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ABSTRACT 

The coordination of atomic updates to distributed data is a difficult problem in the design of a distributed 
information system. A common goal for solutions to this problem is that the failure of a site should not 
prevent any processing that does not require the data stored at that site. While this goal has been shown 
to be impossible to achieve all of the time, several approaches have been developed that perform atomic 
updates such that most site failures do not affect processing at other sites. This paper presents another 
such approach, one that provides a mechanism bywhich processing can proceed even if a failure occurs during 
a critical moment in an atomic update. 

The solution presented is based on the notion of maintaining several potential current values (a polyvalue) 
for each database item ~hose exact value is not known, due to failures interrupting atomic updates. A 
polyvalue represents the possible set of values that an item could have, depending on the outcome of tran- 
sactions that have been delayed by failures. Transactions may operate on polyvalues, and in many cases a 
polyvalue may provide sufficient information to allow the results of a transaction to be computed, even 
though the polyvalue does not specify an exact value. An analysis and simulation of the polyvaluemechanism 
shows that the mechanism is suitable for databases with reasonable failure rates and recovery times. The 
polyvalue mechanism is most useful ~4nere prompt processing is essential, but the results that must be pro- 
duced promptly depend only loosely on the database state. Many applications, such as electronic funds 
transfer, reservations, and process control, have these characteristics. 

1. INTRODUCTI(3N 

Many factors currently favor the distribution of 
data storage and processing among sites in a dis- 
tributed information system. These factors include 
greater reliability, better administrative control, 
faster response, and economics. 

In order to realize fully the advantages of a dis- 
tributed system, that system must be constructed so 
as to allow it to function as a whole, yet allow 
the individual sites to retain autonomy. By 
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autonomy, I mean that the storage and processing at 
each site can be individually controlled, and that 
each site is capable of independent operation if it 
is separated from the rest. 

The processing operations in a distributed informa- 
tion system are known as transactions. Several 
transactions may be performed concurrently in a 
distributed information system. A difficult prob- 
lem in meeting the above goals for a distributed 
information system is the coordination of con- 
current transactions so that concurrent execution 
does not produce results that could not be achieved 
by performing all processing serially. This coor- 
dination allows the user to view the distributed 
systsm as a large fast machine that processes his 
transactions serially, which frees the user from 
the need to worry about possible interactions among 
concurrent transactions. 

In order to take advantage of the independence of 
failures of individual sites in a distributed sys- 
tem, and to allow for the autonomy of individual 
sites, the transaction coordination mechanism must 
allow a transaction to be performed promptly when- 
aver the sites that hold the data items accessed by 
that transaction are functioning and can commtmi- 
care. In other words, the failure of a site should 
not indefinitely delay any transaction that does 
not access data stored at that site. A simpler 
condition that follows from that above is that no 
transaction that is entirely local to one site 
should be delayed indefinitely by the failure of 
some other site. 
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A great deal of recent research has addressed the 
problem of transaction coordination; specifically, 
coordination of updates made by the transactions to 
the distributed data. Several papers [1,3,5] have 
presented arguments to demonstrate that there can 
be no protocol that implements atomic updates to 
distributed data in such a way that a failure of 
some site does not postpone updates that do not 
involve da£a at that site. These arguments basi- 
cally show that if a failure disrupts cammtnication 
anong sites during an update, there is no way to 
determine which of the sites have completed the 
update and which have not. Thus one cannot assume 
that a site with which carmunication has failed has 
or has not completed the update, and one must in 
general wait until communication with that site is 
restored before proceeding. 

2. APPROACHES TO DISTRIBUTED UPDATES 

Given that one cannot have an update mechanism that 
meets the desired goals of atomic transactions and 
independent operation of the sites, we must take an 
"engineering approach" to the problem, one that 
meets these goals most of the time. Several such 
approaches are possible. These can be used indivi- 
dually or in various combinations in designing a 
mechanism to coordinate transactions in a distri- 
buted information system. 

2.1 Lock Avoidance 

One approach that has been used is to structure the 
implementation of the transactions such that it 
avoids the need to make atomic updates wherever 
possible. This can be done by pre-analyzing the 
transactions to be performed to determine whether 
or not they require an atomic update. This 
approach was used in [2] and [5]. 

2.2 Window Minimization 

A second, widely used approach is to structure the 
update algorithm such that the time period during 
which a failure could cause delay due to the need 
to synchronize transactions is small. This 
approach is used in the update protocols of Gray 
[3], Lampson and Sturgis [4], and Reed [6]. Basi- 
cally, these protocols are structured so that all 
of the results of a transaction are computed before 
any updates are made. Then, a simple set of mes- 
sage exchanges is used to decide whether or not to 
carry out the updates, based on whether all sites 
finished the computation promptly. If a failure 
occurs during the presumably much longer computa- 
tion part of the protocol, the transaction can be 
aborted and no updates will be made. 

Another example of this approach is given by 
Thomas' s algorithm for synchronizing updates to 
distributed data [7]. This algorithm uses a com- 
plicated voting protocol to decide when to install 
the results of the transactions. ~ile the voting 
may take place over an extended period of time, the 
window in which a site failure may leave the func- 
tioning sites in doubt as to whether or not to com- 
plete the transaction is small. 

2.3 Relaxed Consistency 

A third approach is to have each site that is 
involved in a transaction when a failure occurs 
make an arbitrary decision as to whether to com- 
plete or abort the transaction. This introduces the 
possibility that a transaction may be performed 
incorrectly (some but not all of the updates per- 
formed) if a failure occurs at a critical moment. 
Each site can, however, continue processing and 
need not wait for failure recovery to proceed. 
Because correctness is more important than timeli- 
ness for most applications, this approach has not 
been widely used. 

2.4 Polyvalues 

A fourth approach, extensively described in the 
remainder of this paper, is based on the notion of 
maintaining two or more possible current values for 
the items involved in an update interrupted by a 
failure. If both new and old values are known for 
those items, frequently that information is suffi- 
cient to allow processing of those items by subse- 
quent transactions. The polyvalue scheme described 
in the following section is a generalization of 
this notion to allow continued transaction process- 
ing by sites involved in a transaction interrupted 
by a failure. 

3. THE POLYVALUE MECHANISM 

Tne following terms will be used in discussing the 
polyvalue mechanism for distributed updates: 

• A database is a set of data items. 

A database state corresponds to an assignment 
of a ~tl~r value for each item in the 
database. 

A transaction is a mapping from one database 
state to another database state. 

In a distributed database, each item is stored at 
one of the sites. (An item that is replicated at 
several sites can be viewed as a set of individual 
items, one for each site.) Each transaction 
involves directly only those sites that hold the 
data items accessed by the transaction (the items 
whose values are changed by the transaction, and 
those needed to compute the changes made by the 
transaction). 

This provides an adequate framework for discussing 
the problem of coordinating transactions. The con- 
straint that transactions be atomic can now be 
expressed as meaning that the database state 
reached by an execution of a set of transactions 
must be the same as that reached by some serial 
execution of the transactions, in which one tran- 
saction is completed before the next is begun. 

Polyvalues are a simple extension to this model 
that allow each item to have several possible 
current values. The polyvalue mechanism specifies 
how transactions act on such items. 

A polyvalue is a bookkeeping tool for keeping more 
than one value for an item. A polyvalue is a set 
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of pairs <v,c>, where v is a simple value, and c is 
a condition which is a predicate. The variables in 
a condition stand for transactions, and are known 
as transaction identifiers. For example, the con- 
dition T1 (T2 T3) would be true if T1 and at least 
one of T2 and T3 were comple--t-~. The value of c in 
the pair <v,c> indicates the condition under which 
v is the correct value represented by the 
polyvalue. The conditions on the pairs in each 
polyvalue must be complete and disjoint. (One and 
only one of the predicates must be true under any 
assignment of truth values to the transaction iden- 
tifiers). 

There are two circumstances that cause an item to 
be updated with a polyvalue. A polyvalue is 
assigned to an item if a failure delays a transac- 
tion that is updating that item, or a polyvalue may 
be produced as one of the results of a transaction 
that accesses an item that has a polyvalue. These 
circumstances are explained in the next two sec- 
tions. 

3.1 The Update Protocol 

Transactions are performed with a two-phase proto- 
col [3]. In the first (compute) phase, each site 
computes the new values (updates) for the items 
that it holds that are specified by the execution 
of the transaction. If a failure delays the com- 
pletion of the compute phase of a transaction at 
some site (by preventing c~mnunication with some 
other site) , then that site simply discards the 
computation performed for the transaction and con- 
tinues processing transactions as if the transac- 
tion interrupted by the failure had never occurred. 

When each site finishes its compute phase, it then 
reports that it is ready to a site that has been 
designated as the transaction coordinator for that 
transaction by sending a ready message, and enters 
the second (wait) phase. After the transaction 
coordinator has received ready messages from all 
sites involved in the transaction, it sends out 
complete messages to all of those sites. If 
messages are not promptly received by the coordlna- 
tot, then the coordinator sends out abort messages 
to all sites. 

When a site receives a complete message, it 
installs (makes current) all of the v~ues computed 
for the results of the transaction, thus completing 
the execution of the transaction. If a site 
receives an abort message, it discards any computa- 
tion done by the transaction, and continues pro- 
cessing other transactions. 

If neither a complete nor an abort message is 
received by a slt~ pro----mptly afte{ e--n-6~ring the wait 
phase, then that site knowa that some failure has 
interfered with the completion of the transaction, 
but does not know whether the eventual decision of 
the coordinator will be to complete or to abort the 
transaction. This decision is referred to as the 
outcome of the transaction. When a site is uncer- 

about the outcome of a transaction, it 
installs polyvalues for the results of that tran- 
saction. 

Each such polyvalue is constructed as {<v,T>, 
<v'~T>}, where v is the new value computed by the 

transaction, v' is the previous value, and T is a 
transaction identifier for the transaction. This 
polyvalue indicates that if T is completed, then v 
is the correct value, otherwise v' is correct. 
Before installation, polyvalues are simplified by: 

i. Expanding any pair <v,c>, where v is a 
polyvalue to a set of pairs <vi, ciAc> where 
<v., c.> are the pairs in v Thls eliminates 

i . 1 
nestlng of polyvalues whlch can occur when 
polyvalues are updated with polyvalues. 

2. Combining any two pairs <v I ,Cl> and <v2,c_> 
where v I = v to fo~m a single pa~r 
<v I, ClVC2>. Thi~ type of simplification 
occurs wnen the same value is computed under 
two sets of conditions. 

3. Reducing each predicate to sum-of-products 
form, and discarding any pair <v,c> for which 
c is logically false. 

The simplification procedure insures that all of 
the polyvalues in the database have a minimal 
number of pairs, each pair with a simple value. 

Figure 1 showa a state diagram for this simple pro- 
tocol. Each site can be in one of three states: 
idle, compute, or wait. In the idle state, a site 
is re~'y to begin a new transac--~n and enter the 
compute state. In the compute state, a site com- 
putes the results of a transaction. If those 
results are promptly computed, the site enters the 
wait state, sending a ready message to the transac- 

coordinator. If the results cannot be 
promptly computed due to a failure, or if the site 
receives an abort message, the site moves from the 
compute state to the idle state, discarding any 
computation done by the transaction. From the wait 
state the site can return to the idle state in one 
of three ways. If the site receives a complete or 
abort message from the coordinator, the sl-~ther 
Tn~talls or discards the results of the transac- 
tion, and returns to the idle state. If neither 
message is promptly received, the site installs 
polyvalues for the items updated by the transaction 
and returns to the idle state. 

3.2 Transactions that Access Polyvalues 

A polyvalue describes the possible values of an 
item whose correct exact value is not known, due to 
a failure. Such items may participate in transac- 
tions. A transaction that accesses an item with a 
polyvalue becomes a polytransaction. The compute 
phase of a polytransaction differs from a transac- 
tion that operates only on simple values, in that a 
polytransaction must compute new values based on 
polyval ued inputs. 

Each polytransaction T consists of a set of alter- 
native transactions {T }, each of which performs 
the transaction T on a different database state. 
Each alternative transaction T is tagged with a 
condition, c, which is derived from the conditions 
on the input values read by T . 14nenever a tran- 

• . C 
saction begins executlon, it has a single alterna- 
tive T. . When an alternative transaction T 
accesse~r~n item with a polyvalue {<v.,c.>}, T i c 

• 1 1 partitioned into a set of alternatlve transac~lons 
{TcAci}. TcAci has the same execution history as 
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~ , and accesses the value vi for the item with the lyval ue. 

For each item updated by T, a pelyvalue is con- 
structed as {<vl,cl>, ..., <vn,cn>} %here vi is the 
value computed by alternative transaction T., or 
is the previous value of the item if tran~ction 
T i does not compute a new value for the item. 
T~is polyvalue is simplified and installed accord- 
ing to the protocol for the wait phase of T as 
described above. The wait phase of a pelytransac- 
tion does not begin until all of the alternative 
transactions have finished computation. 

The rules for evolving the conditions on the alter- 
native transactions insure that the conditions on 
the alternative transactions, and therefore the 
conditions in the pelyvalues produced by T, will be 
complete and disjoint. Substantial improvements 
can be made in the efficiency of the computation 
performed by polytransactions, by recognizing 
alternatives T for which c is logically false. 

c . 
Any such alternatlve transaction can be discarded, 
as its results can never contribute to the values 
assigned to items by T. One can also recognize 
cases where the actual value of an item accessed by 
a transaction does not affect the computation per- 
fomed by the transaction, and thus need not cause 
partitioning. 

This mechanism allows computation by transactions 
to proceed in a database where the exact values of 
the items may not be known, due to the updates that 
may be made by transactions that have been 
suspended by failures. The transactions propagate 
the uncertainty in the values in the database by 
computing polyvalues as outputs. Any transaction 
whose outputs do not depend on the exact correct 
value of a pelyvalued input item produces simple 
values and thus does not propagate uncertainty. 

3.3 Failure Recovery 

When a failure that has interrupted the wait phase 
of some transaction is recovered, the sites 
involved in that transaction can complete the wait 
phase, deciding whether to complete or abort the 
transaction. This knowledge can be used to reduce 
the polyvalues that depend on the outcome of the 
transaction. The value of the transaction identif- 
ier for such a transaction can be replaced by true 
or false in the predicates in the polyvalues, 
depen--n-~g on whether the transaction is completed 
or aborted, respectively. The polyvalues can then 
be simplified, and when the outcome of every tran- 
saction is known, a single value pair will be left 
in each polyvalue, eliminating all uncertainty from 
the database. 

Because of the propagation of polyvalues by 
pe lytransactions, the sites that may hold 
polyvalues dependent on the outcome of a transac- 
tion T, are not limited to the sites involved in T. 

Each site with a polyvalue dependent on the outcome 
of a transection T must be informed of that out- 
come, and any data structures used to keep track of 
the transaction outcome should be quickly deleted 
when no longer needed. The responsibility for 
informing the sites with polyvalues dependent on T 
of the outcome of T among those sites can be 

distributed among the sites. Each site maintains a 
table recording, for each transaction T whose out- 
come is unknown a list of the polyvalues held by 
the site that depend on T, and a list of other 
sites to which polyvalues dependent on T have been 
sent. When a site learns the outcome of a transac- 
tion T, it can reduce the polyvalues that it holds 
that are dependent on the outcome of T, by consult- 
ing the table. The site must inform all of the 
sites listed in its table entry for T. Once this 
is done, that site can forget the outcome of T and 
the table entry for T. This scheme quickly elim- 
inates the polyvalues dependent on T from the data- 
base. The data structures used in the mechanism 
are also quickly removed. 

3.4 External outputs of a system using polyvalues 

The preceding sections have dealt with the mechan- 
isms for maintaining the internal state of the 
database during a failure. The effect of a failure 
on a database using polyvalues is to introduce 
uncertainty into the values maintained for the 
database items. This uncertainty may or may not be 
reflected in the outputs produced by the system. 
For many applications, such as authorizing reserva- 
tions or credit transactions, the outputs of the 
database visible to the users do not depend on the 
exact values of the data, so that uncertainty in 
the values may not be reflected in the outputs of 
the database system. 

When uncertainty is reflected in the outputs of the 
database system, two options are available: 
present the uncertain outputs to the user, or with- 
hold those outputs until the uncertainty is 
resolved. For many applications, presenting uncer- 
tain outputs to the user would be appropriate. 
Most of the time, a ticket agent would not be both- 
ered by an uncertain answer to a request for the 
number of seats remaining on a flight. For some 
applications, such as those requiring a yes or no 
answer, uncertain outputs are useless. Both 
choices (waiting, or presenting the uncertain out- 
puts) , are available in a system using polyvalues 
whereas without polyvalues, one must wait for the 
failure to be recovered. 

4. ANALYSIS OF THE POLYVALUE MECHANISM 

The polyvalue mechanism presented in the previous 
section allows transactions to be performed on data 
items that were involved in a transaction suspended 
by a failure, at the cost of additional storage and 
processing in performing transactions. One concern 
in using this scheme is that the number of items 
with polyvalues, and thus the number of polytran- 
sactions, will become large and expensive. This 
section presents an analysis of the expected number 
of polyvalues in a database using this mechanism, 
end a simulation of a database using the polyvalue 
mechanism. 

4.1 A Model for Polyvalue Creation and Deletion 

We can express the net rate at which polyvalues in 
the database are created as the rate at which new 
polyvalues are created by failures, plus the rate 
at which they are created by polytransactions, less 
the rate at which failure recovery eliminates 
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polyvalues, less the rate at which transactions 
overwrite polyvalues for items by updating those 
items with simple values. These can in turn be 
expressed in terms of the following parameters of 
the database. 

I The number of items in the database. 

P(t) The number of items with polyvalues at time t. 

U The number of updates made per second. 

F The probability that an update will fail. 

R The proportion of failures recovered each 
second. 

D The average number of items on which the new 
value assigned to an updated item depends. 

Y The probability that the new value of an 
updated item will not depend on its previous 
value. 

The expected rate of change of the number of 
polyvaluas in the database can be expressed using 
these parameters. The model presented here is a 
first order model in that the term (l-p(t)/I) has 
been replaced by 1 in all of the equations. This 
model is valid, so long as the proportion of items 
with polyvalues remains small, and greatly simpli- 
fies the mathematics. 

P(t) P(t) 
P'(t)=UF + UD ~ - UY -~- R P(t) 

Solving this simple linear differential equation 
yields: 

UFI • IR+UY-UD. 
P(t)-IR+UY_UD + C e - ( ~  ) t 

The number of polyvalues can be expected to 
approach a constant, P = (UFI)/(IR+UY-UD), as time 
progresses. This is the number of polyvalues that 
we would expect to find in the database, averaged 
over a long period of time, provided that the 
parameters accurately describe the operation of the 
database. 

Two points about this solution should be noted. 
First, it is stable in that if the number of 
polyvalues temporarily becomes larger than the 
predicted (steady-state) number, then the number of 
polyvalues can be expected to decrease with time. 
A serious failure causing the introduction of many 
polyvalues does not cause the number of polyvalues 
to grow without limit. 

A second point is that this solution is only valid 
when the number of polyvalues is small compared to 
the number of database items. When this condition 
is not met, the approximations made invalidate the 
solution. For our purposes, this solution is ade- 
quate, as we would not want to operate a system 
with parameters such that the number of items with 
polyvalues becomes significant compared to the 
total number of items. Thus the fact that the 
equations predict a very large number of polyvalues 
for some paraneter values suggests that one would 
not wish to operate a database with such values, 
but does not accurately predict the number of 
poolyvalues that would result. 

The predicted number of polyvalues for some partic- 
ular values of the parameters is given in Table i. 
The parameters for the first table entry were 
chosen to reflect a typical database to which 
polyvalues may be applied. The remaining table 
entries show how varying each of the parameters 
individually effects the predicted number of 
polyvalues. Space limitations in this paper prevent 
a thorough exploration of the parameter space, how- 
ever the individual effects of the parameters can 
be clearly seen from the equations and the data. 

4.2 Simulation of the Polyvalue Mechanism 

In order to gain confidence that the model accu- 
rately describes the behavior of the system, and to 
discover the behavior of the system when the number 
of polyvalues is large, a simulation of a database 
system using polyvalues was performed. 

The simulation maintained a description of the 
items of the database having polyvalues, and the 
transactions on which those items depended. Tran- 
sactions ware introduced at a rate U. Each tran- 
saction updated a single item chosen at random from 
the database. This update depended on a set of d 
items, also selected at random, where d was chosen 
from an exponential distribution with mean D. The 
previous value of the updated item was included in 
its new value with probability (l-Y). 

For the results reported here, a uniform distribu- 
tion was used for the random selections of items 
from the database. In a real system, the selection 
of items to participate in transactions is not 
likely to be uniform. Some items may participate 
in transactions much more frequently than others. 
This has the effect of reducing the effective size 
of the database. 

Transactions were chosen to fail with probability 
F. For a failed transaction, a polyvalue was 
created for the item that it updated and a recovery 
time was chosen from an exponential distribution 
with a mean value of I/R. As noted above, each 
item with a polyvalue is tagged with the identity 
of all transactions on which the polyvalue depends. 
When a failure is recovered, the tag for the 
recovered transaction is removed from all 
polyvalues, and any polyvalue with no remaining 
tags is converted to a simple value. 

The number of polyvalues for a particular set of 
parameters can be obtained by running the simula- 
tion with that set of parameters until the number 
of polyvalues has remained stable for some time, 
and then taking the average number of polyvalues in 
the database during such a stable period. The 
implementation of the simulation restricted the 
range of the parameters for which simulations can 
be performed to relatively small databases. Table 
2 reports the results of several simulation runs 
with different sets of parameters. The results 
agree well with the predictions of the model in the 
area where the number of polyvalues is small. The 
number of polyvalues obtained in the simulation is 
in general smaller than predicted. This is a 
result of the approximations made in obtaining the 
prediction. 
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This model and simulation demonstrate that the 
number of polyvalues in the database is expected to 
be small for reasonable failure rates and recovery 
times. Thus the cost of the computation and 
storage to support polyvalues should remain rela- 
tively small. 

5. POSSIBLE APPLICATIONS FOR POLYVALUES 

The polyvalue mechanism is best suited to applica- 
tions where rapid processing of some transactions 
is essential, and %here the most important results 
depend only loosely on the values of the data items 
in the database. If this is the case, the impor- 
tant transactions will frequently produce simple 
output values, even when the database contains 
polyvalues. There are many such applications now 
planned for distributed information systems. 

Electronic funds transfer or credit authorization 
are good examples. Tne important transactions in 
such a system are those that authorize transfers of 
"real" money or goods, such as transactions to cash 
checks or authorize credit purchases. To satisfy 
customers, such transactions must be performed 
promptly, even if failures in the database system 
have interfered with other transactions. Such 
transactions depend very loosely on the state of 
the database in that the important effect (distri- 
bution of funds or goods) depends only on the fact 
that the relevant accounts contain enough funds, 
not on exactly how much. Such a system can 
tolerate much uncertainty in the database, so long 
as the uncertainty is eventually resolved when 
failures are recovered. 

Another example is a reservations system. In this 
case, the important transactions and effects are 
the granting of reservations to customers. This 
can frequently be done without knowing the total 
number of such reservations granted. If the number 
of reservations granted is a polyvalue, then a new 
reservation can be granted so long as the largest 
value in that polyvalue is less than the number of 
available rooms or seats. This will be discovered 
when the reservation-granting transaction is run as 
a polytransaction: All alternative transactions of 
such a polytransaction will decide to grant the 
reservation. 

Such applications as inventory or process control 
also seem ideal candidates for the polyvalue 
mechanism. Again, real time operation is impor- 
tant; however, the exact values of the items in the 
database are frequently not needed for the impor- 
tant real time effects. 

6. C(3NCLUSIONS 

The polyvalue mechanism presented in this paper is 
an effective solution to the problems presented by 
the need to make atomic t~odates to distributed data 
without disrupting the processing of transactions 
by the system if a failure delays such an update. 
The mechanism appears to have many applications in 
currently planned uses of distributed information 
systems. 

The polyvalue mechanism can be combined with other 
atomic distributed update protocols to decrease the 
chance that polyvalues will be created. The 
mechanism as presented uses the two-phase commit 
protocol of Gray [3], but is compatible with other 
such schemes, such as the protocol of Lampson and 
Sturgis [4], or that of Reed [6]. 

Analysis and simulation have shown that the extra 
storage and processing required to support this 
mechanism are small, given reasonable failure rates 
and repair times. 
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Figure i: The Update Protocol States 
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Table 1 

Typical Predictions of the Number of Polyvalues in a Database 

Parameters (see text) Expected Number of Polyvalues 

F I R Y D P 

0.0001 1,000,000 0.001 0 1 1.01 
0.0001 1,000,000 0.001 0 1 ii.ii 
0.0001 100,000 0.001 0 1 i.ii 
0.0001 100,000 0.001 0 5 2.00 
0.0001 i00,000 0.001 0 7 3.33 
0.0001 100,000 0.001 1 1 1.00 
0.0001 20,000 0.001 0 1 2.00 
0.0001 11,000 0.001 0 1 11.00 
0.001 1,000,000 0.001 0 1 10.10 
0.005 1,000,000 0.001 0 1 50.50 

0.0001 1,000,000 0.0001 0 1 11.00 

Table 2 

Results of Simulating the Polyvalue Mechanism 

Parameters (see text) Predicted Actual 

U F I R Y D P 

2 0.01 i0,000 0.01 0 1 2.04 
5 0.01 i0,000 0.01 0 1 5.26 

i0 0.01 i0,000 0.01 0 1 ii.ii 
i0 0.001 i0,000 0.01 0 1 i.ii 
i0 0.01 I0,000 0.01 0 5 20 
10 0.01 10,000 0.01 1 5 16.7 

2.00 
2.71 
9.5 

0.74 
19.8 
15.8 
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