
Polyvalues: A Tool for Implementing Atomic Updates to Distributed Data

Warren A. Montgomery
M.I.T. Laboratory for Computer Science

545 Technology Square
Cambridge, Ma, 02139

ABSTRACT

The coordination of atomic updates to distributed data is a difficult problem in the design of a distributed
information system. A common goal for solutions to this problem is that the failure of a site should not
prevent any processing that does not require the data stored at that site. While this goal has been shown
to be impossible to achieve all of the time, several approaches have been developed that perform atomic
updates such that most site failures do not affect processing at other sites. This paper presents another
such approach, one that provides a mechanism bywhich processing can proceed even if a failure occurs during
a critical moment in an atomic update.

The solution presented is based on the notion of maintaining several potential current values (a polyvalue)
for each database item ~hose exact value is not known, due to failures interrupting atomic updates. A
polyvalue represents the possible set of values that an item could have, depending on the outcome of tran-
sactions that have been delayed by failures. Transactions may operate on polyvalues, and in many cases a
polyvalue may provide sufficient information to allow the results of a transaction to be computed, even
though the polyvalue does not specify an exact value. An analysis and simulation of the polyvaluemechanism
shows that the mechanism is suitable for databases with reasonable failure rates and recovery times. The
polyvalue mechanism is most useful ~4nere prompt processing is essential, but the results that must be pro-
duced promptly depend only loosely on the database state. Many applications, such as electronic funds
transfer, reservations, and process control, have these characteristics.

1. INTRODUCTI(3N

Many factors currently favor the distribution of
data storage and processing among sites in a dis-
tributed information system. These factors include
greater reliability, better administrative control,
faster response, and economics.

In order to realize fully the advantages of a dis-
tributed system, that system must be constructed so
as to allow it to function as a whole, yet allow
the individual sites to retain autonomy. By

research was supported by the Advanced
Research Projects Agency of the Department of
Defense and was monitored by the Office of
Naval Research under Contract No. N00014-75-C-
0661.

** Author's Current Address:

Bell Telephone Laboratories
Naperville, IL 60540

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

autonomy, I mean that the storage and processing at
each site can be individually controlled, and that
each site is capable of independent operation if it
is separated from the rest.

The processing operations in a distributed informa-
tion system are known as transactions. Several
transactions may be performed concurrently in a
distributed information system. A difficult prob-
lem in meeting the above goals for a distributed
information system is the coordination of con-
current transactions so that concurrent execution
does not produce results that could not be achieved
by performing all processing serially. This coor-
dination allows the user to view the distributed
systsm as a large fast machine that processes his
transactions serially, which frees the user from
the need to worry about possible interactions among
concurrent transactions.

In order to take advantage of the independence of
failures of individual sites in a distributed sys-
tem, and to allow for the autonomy of individual
sites, the transaction coordination mechanism must
allow a transaction to be performed promptly when-
aver the sites that hold the data items accessed by
that transaction are functioning and can commtmi-
care. In other words, the failure of a site should
not indefinitely delay any transaction that does
not access data stored at that site. A simpler
condition that follows from that above is that no
transaction that is entirely local to one site
should be delayed indefinitely by the failure of
some other site.

© 1979 ACM0-89791-009-5/79/1200/0143 $00.75

143

A great deal of recent research has addressed the
problem of transaction coordination; specifically,
coordination of updates made by the transactions to
the distributed data. Several papers [1,3,5] have
presented arguments to demonstrate that there can
be no protocol that implements atomic updates to
distributed data in such a way that a failure of
some site does not postpone updates that do not
involve da£a at that site. These arguments basi-
cally show that if a failure disrupts cammtnication
anong sites during an update, there is no way to
determine which of the sites have completed the
update and which have not. Thus one cannot assume
that a site with which carmunication has failed has
or has not completed the update, and one must in
general wait until communication with that site is
restored before proceeding.

2. APPROACHES TO DISTRIBUTED UPDATES

Given that one cannot have an update mechanism that
meets the desired goals of atomic transactions and
independent operation of the sites, we must take an
"engineering approach" to the problem, one that
meets these goals most of the time. Several such
approaches are possible. These can be used indivi-
dually or in various combinations in designing a
mechanism to coordinate transactions in a distri-
buted information system.

2.1 Lock Avoidance

One approach that has been used is to structure the
implementation of the transactions such that it
avoids the need to make atomic updates wherever
possible. This can be done by pre-analyzing the
transactions to be performed to determine whether
or not they require an atomic update. This
approach was used in [2] and [5].

2.2 Window Minimization

A second, widely used approach is to structure the
update algorithm such that the time period during
which a failure could cause delay due to the need
to synchronize transactions is small. This
approach is used in the update protocols of Gray
[3], Lampson and Sturgis [4], and Reed [6]. Basi-
cally, these protocols are structured so that all
of the results of a transaction are computed before
any updates are made. Then, a simple set of mes-
sage exchanges is used to decide whether or not to
carry out the updates, based on whether all sites
finished the computation promptly. If a failure
occurs during the presumably much longer computa-
tion part of the protocol, the transaction can be
aborted and no updates will be made.

Another example of this approach is given by
Thomas' s algorithm for synchronizing updates to
distributed data [7]. This algorithm uses a com-
plicated voting protocol to decide when to install
the results of the transactions. ~ile the voting
may take place over an extended period of time, the
window in which a site failure may leave the func-
tioning sites in doubt as to whether or not to com-
plete the transaction is small.

2.3 Relaxed Consistency

A third approach is to have each site that is
involved in a transaction when a failure occurs
make an arbitrary decision as to whether to com-
plete or abort the transaction. This introduces the
possibility that a transaction may be performed
incorrectly (some but not all of the updates per-
formed) if a failure occurs at a critical moment.
Each site can, however, continue processing and
need not wait for failure recovery to proceed.
Because correctness is more important than timeli-
ness for most applications, this approach has not
been widely used.

2.4 Polyvalues

A fourth approach, extensively described in the
remainder of this paper, is based on the notion of
maintaining two or more possible current values for
the items involved in an update interrupted by a
failure. If both new and old values are known for
those items, frequently that information is suffi-
cient to allow processing of those items by subse-
quent transactions. The polyvalue scheme described
in the following section is a generalization of
this notion to allow continued transaction process-
ing by sites involved in a transaction interrupted
by a failure.

3. THE POLYVALUE MECHANISM

Tne following terms will be used in discussing the
polyvalue mechanism for distributed updates:

• A database is a set of data items.

A database state corresponds to an assignment
of a ~tl~r value for each item in the
database.

A transaction is a mapping from one database
state to another database state.

In a distributed database, each item is stored at
one of the sites. (An item that is replicated at
several sites can be viewed as a set of individual
items, one for each site.) Each transaction
involves directly only those sites that hold the
data items accessed by the transaction (the items
whose values are changed by the transaction, and
those needed to compute the changes made by the
transaction).

This provides an adequate framework for discussing
the problem of coordinating transactions. The con-
straint that transactions be atomic can now be
expressed as meaning that the database state
reached by an execution of a set of transactions
must be the same as that reached by some serial
execution of the transactions, in which one tran-
saction is completed before the next is begun.

Polyvalues are a simple extension to this model
that allow each item to have several possible
current values. The polyvalue mechanism specifies
how transactions act on such items.

A polyvalue is a bookkeeping tool for keeping more
than one value for an item. A polyvalue is a set

144

of pairs <v,c>, where v is a simple value, and c is
a condition which is a predicate. The variables in
a condition stand for transactions, and are known
as transaction identifiers. For example, the con-
dition T1 (T2 T3) would be true if T1 and at least
one of T2 and T3 were comple--t-~. The value of c in
the pair <v,c> indicates the condition under which
v is the correct value represented by the
polyvalue. The conditions on the pairs in each
polyvalue must be complete and disjoint. (One and
only one of the predicates must be true under any
assignment of truth values to the transaction iden-
tifiers).

There are two circumstances that cause an item to
be updated with a polyvalue. A polyvalue is
assigned to an item if a failure delays a transac-
tion that is updating that item, or a polyvalue may
be produced as one of the results of a transaction
that accesses an item that has a polyvalue. These
circumstances are explained in the next two sec-
tions.

3.1 The Update Protocol

Transactions are performed with a two-phase proto-
col [3]. In the first (compute) phase, each site
computes the new values (updates) for the items
that it holds that are specified by the execution
of the transaction. If a failure delays the com-
pletion of the compute phase of a transaction at
some site (by preventing c~mnunication with some
other site) , then that site simply discards the
computation performed for the transaction and con-
tinues processing transactions as if the transac-
tion interrupted by the failure had never occurred.

When each site finishes its compute phase, it then
reports that it is ready to a site that has been
designated as the transaction coordinator for that
transaction by sending a ready message, and enters
the second (wait) phase. After the transaction
coordinator has received ready messages from all
sites involved in the transaction, it sends out
complete messages to all of those sites. If
messages are not promptly received by the coordlna-
tot, then the coordinator sends out abort messages
to all sites.

When a site receives a complete message, it
installs (makes current) all of the v~ues computed
for the results of the transaction, thus completing
the execution of the transaction. If a site
receives an abort message, it discards any computa-
tion done by the transaction, and continues pro-
cessing other transactions.

If neither a complete nor an abort message is
received by a slt~ pro----mptly afte{ e--n-6~ring the wait
phase, then that site knowa that some failure has
interfered with the completion of the transaction,
but does not know whether the eventual decision of
the coordinator will be to complete or to abort the
transaction. This decision is referred to as the
outcome of the transaction. When a site is uncer-

about the outcome of a transaction, it
installs polyvalues for the results of that tran-
saction.

Each such polyvalue is constructed as {<v,T>,
<v'~T>}, where v is the new value computed by the

transaction, v' is the previous value, and T is a
transaction identifier for the transaction. This
polyvalue indicates that if T is completed, then v
is the correct value, otherwise v' is correct.
Before installation, polyvalues are simplified by:

i. Expanding any pair <v,c>, where v is a
polyvalue to a set of pairs <vi, ciAc> where
<v., c.> are the pairs in v Thls eliminates

i . 1
nestlng of polyvalues whlch can occur when
polyvalues are updated with polyvalues.

2. Combining any two pairs <v I ,Cl> and <v2,c_>
where v I = v to fo~m a single pa~r
<v I, ClVC2>. Thi~ type of simplification
occurs wnen the same value is computed under
two sets of conditions.

3. Reducing each predicate to sum-of-products
form, and discarding any pair <v,c> for which
c is logically false.

The simplification procedure insures that all of
the polyvalues in the database have a minimal
number of pairs, each pair with a simple value.

Figure 1 showa a state diagram for this simple pro-
tocol. Each site can be in one of three states:
idle, compute, or wait. In the idle state, a site
is re~'y to begin a new transac--~n and enter the
compute state. In the compute state, a site com-
putes the results of a transaction. If those
results are promptly computed, the site enters the
wait state, sending a ready message to the transac-

coordinator. If the results cannot be
promptly computed due to a failure, or if the site
receives an abort message, the site moves from the
compute state to the idle state, discarding any
computation done by the transaction. From the wait
state the site can return to the idle state in one
of three ways. If the site receives a complete or
abort message from the coordinator, the sl-~ther
Tn~talls or discards the results of the transac-
tion, and returns to the idle state. If neither
message is promptly received, the site installs
polyvalues for the items updated by the transaction
and returns to the idle state.

3.2 Transactions that Access Polyvalues

A polyvalue describes the possible values of an
item whose correct exact value is not known, due to
a failure. Such items may participate in transac-
tions. A transaction that accesses an item with a
polyvalue becomes a polytransaction. The compute
phase of a polytransaction differs from a transac-
tion that operates only on simple values, in that a
polytransaction must compute new values based on
polyval ued inputs.

Each polytransaction T consists of a set of alter-
native transactions {T }, each of which performs
the transaction T on a different database state.
Each alternative transaction T is tagged with a
condition, c, which is derived from the conditions
on the input values read by T . 14nenever a tran-

• . C
saction begins executlon, it has a single alterna-
tive T. . When an alternative transaction T
accesse~r~n item with a polyvalue {<v.,c.>}, T i c

• 1 1 partitioned into a set of alternatlve transac~lons
{TcAci}. TcAci has the same execution history as

145

~ , and accesses the value vi for the item with the lyval ue.

For each item updated by T, a pelyvalue is con-
structed as {<vl,cl>, ..., <vn,cn>} %here vi is the
value computed by alternative transaction T., or
is the previous value of the item if tran~ction
T i does not compute a new value for the item.
T~is polyvalue is simplified and installed accord-
ing to the protocol for the wait phase of T as
described above. The wait phase of a pelytransac-
tion does not begin until all of the alternative
transactions have finished computation.

The rules for evolving the conditions on the alter-
native transactions insure that the conditions on
the alternative transactions, and therefore the
conditions in the pelyvalues produced by T, will be
complete and disjoint. Substantial improvements
can be made in the efficiency of the computation
performed by polytransactions, by recognizing
alternatives T for which c is logically false.

c .
Any such alternatlve transaction can be discarded,
as its results can never contribute to the values
assigned to items by T. One can also recognize
cases where the actual value of an item accessed by
a transaction does not affect the computation per-
fomed by the transaction, and thus need not cause
partitioning.

This mechanism allows computation by transactions
to proceed in a database where the exact values of
the items may not be known, due to the updates that
may be made by transactions that have been
suspended by failures. The transactions propagate
the uncertainty in the values in the database by
computing polyvalues as outputs. Any transaction
whose outputs do not depend on the exact correct
value of a pelyvalued input item produces simple
values and thus does not propagate uncertainty.

3.3 Failure Recovery

When a failure that has interrupted the wait phase
of some transaction is recovered, the sites
involved in that transaction can complete the wait
phase, deciding whether to complete or abort the
transaction. This knowledge can be used to reduce
the polyvalues that depend on the outcome of the
transaction. The value of the transaction identif-
ier for such a transaction can be replaced by true
or false in the predicates in the polyvalues,
depen--n-~g on whether the transaction is completed
or aborted, respectively. The polyvalues can then
be simplified, and when the outcome of every tran-
saction is known, a single value pair will be left
in each polyvalue, eliminating all uncertainty from
the database.

Because of the propagation of polyvalues by
pe lytransactions, the sites that may hold
polyvalues dependent on the outcome of a transac-
tion T, are not limited to the sites involved in T.

Each site with a polyvalue dependent on the outcome
of a transection T must be informed of that out-
come, and any data structures used to keep track of
the transaction outcome should be quickly deleted
when no longer needed. The responsibility for
informing the sites with polyvalues dependent on T
of the outcome of T among those sites can be

distributed among the sites. Each site maintains a
table recording, for each transaction T whose out-
come is unknown a list of the polyvalues held by
the site that depend on T, and a list of other
sites to which polyvalues dependent on T have been
sent. When a site learns the outcome of a transac-
tion T, it can reduce the polyvalues that it holds
that are dependent on the outcome of T, by consult-
ing the table. The site must inform all of the
sites listed in its table entry for T. Once this
is done, that site can forget the outcome of T and
the table entry for T. This scheme quickly elim-
inates the polyvalues dependent on T from the data-
base. The data structures used in the mechanism
are also quickly removed.

3.4 External outputs of a system using polyvalues

The preceding sections have dealt with the mechan-
isms for maintaining the internal state of the
database during a failure. The effect of a failure
on a database using polyvalues is to introduce
uncertainty into the values maintained for the
database items. This uncertainty may or may not be
reflected in the outputs produced by the system.
For many applications, such as authorizing reserva-
tions or credit transactions, the outputs of the
database visible to the users do not depend on the
exact values of the data, so that uncertainty in
the values may not be reflected in the outputs of
the database system.

When uncertainty is reflected in the outputs of the
database system, two options are available:
present the uncertain outputs to the user, or with-
hold those outputs until the uncertainty is
resolved. For many applications, presenting uncer-
tain outputs to the user would be appropriate.
Most of the time, a ticket agent would not be both-
ered by an uncertain answer to a request for the
number of seats remaining on a flight. For some
applications, such as those requiring a yes or no
answer, uncertain outputs are useless. Both
choices (waiting, or presenting the uncertain out-
puts) , are available in a system using polyvalues
whereas without polyvalues, one must wait for the
failure to be recovered.

4. ANALYSIS OF THE POLYVALUE MECHANISM

The polyvalue mechanism presented in the previous
section allows transactions to be performed on data
items that were involved in a transaction suspended
by a failure, at the cost of additional storage and
processing in performing transactions. One concern
in using this scheme is that the number of items
with polyvalues, and thus the number of polytran-
sactions, will become large and expensive. This
section presents an analysis of the expected number
of polyvalues in a database using this mechanism,
end a simulation of a database using the polyvalue
mechanism.

4.1 A Model for Polyvalue Creation and Deletion

We can express the net rate at which polyvalues in
the database are created as the rate at which new
polyvalues are created by failures, plus the rate
at which they are created by polytransactions, less
the rate at which failure recovery eliminates

146

polyvalues, less the rate at which transactions
overwrite polyvalues for items by updating those
items with simple values. These can in turn be
expressed in terms of the following parameters of
the database.

I The number of items in the database.

P(t) The number of items with polyvalues at time t.

U The number of updates made per second.

F The probability that an update will fail.

R The proportion of failures recovered each
second.

D The average number of items on which the new
value assigned to an updated item depends.

Y The probability that the new value of an
updated item will not depend on its previous
value.

The expected rate of change of the number of
polyvaluas in the database can be expressed using
these parameters. The model presented here is a
first order model in that the term (l-p(t)/I) has
been replaced by 1 in all of the equations. This
model is valid, so long as the proportion of items
with polyvalues remains small, and greatly simpli-
fies the mathematics.

P(t) P(t)
P'(t)=UF + UD ~ - UY -~- R P(t)

Solving this simple linear differential equation
yields:

UFI • IR+UY-UD.
P(t)-IR+UY_UD + C e - (~) t

The number of polyvalues can be expected to
approach a constant, P = (UFI)/(IR+UY-UD), as time
progresses. This is the number of polyvalues that
we would expect to find in the database, averaged
over a long period of time, provided that the
parameters accurately describe the operation of the
database.

Two points about this solution should be noted.
First, it is stable in that if the number of
polyvalues temporarily becomes larger than the
predicted (steady-state) number, then the number of
polyvalues can be expected to decrease with time.
A serious failure causing the introduction of many
polyvalues does not cause the number of polyvalues
to grow without limit.

A second point is that this solution is only valid
when the number of polyvalues is small compared to
the number of database items. When this condition
is not met, the approximations made invalidate the
solution. For our purposes, this solution is ade-
quate, as we would not want to operate a system
with parameters such that the number of items with
polyvalues becomes significant compared to the
total number of items. Thus the fact that the
equations predict a very large number of polyvalues
for some paraneter values suggests that one would
not wish to operate a database with such values,
but does not accurately predict the number of
poolyvalues that would result.

The predicted number of polyvalues for some partic-
ular values of the parameters is given in Table i.
The parameters for the first table entry were
chosen to reflect a typical database to which
polyvalues may be applied. The remaining table
entries show how varying each of the parameters
individually effects the predicted number of
polyvalues. Space limitations in this paper prevent
a thorough exploration of the parameter space, how-
ever the individual effects of the parameters can
be clearly seen from the equations and the data.

4.2 Simulation of the Polyvalue Mechanism

In order to gain confidence that the model accu-
rately describes the behavior of the system, and to
discover the behavior of the system when the number
of polyvalues is large, a simulation of a database
system using polyvalues was performed.

The simulation maintained a description of the
items of the database having polyvalues, and the
transactions on which those items depended. Tran-
sactions ware introduced at a rate U. Each tran-
saction updated a single item chosen at random from
the database. This update depended on a set of d
items, also selected at random, where d was chosen
from an exponential distribution with mean D. The
previous value of the updated item was included in
its new value with probability (l-Y).

For the results reported here, a uniform distribu-
tion was used for the random selections of items
from the database. In a real system, the selection
of items to participate in transactions is not
likely to be uniform. Some items may participate
in transactions much more frequently than others.
This has the effect of reducing the effective size
of the database.

Transactions were chosen to fail with probability
F. For a failed transaction, a polyvalue was
created for the item that it updated and a recovery
time was chosen from an exponential distribution
with a mean value of I/R. As noted above, each
item with a polyvalue is tagged with the identity
of all transactions on which the polyvalue depends.
When a failure is recovered, the tag for the
recovered transaction is removed from all
polyvalues, and any polyvalue with no remaining
tags is converted to a simple value.

The number of polyvalues for a particular set of
parameters can be obtained by running the simula-
tion with that set of parameters until the number
of polyvalues has remained stable for some time,
and then taking the average number of polyvalues in
the database during such a stable period. The
implementation of the simulation restricted the
range of the parameters for which simulations can
be performed to relatively small databases. Table
2 reports the results of several simulation runs
with different sets of parameters. The results
agree well with the predictions of the model in the
area where the number of polyvalues is small. The
number of polyvalues obtained in the simulation is
in general smaller than predicted. This is a
result of the approximations made in obtaining the
prediction.

147

This model and simulation demonstrate that the
number of polyvalues in the database is expected to
be small for reasonable failure rates and recovery
times. Thus the cost of the computation and
storage to support polyvalues should remain rela-
tively small.

5. POSSIBLE APPLICATIONS FOR POLYVALUES

The polyvalue mechanism is best suited to applica-
tions where rapid processing of some transactions
is essential, and %here the most important results
depend only loosely on the values of the data items
in the database. If this is the case, the impor-
tant transactions will frequently produce simple
output values, even when the database contains
polyvalues. There are many such applications now
planned for distributed information systems.

Electronic funds transfer or credit authorization
are good examples. Tne important transactions in
such a system are those that authorize transfers of
"real" money or goods, such as transactions to cash
checks or authorize credit purchases. To satisfy
customers, such transactions must be performed
promptly, even if failures in the database system
have interfered with other transactions. Such
transactions depend very loosely on the state of
the database in that the important effect (distri-
bution of funds or goods) depends only on the fact
that the relevant accounts contain enough funds,
not on exactly how much. Such a system can
tolerate much uncertainty in the database, so long
as the uncertainty is eventually resolved when
failures are recovered.

Another example is a reservations system. In this
case, the important transactions and effects are
the granting of reservations to customers. This
can frequently be done without knowing the total
number of such reservations granted. If the number
of reservations granted is a polyvalue, then a new
reservation can be granted so long as the largest
value in that polyvalue is less than the number of
available rooms or seats. This will be discovered
when the reservation-granting transaction is run as
a polytransaction: All alternative transactions of
such a polytransaction will decide to grant the
reservation.

Such applications as inventory or process control
also seem ideal candidates for the polyvalue
mechanism. Again, real time operation is impor-
tant; however, the exact values of the items in the
database are frequently not needed for the impor-
tant real time effects.

6. C(3NCLUSIONS

The polyvalue mechanism presented in this paper is
an effective solution to the problems presented by
the need to make atomic t~odates to distributed data
without disrupting the processing of transactions
by the system if a failure delays such an update.
The mechanism appears to have many applications in
currently planned uses of distributed information
systems.

The polyvalue mechanism can be combined with other
atomic distributed update protocols to decrease the
chance that polyvalues will be created. The
mechanism as presented uses the two-phase commit
protocol of Gray [3], but is compatible with other
such schemes, such as the protocol of Lampson and
Sturgis [4], or that of Reed [6].

Analysis and simulation have shown that the extra
storage and processing required to support this
mechanism are small, given reasonable failure rates
and repair times.

ACKNOWLEDGEMENTS

I would like to thank the members of the Computer
Systems Research group of the M.I.T. Laboratory for
Computer Science for their support during the
research that lead to this paper. I would like to
thank my wife, Carla, who suggested the term
"polyvalue", and improved the expression of many of
the ideas presented in the paper. I would also
like to thank the reviewers for their suggestions,
which substantially improved the final content of
the paper.

REFERENCES

[i] Akkoyunlu, E. S, Ekandham, K., Huber, R.V.,
"Some constraints and tradeoffs in the design
of network commtnications", Proc. Fifth
S~mpesit~n on Operating Systems Principles,
(November 1975) (Operating Systems Review,
Vol. 9, No. 5).

[2] Bernstein, P.A., Shipman, D.W., Rothnie,
J.B., and Goodman, N., "The concurrency con-
trol mechanism of SDD-I: A system for distri-
buted databases (The general case)", Computer
Corporation of America Technical Report CCA-
77-09, (December 1977).

[3] Gray, J.N., "Notes on data base operating
systems", in Operating Systems, A__nn Advanced
Course, in Volume 60 of Lecture Notes in

~ r Science, Springer~ (1978) pp.

[4] Lampson, B., and Sturgis, H., "Crash recovery
in a distributed data storage system", Xerox
Palo Alto Research Center, (To appear in
co,m. ACM).

[5] Montgomery, W. A., Robust concurrency control
for a distributed information system", M.I.T.
Laboratory for Computer Science Technical
Report 207 (December 1978).

[6] Reed, D. P., "Naming and synchronization in a
decentralized computer system, M.I.T. Labora-
tory for Computer Science Technical Report
205", (September, 1978).

[7] Thomas, R.H., "A solution to the update prob-
lem for multiple copy data bases which used
distributed control", Bolt Beranek and Newnan
Inc. Technical Report No. 3340 (July 1976).

148

- 1 -

Figure i: The Update Protocol States

Begin . f ~ Receive comple___ t_e

Transact io~// / ~Receivlrabor t

/ / .
/ //~e ce ive abort k "

i0
i00
i0
i0
i0
i0
i0
i0
i0
i0
i0

Table 1

Typical Predictions of the Number of Polyvalues in a Database

Parameters (see text) Expected Number of Polyvalues

F I R Y D P

0.0001 1,000,000 0.001 0 1 1.01
0.0001 1,000,000 0.001 0 1 ii.ii
0.0001 100,000 0.001 0 1 i.ii
0.0001 100,000 0.001 0 5 2.00
0.0001 i00,000 0.001 0 7 3.33
0.0001 100,000 0.001 1 1 1.00
0.0001 20,000 0.001 0 1 2.00
0.0001 11,000 0.001 0 1 11.00
0.001 1,000,000 0.001 0 1 10.10
0.005 1,000,000 0.001 0 1 50.50

0.0001 1,000,000 0.0001 0 1 11.00

Table 2

Results of Simulating the Polyvalue Mechanism

Parameters (see text) Predicted Actual

U F I R Y D P

2 0.01 i0,000 0.01 0 1 2.04
5 0.01 i0,000 0.01 0 1 5.26

i0 0.01 i0,000 0.01 0 1 ii.ii
i0 0.001 i0,000 0.01 0 1 i.ii
i0 0.01 I0,000 0.01 0 5 20
10 0.01 10,000 0.01 1 5 16.7

2.00
2.71
9.5

0.74
19.8
15.8

149

