shared for I/O buffers and 
file descriptors. A shared segment is 
also used to implement the concept of a 

(8), which is an inter-process chan- 
used to communicate streams of data 

between related processes. At the user 
level related processes may share a seg- 
ment for the efficient communication of a 
large guantity of data. For related 
processes, a parent process may set up a 
shareable segment in his address space and 
restrict the access permissions of all 
child processes to provide a means of pro- 
tecting shared data. Facilities are also 
provided for sharing segments between 
unrelated supervisors and between kernel 
and supervisor processes. 

5.5 Files 

The file system has a hierarchical 
structure equivalent to the UNIX file sys- 
tem (8) and as such has certain protection 
keys (see section 6). Most files have 
general read/write permissions and the 
contents are shareable between processes. 

In some cases the access permissions 
of the file may itself serve as a means of 
communication. If a file is created with 
read/write permissions for the owner only, 
another process may not access this file. 
This is a means of making that file name 
unavailable to a second process. 

5.6 Process Ports 

Knowing the identity of a process 
gives another process the ability to com- 
municate with it. The identity of certain 
key processes must be known to all other 
processes at system startup time to enable 
communication to occur. These globally 
known processes include the scheduler, the 
memory manager, the process manager, the 
file manager and the swap device driver 
process. These comprise a sufficient set 
of known processes to start up new 
processes which may then communicate with 
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the original set. 

Device driver processes are created 
dynamically in the system. They are in 
fact created, loaded and locked in memory 
upon opening a "device" file (see section 
6). The identity of the device driver 
process is returned by the process manager 
to the file manager which in turn may 
return the identity to the process which 
requested the opening of the "device" 
file. These processes are referred to as 
"external" processes by Brinch Hansen (2). 

The above process communication prim- 
itives do not satisfy the requirements of 
communication between unrelated processes. 
For this reason the concept of process 
ports has been introduced in the MERT sys- 
tem. A process port is a globally known 
"device" to which a process may attach 
itself in order to communicate with "unk- 
nown" processes. A process may connect 
itself to a port, disconnect itself from a 
port or obtain the identity of a process 
connected to a specific port. Once a pro- 
cess identifies itself globally by con- 
necting itself to a port, other processes 
may communicate with it by sending 

messages to it through the port. The port 
thus serves as a two-way communication 
channel. It is a means of communication 
for processes which are not descendents of 
each other. 

6. ~i!e system 

The multi-environment as well as the 
real-time aspects of the MERT system re- 
quire that the file system structure be 
capable of handling many different types 
of requests. Time-sharing applications 
require that files be both dynamically 
allocatable and dynamically growable. 
Real-time applications require that files 
be large and possibly contiguous; dynamic 
allocation and growth are usually not 
required for real-time applications. 

For data base management systems, 
files must be very large and it is often 
advantageous that files be stored in one 
contiguous area of secondary storage. 
Such large files are efficiently described 
by a file-map entry which consists of 
starting block number and number of con- 
secutive blocks (a two-word extent). A 
further benefit of this allocation scheme 
is that file accesses require only one 
access to secondary storage. Another com- 
monly used scheme, using indexed pointers 
to blocks of a file in a file-map entry, 
may require more than one access to secon- 
dary storage to read or write a block of a 
file. However, this latter organization 
is usually quite suitable for time-sharing 
applications. The disadvantage of using 
two-word extents in the file-map entry to 
describe a dynamic time-sharing file is 
that this may lead to secondary storage 
fragmentation. In practice the efficient 
management of the in-core free extents 

reduces storage fragmentation significant- 
ly. 

Three kinds of files are discernible 
to the user: ordinary disk files, direc- 
tories and special files. The directory 
structure is identical to the UNIX file 
system directory structure. Directories 
provide the mapping between the names of 
files and the files themselves and induce 
a hierarchical naming convention on the 
files. A directory entry contains only 
the name of the file and a file identifier 
which is essentially a pointer to the 
file-map entry for that file. A file may 
have more than one link to it, thus ena- 
bling the sharing of files. 

Special files ih MERT are associated 
with each I/O device. The opening of a 
special file causes the file manager to 
send a message to the process manager to 
create and load the appropriate device 
driver process and lock it in memory. 
Subsequent reads and writes to the file 
are translated into read/write messages to 
the corresponding I/O driver process by 
the file manager process. 

In the case of ordinary files, the 
contents of a file are whatever the user 
puts in it. The file system process im- 
poses no structure on the contents of the 
file. 

The MERT file system distinguishes 
between contiguous files and other ordi- 
nary files. Contiguous files are 
described by one extent and the file 
blocks are not freed until the last link 
to the file is removed. Ordinary files 
may grow dynamically using up to 27 ex- 
tents to describe their secondarystorage 
allocation. To minimize fragmentation of 
the file system a growing file is allocat- 
ed 40 blocks at a time. Unused blocks are 
freed when the file is closed. 

The list of free blocks of secondary 
storage is kept in memory as a list of the 
64 largest extents of contiguous free 
blocks. Blocks for files are allocated 
and freed from this list using an algo- 
rithm which minimizes file system fragmen- 
tation. When freeing blocks;" the blocks 
are merged into an existing entry in the 
free list if possible, otherwise placed in 
an unused entry in the free list, or fail- 
ing this, replace an entry in the free 
list which contains a smaller number of 
free blocks. 

The entries which are being freed or 

allocated are also added to an update list 
in memory. These update entries are used 
to update a bitmap which resides on secon- 
dary storage. If the in-core free list 
should become exhausted, the bitmap is 
consulted to re-create the 64 largest 
entries of contiguous free blocks. The 
nature of the file system and the tech- 
niques used to reduce file system fragmen- 
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tation ensure that this is a very rare 
occurrence. 

Very active file systems consisting 
of many small time-sharing files may be 
compacted periodically by a utility pro- 
gram to minimize file system fragmentation 
still further. File system storage frag- 
mentation actually only becomes a problem 
when a file is unable to grow dynamically 
having used up all 27 extents in its file 
map entry. Normal time-sharing files do 
not approach this condition. 

Communication with the file system 
process is achieved entirely by means of 
messages. The file manager can handle 25 
different types of messages. The file 
manager is a kernel process using both I 
and D space. It is structured as a task 
manager controlling a number of parallel 
co-operating tasks which operate on a com- 
mon data base and which are not individu- 
ally preemptible. Each task acts on 
behalf of one incoming message and has a 
private data area as well as a common data 
area. The parallel nature of the file 
manager ensures efficient handling of the 
file system messages. The mode of commun- 
ication, message buffers, also guarantees 
that other processes need not know the 
details of the structure of the file sys- 
tem. Changes in the file system structure 
are easily implemented without affecting 
other process structures. - 

7. A Time-Sharing Supervisor 

One of the first supervisor processes 
developed for the MERT system was a time- 
sharing supervisor logically equivalent to 
the UNIX time-sharing system (8). The 
UNIX supervisor process was implemented 
using messages to communicate with the 
file system manager~ This makes the UNIX 
supervisor completely independent of the 
file system structure. Changes and addi- 
tions can then be made to the file system 
process as well as the file system struc- 
ture on secondary storage without affect- 
ing the operation of the UNIX supervisor. 

The structure of the system requires 
that there be an independent UNIX process 
for each user who "logs in". In fact a 
UNIX process is started up when a 
"carrier-on" transition is detected on a 
line which is capable of starting up a 
user. 

For efficiency purposes the code of 
the UNIX supervisor is shared among all 
processes running in the UNIX environment. 
Each supervisor has a private data segment 
for maintaining the process stack and 
hence the state of the process. For pur- 
poses of communication one large data seg- 
ment is shared among all UNIX processes. 
This data segment contains a set of shared 
buffers used for system side-buffering and 
a set of shared file descriptors which 
define the files that are currently open. 

The sharing of this common data seg- 
ment does introduce the problem of criti- 
cal regions, i.e. regions during which 
common resources are allocated and freed. 
The real-time nature of the system means 
that a process could be preempted even 
while running in a critical region. To 
ensure that this does not occur, it is 
necessary to inhibit preemption during a 
critical region and then permit preemption 
again upon exiting from the critical re- 
gzon. This also guarantees that the 
delivery of an event at a higher hardware 
priority will not cause a critical region 
to be re-entered. Note that a simple 
semaphore cannot prevent such re-entry 
unless events are inhibited during the 
setting of the semaphore. 

The UNIX supervisor makes use of all 
of the communication primitives discussed 
previously. Messages are used to communi- 
cate with the file system process. Events 
and shared memory are used to communicate 
with other UNIX processes. Communication 
with character device driver processes is 
by means of EMT traps. Files are used to 
share information among processes. Pro- 
cess ports are used in the implementation 
of an error logger process to collect 
error messages from the various I/O device 
driver processes. 

The entire code for the UNIX supervi- 
sor process consists of 6@@~ words. All 
memory management and process scheduling 
functions are performed by the kernel. 

8. Real Time Aspects 

Several features of the MERT archi- 
tecture make it a sound base on which to 
build real-time operating systems. The 
kernel provides the primitives needed to 
construct a system of cooperating, in- 
dependent processes, each of which is 
designed to handle one aspect of the 
larger real-time problem. The processes 
can be arranged in levels of decreasing 
privilege depending on the response re- 
quirements. Kernel processes are capable 
of responding to interrupts within 103 
microseconds, non-swap supervisor 
processes can respond within a few mil- 
liseconds, and swap processes can respond 
in hundreds of milliseconds. Shared seg- 
ments can be used to pass data between tne 
levels and to insure that the most up-to- 
date data is always available. This is 
sufficient to solve the data integrity 
problem discussed by Sorenson(4). 

The system provides a low resolution 
interval timer which can be used to gen- 
erate events at any multiple of 1/60th of 
a second up to 65535. This is used to 
stimulate processes which update data 
bases at regular intervals or time I/O 
devices. Since the timer event is an 
interrupt, supervisor processes can use it 
to subdivide a time slice to do internal 
scheduling. 
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The preemptive priority scheduler and 
the control over which processes are swap- 
pable allow the system designer to specify 
the order in which tasks are processed. 

Since the file manager is an independent 
process driven by messages, all processes 
can communicate directly with it, provid- 
ing a limited amount of device indepen- 
dence. The ability to store a file on a 
contiguous area of secondary storage is 
aimed at minimizing access time. Finally, 
the availability of a sophisticated time- 
sharing system in the same machine as the 
real-time operating system provides power- 
ful tools which can be exploited in 
designing the man-machine interface to the 
real-time processes. 

9. Process Debugging 

One of the most powerful features of 
the system is the ability to carry on sys- 
tem development while users are logged in. 
New I/O drivers have been debugged and 
experiments with new versions of the time 
sharing supervisor have been performed 
without adversely affecting the user com- 
munity. 

Three aspects of the system make this 
possible: 

I) Processes can be loaded dynamical- 
ly. 

2) Snap shot dumps of the process can 
be made using the time sharing 
supervisor. 

3) Processes are gracefully removed 
from the system and a core dump 
produced on the occurrence of a 
"break point trap". 

As an example, we recently interfaced 
a PDP-II/20 to our system using an inter- 
processor DMA link. During the debugging 
of the software, the two machines would 
often get out of phase leading to a 
break-down in the communication channel. 
When this occurred, a dump of the process 
handling the PDP-ii/45 end of the link was 
produced, a core image of the PDP-II/20 
was transmitted to the PDP-il/45, and the 
two images were analyzed using a symbolic 
debugger running under the time sharing 
supervisor. When the problem was fixed a 
new version of the kernel mode link pro- 
cess was created, loaded, and tested. 

Turn around £ime in this mode of operation 
is measured in seconds or minutes. 

10. Summary 

We summarize here some of the conclu- 
sions we have come to concerning the 
structure of the system, its overall effi- 
ciency, the design trade-offs made, the 
disadvantages of the system design as well 
as the advantages and some operational 
statistics. In general, for the sake of a 
more efficient system, protection was 
sacrificed where it was believed not to be 
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crucial to an effective system. The very 
nature of the structure of the C language 
which was used to write the code for all 
processes, kernel and supervisor, forced 
structure in the processes thus ~roviding 
some means of protection. 

The hardware of the PDP-iI/45 and 
PDP-II/70 computers requires that a dis- 
tinction be made between kernel processes 
and supervisor processes. Kernel 
processes have direct access to the 
kernel-mode address space and may use all 
privileged instructions. Moreover, a ker- 
nel process has access to some of the sen- 
sitive system data used by the kernel pro- 
cedures. The stack used by a kernel pro- 
cess is the same as that used by the basic 
kernel. The address sharing expedites the 
transmission of messages since the data in 
the message need not be copied. 

To provide complete security in the 
kernel would require that each process use 
its own stack area and that access to all 
base registers other than those required 
by the process be turned off. The time to 
set up a process would become prohibitive. 
Since kernel processes are most often 
dispatched to by means of an interrupt, 
the interrupt overhead would become in- 
tolerable, making it more difficult to 
guarantee real-time response. 

The message buffers are also corrup- 
tible by a kernel process. The only way 
to protect against corruption completely 
would be to make a kernel call to copy the 
message from the process's virtual address 
space to the kernel buffer pool. For 
efficiency reasons this was not done. 

In actual practice the corruption of 
the kernel by kernel processes does not 
occur in our system even when debugging 
new kernel processes. Using the C 
language facilitated the writing of 
correct program procedures. We observed 
that even in the debugging stage fatal 
system errors were never caused by the 
modification of data outside of a 
process's virtual address range. Most 
errors were timing dependent, errors which 
would not have been detected even with 
better protection mechanisms. 

Supervisor processes do not have 
direct access to segments of other 
processes, kernel or supervisor. There- 
fore it is possible to restrict the effect 
of these processes on other processes. Of 
course one pays a price for this protec- 
tion in the sense that all supervisor base 
registers must have the appropriate access 
permissions set when the process is 
scheduled. Message traffic overhead is 
also higher now because a sendms~ kernel 
primitive must copy the message ~from the 
process s virtual address sparse to the 
system message buffer. Similarly a ~etmsg 
kernel primitive must copy the message 
from the kernel message buffer to the 
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process's virtual address space. The fol- 
lowing times are indicative of the system 
overhead involved in sending and receiving 
messages: 

kernel supervisor 
send 150 400 usec. 
receive 150 400 usec. 

The total system design gives us a 
unique opportunity to compare system 
response time running under a dedicated 
UNIX time-sharing system with the response 
time running in a UNIX time-sharing en- 
vironment supported by the MERT system. 
Application programs which take advantage 
of the UNIX file system structure give 
better response in a dedicated UNIX time- 
sharing system, whereas those which take 
advantage of the MERT file system s-E~d-d ~ 
ture give a better response under MERT. 
Compute-bound tasks of course respond in 
the same time under both systems. It is 
only where there is substantial system 
interaction that the structure of the MERT 
system introduces extra system overhead 
which is not present in a dedicated UNIX 
system. Heavily used programs typically 
take 5 to 10 percent longer to run under 
MERT compared to dedicated UNIX at the 
current stage of implementation. We be- 
lieve that this overhead is a small price 
to pay to achieve a well-structured 
operating system which has capabilities 
for further expansion in supporting other 
processes which provide different environ- 
ments. In retrospect we believe the 
structure of the system does provide a 
good base for doing further operating sys- 
tem research. 
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