
Generic Virtual Memory Management
for

Operating System Kernels *

Vadim Abrossimov, h/Iarc Rozier

Chorus systkmes’

Marc Shapiro
INRIA’

Abstract

We discuss the rationale and design of a Generic Mem-
ory management Interface, for a family of scalable op-
erating systems. It consists of a general interface for
managing virtual memory, independently of the un-
derlying hardware architecture (e.g. paged versus seg-
mented memory), and independently of the operating
syst.em kernel in which it is to be integrated. In par-
ticular, this iuterface provides abstractions for support
of a single, consistent cache for both mapped objects
and explicit I/O, and control of data caching in real
memory. Data management policies are delegated to
external managers.

A portable implementation of the Generic Mem-
ory management Interface for paged architectures, the
Paged Virtual Memory manager, is detailed. The PVM
uses the novel history object technique for efficient de-
ferred copying. The GM1 is used by the Chorus Nu-
cleus, in particular to support a distributed version of
Unix. Performance measurements compare favorably
with other systems.

1 Introduction

Memory management services and implementations are
generally highly dependent on the operating system.

*This work was supported in part by the European Commu-
nity under Esprit project 367 SOMIW.

‘Chorus systemes, 6, ave. Gustave EifTel, 78182 Saint-
Quentin-en-Yvelines Cedex, France

tINRIA, BP 105, 78153 Rocquencourt Cedex, France

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1989 ACM 089791-338-3/89/0012/0123 $1.50

Different classes of operating systems use different
cla.sses of memory management services:

In real-time executives, memory management ser-
vices are primitive. Most real-time operating sys-
tems do not exploit the hardware MMU. They are
just begimling to integrate the concept of protected
address spaces.

General-purpose operating systems, such as Unix’,
integrate virtual memory management services, al-
lowing protected address spaces to co-exist on a
limited hardware.

Sollle distributed operating systems support dis-
tributed virtual memory schemes such as [S]. Until
recently most were research projects (with the no-
table exception of the Apollo Domain [7]), some are
now becoming products, e.g. Mach [13] and Chorus
[15].

The Chorus” architecture is designed to support new
generations of open, distributed, scalable operating sys-
tems. It allows the integration of various families of op-
erating systems, ranging from small real-time systems
to general-purpose operating systems, in a single dis-
tributed environment.

The Chorus architecture is based on a minimal real-
time Nucleus that integrates distributed processing and
communication at the lowest level. Chorus opera.ting
systems are built as sets of independent system servers,
that rely on the basic, generic services provided by the
Nucleus, i.e. thread scheduling, network transparent
IPC, virtual memory management and real-time event
handling.

The Chorus Nucleus itself can be scaled to exploit a
wide rauge of hardware configurations, such as embed-
ded boards, multi-processor and multi-computer config-
urations, networked workstations and dedicated servers.

’ Unis is a registered trademark of AT&T
2Chorus is a registered trademark of Chorus systemes

123

Operating systems currently implemented on top of
this Nucleus are, for instance, Chorus/MIX, a Unix Sys-
tem V compatible distributed real-time system [6, 21,
and PCTE [lo]. W or is currently in progress toI imple- k
ment object-oriented distributed systems [lG, 91.

The design of the right memory management service
was a delicate task, due to the multiple purposes of
the Chorus Nucleus. The memory management service
must be a replaceable unit, independent from the other
Nucleus pieces. Therefore, we defined the “Generic
Memory management Interface” (GMT). The GM1 is
suitable for various architectures (e.g. paged and/or
segmented) and implementation schemes; it is scalable,
and kernel-independent. We present in detail the archi-
tecture of the PVM, a demand-paged virtual memory
implementation of the GMI. The PVM uses hisi!ory ob-
jects, a novel technique for deferred copying. The PVM
is hardware-independent.

The outline of the rest of this paper is the follow-
ing. In section 2 we briefly present an overview of the
memory management services, as seen by a user pro-
gram. Section 3 describes the architecture: major ab-
stractions, layering, and interface. In section 4, we fo-
cus on the PVM. We describe history objects, which we
compare with the “shadow objects” of Mach. Section
5 describes the integration of the GM1 in the Chorus
Nucleus, and presents some encouraging performance
measurements.

2 Basic services

A memory management subsystem must support exe-
cution of independent programs, and data transfer on
their behalf.

It will provide separate address spaces (if the hard-
ware gives adequate support), into which the code of
a program is mapped, along with the data it accesses.
Address spaces will be called “contexts” in the remain-
der of this paper.

It will provide efficient and versatile mechanisms for
data transfer between contexts, and between secondary
storage and a context. The mechanisms must adapt
to various needs, such as Inter-Process Communication
(IPC), file read/write or mapping, memory sharing be-
tween contexts, and context duplication.

Our memory management system considers the data
of a context to be a set of non-overlapping regions,
which form the valid portions of the context.

In this paper, we consider Memory Management as
an independent component of the operating system ker-
nel. It offers an architecture-independent Generic Mem-
ory management Interface, the GMI, to the other ker-

nel components. Secondary storage objects, called seg-
me& in this paper, are assumed to be managed outside
of the memory manager subsystem, by external servers,
called segment managers. These servers manage the
implementation of the segments, as well as protection
and designation. They provide a simple segment access
interface (described in section 3) to the Memory Man-
agement. A memory manager accesses this interface by
upcalls across the GMI.

The “host” kernel for the Memory Management must
provide a simple synchronization interface, to allow con-
current Memory Management operations.

3 Architecture

We will now define precisely the memory management
abstractions, and describe the GhIII. Please refer to Fig-
ure 1 for all of this section.

3.1 Memory management layers

The memory management architecture defines a
generic, kernel-independent, architecture-independent
memory management interface, the GMI.

Above the GM1 is a kernel-dependent layer for system
calls, IPC, and synchronization.

Underneath the GM1 is a particular memory man-
ager (MM) for some memory architecture; in this article
we concentrate on the PVM, for demand-paged virtual
memory. The PVM is designed and implemented in-
dependently of a particular addressing scheme or hard-
ware memory management unit (MMU). The few de-
pendencies to a particular MMU are insulated under a
hardware-independent PVM interface.

3.2 Memory management abstractions

In first approximation, a context is identical to a pro-
gram’s protected virtual address space. A context is
sparsely populated with non-overla.pping regions, sep-
arated by unallocated zones. A region is a contigu-
ous portion of virtual address space. Some regions are
sparse, i.e. their contents is mostly undefined.

A region is mapped to a segment through a local
cache, an object which manages the real memory cur-
rently in use for a particular segment.

A region may map a whole segment, or may be a
window into part of it. A protection (e.g. read/write/
execute, user/system) is associated with each entire re-
gion. Different parts of a segment can be protected
differently, by mapping each to a separate region.

124

l-l Unix plUCuS

Nucleus interface

Chorus Nucleus

GM1
GenericMemory

mgt. Interface

Paged Virtual
Memory (PVhQ

HIV-independent
PVM inlclface

Hardware-
Dependent
MM

fti mmnprcd
a exe47 It wile

I
SegmcnI
mm= I

1 invalidate W

I I
-1-m --a.

L

lm

l-l&

globd

map d

Figure 1: Memory Management Architecture

In a Unix-like system with demand-paging, there are
two potential conflicts between read/write and mapped
access to segments. Firstly, the file buffers and the page
buffers compete for real memory, which can lead to con-
tention and a poor utilization of real memory. Secondly,
if a segment can be both mapped and read/ written, and
if each access has its own cache, the two caches can be-
come inconsistent; this is known as the dual caching
problem [ll]. The GM1 solves these problems by of-
fering a unified interface to segments: in addition to
the mapped-memory access described above, the same
cache can be accessed by explicit data transfer through
copy (i.e. read/write) operations.

Concurrent access to a segment is allowed: a given
segment may be mapped into any number of regions,
allocated to any number of contexts; it can also, at the
same time, be accessed by copy operations, again from
any number of contexts.

The GM1 defines the operations on regions, contexts,
segments and local-caches. The segment is implemented
above the GM1 (see section 3), whereas the others are
implemented below the GMI, as we will now describe.

3.3 Memory management interface

The following sections and tables describe the GMI.
This is a faithful description of the real GMI, but some
needless detail has been abstracted away. The proce-
dures do not check for logical errors, such as an out-of-
bounds offset, which are assumed to have been checked
by the upper layers of the kernel. Other problems, such
as resource exhaustion, may cause error returns; these
are not indicated here.

All these primitives, except those of Table 3, are
memory management procedures called by the upper
layer of the kernel. Table 3 describes upcalls performed,
by the memory management upon segment managers,
to initiate the movement of data between a cache and
its associated segment.

3.3.1 Copy data access

A segment is always accessed via its corresponding
cache. Table 1 describes the cache operations pertain-
ing to explicit data access.

The cachecreate operation binds a segment to a
newly-created (empty) cache. The cache can then be
used in explicit data transfer operations (move and/or

125

cachecreate (segment) -t cache
bind a new cache to a segment

cache . copy (offset, size, srccache, srcoffset:)
copy a fragment from another segment

cache . move (offset, size, srccacho, srcoffset)

cache . destroy ()
destroy, flushing all modified portions
back to segment I

move a fragment from another segment

Table 1: GMI: segment access.

copy). It can also be used to create a mapping of the
segment into some existing virtual address spa.ce, with
the regioncreate operation. (Operations on regions are
described in the next section.)

The copy operation copies data from a source cache
(segment) to a destination cache (segment). Move is
similar, except that the contents of the source becomes
undefined; this allows the lower levels to implement it
by changing the real-page-to-cache assignments, rather
than by copying, whenever possible (i.e. if hardware and
alignment allows it). Either operation may cause faults,
which will cause it to block.

3.3.2 Mapped data access

Table 2 pertains to mapped data access; it describes the
operations on contexts and regions.

The setprotection and IocklnMemory operations asso-
ciate hardware protection and in-memory pinning at-
tributes to the whole region. In order to set different
attributes on parts of a region, it can be split in two
using the split operation. Splitting never occurs spon-
taneously; this allows the upper layers to keep track
easily of the status of a region, and associate additional
information with it.

After IocklnMemory the data are pinned in real mem-
ory; furthermore, the underlying hardware MMU maps
are guaranteed to remain fixed. This property is impor-
tant for real-time kernels.

The getRegionList and getstatus operations allow to
obtain useful information about the current state of a
virtual address space.

3.3.3 Cache management

This section describes the interface for cache manage-
ment (as opposed to cache access).

The data management policy (e.g. page-in and page-
out decisions) is performed by the memory manager

contextcreate () + context
create an empty context (address space)

context . getRegionList () + regionList
list regions of context

context . switch ()
set current user context

context . destroy ()
destroy address space

regioncreate (context, address, size, prot, cache, offset)
--+ region

map a cache into context
region1 . split (offset) -f region2

cut a region in two
region . setprotection (prot)

change hardware protections
region . IocklnMemory ()

ensure access to region without faults
region . unlock ()

faults may occur during access to region
region . status ()

return address, site, protection, cache, etc.
region . destroy ()

unmap corresponding cache from context

Table 2: GMI: address space management.

(MM) implemented underneath the GMI. The MM per-
forms the requests described in Table 3, as upcalls to
the appropriate segments. Conversely, the cache man-
agement downcalls of Table 4 are available to segment
managers. The MM may unilaterally decide to cache a
fragment of data. When it needs data, it calls the pullln
operation of the corresponding segment. The segment
implementation provides the data using fillUp opera-
tion. Cached data carries the access rights defined by
the accessMode argument to pullln; when a write ac-
cess to read-only cached data occurs, the MM invokes
getWriteAccess, to request write access.

When, at the time of a cache synchronization, flush,
or destruction, the MR.1 needs to save a fragment of
cached data, it calls the pushOut operation on the cor-
responding segment. The MM gets the data from the
cache using copyBack or moveBack.

While a pullln or a pushOut operation is in progress,
any concurrent access to the fragment is suspended, un-
til the operation terminates. For that reason the cache
access operations copy and move of Table 1 are differ-
ent from the operations fillUp, copyBack and moveBack

described here (Table 4): the former may cause faults,
whereas the latter are used to resolve faults.

The MM sometimes creates caches unilaterally; see
for instance history objects in section 4.2. With the seg-
mentcreate upcall, the MM may declares such a cache
to the upper layer, so that it can be swapped out.

126

segment , pullln (offset, size, accessMode)

read in data from segment
segment . getWriteAccess (offset, size)

request utrite access
segment . pushOut (offset, size)

write data to segment
segmentcreate (cache) -+ segment

create segment

Table 3: GM1 to segment manager upcall interface.

cache . fillUp (offset, size, srccache, srcOffset)

fill a cache fragment with data
cache . copyBack (offset, size, dstcache, dstoffset)

copy a cache jragment to be written back
cache . moveBack (offset, size, dstcache, dstoffset)

move a cache fragment to be written back
cache . sync (offset, size)

write all modi$ed portions of a cache fragment
back to segment

cache . invalidate (offset, size)

invalidate cache fragment
cache . flush (offset, size)

synchronize and invalidate fragment
cache . setprotection (offset, size, prot)

set hardware protection of fragment
cache . IocklnMemory (offset, size)

pin fragment in real memory
cache . unlock (offset, size)

permit a cache fragment to be Pushed

Table 4: GMI: cache management.

A segment server may need to control some aspects
of caching. For instance, to implement distributed co-
herent virtual memory [&?I, it needs to flush and/or lock
the cache at times. The GM1 provides operations flush,

sync, invalidate and s&Protection to control the cache
state. Sync and flush operation may cause pushouts;

IocklnMemory may cause pulllns.

4 The PVM: a demand-paged
implementation

A portable implementation of the GM1 for paged ar-
chitectures has been developed in the Chorus Nucleus.
It is referred to as the PVM (Paged Virtual memory
Manager) and supports a number of hardware memory

management architectures. It is characterized by:

l Support for large, sparse segments and large virtual
address spaces,

l Efficient deferred copy (copy-on-write [3] and copy-
on-reference),

l Easy and efficient portability to different paged
memory management units (MMU’s).

The PVM is layered into a hardware-independent
layer (the PVM proper) and a (much smaller) hardware-
dependent one, separated by a hardware-independent
interface.

Techniques used to support large segments and ad-
dress spaces are comparable to those of Mach. How-
ever, our approach to copy optimization is quite differ-
ent. Two different techniques are used in order to allow
optimization in different cases:

l history objects to defer the copy of large data, such
as a big data segment for a Unix process.

l a per-virtual-page technique to copy relatively
small amounts of data (e.g. an IPC message).

In section 4.1 we briefly describe the technique used
for address space and cache implementation, indepen-
dently of deferred-copy issues. Sections 4.2 and 4.3 de-
scribe the rationale and implementation of the history
object and per-virtual-page techniques, respectively.

4.1 Large segments and address spaces

The key to the efficient support of large segments and
virtual address spaces is that the size of the data struc-
tures should not, depend on the size of those segments or
address spaces.. The size of the management structures
should depend only on the amount of physical memory,
and possibly on some configuration parameters, such as
the maximum number of contexts or caches.

4.1.1 Data structures

The basic memory management objects (see Figures 1
and 2) are the following.

There is a global list of all the context descriptors on
the host.

There is a context descriptor per context, which refers
to descriptors of the (doubly-linked) list of regions it
contains, sorted by start address.

There is a region descriptor per region. Each region
descriptor holds the region start address, size and access

127

global map
hashed by:
l cache ’ 4 l offcct

Figure 2: PVM data structures

rights, and a pointer to the cache descriptor for the
segment that the region maps, and its start offset in
that segment. Two different regions may refer to the
same cache descriptor.

A cache descriptor holds an identifier of its data
segment. It also holds the (doubly-linked) list of its
currently-cached real page descriptors. A page in that
list may be replaced by a synchroniralion page dub (de-
fined below).

A real page descriptor holds a back pointer to the
cache descriptor, and the page’s offset in the segment.

Furthermore, the PVM maintains a single global map,
hashing real page descriptors by the page’s cache, and
its offset in the segment. The global map is used to find
real pages efficiently.

4.1.2 Handling a page fault

When a page fault occurs, the hardware page fault de-
scriptor holds the virtual address of the fault. Knowing
the currently active context, the PVM searches in its
list of region descriptors for the region con’taining the
fault address. If the region is not found, the l?VM raises
the “segmentation fault” exception.

Otherwise, using the fault address, the region start
address in the context, and the region start offset in
the segment, the PVM computes the fault offset in the
segment. The PVM then uses this offset and the iden-
tifier of the cache descriptor, to look up the page in

the global map. If it is found, the page is already in
physical memory and the page fault can be recovered
immediately.

Otherwise, the data are not in physical memory and
the pullln operation shall be invoked on the segment.
Before calling pullln, the PVM places a synchronization
page stub in the global map for that page. This will
cause any future access to the virtual page to sleep,
as long as it is in transit. When pullln returns, the
synchronization page stub is removed and replaced with
the received page descriptor.

4.2 History objects

We use the novel history object technique to defer copies
of large amounts of data. This technique can be used
to implement both copy-on-write and copy-on-reference
policies.

First, we describe the case when a new segment is
created as a copy of a fragment of another. Then we
discuss the case of a copy between existing segments.
Finally we compare history objects to the “shadow ob-
jects” of Mach.

In the following description, for simplicity reasons we
consider that all relevant pages are in memory. Con-
sidering swapped-out pages presents no extra difficulty
but would obscure the presentation.

128

4.2.1 History trees

As copies take place between segments, we construct
trees of their cache objects, as shown in Figure 3. A
tree is rooted at the source of a copy; successive copies
add new leaves. The following shape invariant holds: it
is a binary tree, and each source of a copy operation has
a single immediate descendant, called its history object.

Each cache contains the current version of its own
pages. Pages not present in some cache (cache misses)
are found by looking upwards (towards the root) in the
tree. For this purpose, each node holds a pointer to its
parent.

As pages are modified in the source of a copy, their
original version is placed in its history object. Therefore
each source holds a pointer to its history.

We will now explain by
constructed and used.

4.2.2 The simple case

example how the tree gets

Initially, a new segment cpyl is created as a copy of a
fragment of source segment src (see Figure 3.a). The
cache for src will be at the root of the tree; cpyl is its
single descendant, and also its history object. When
the data in cpyl is accessed, any page not in cpyl will
be found, searching upwards in the tree, in src.

Copy-on-write is implemented as follows. When the
copy cpyl is created, all the pages of (the corresponding
fragment of) the source src are made read-only. When a
write violation occurs in the copy, a new (unprotected)
page frame is allocated for the copy, and its value is
copied from the corresponding src page. When a write
violation occurs in the source, two cases are possible.
If the history object (i.e. cpyl, in this case) already
has its own version of the page, it suffices to make the
page writable. Otherwise, an unprotected page frame
is allocated in the history object, the data copied into
it, and the source page is made writable.

A copy-on-reference scheme is implemented in a sim-
ilar fashion. Immediately after cpyl is created, access
to any of its pages will fault; at that point a copy is
allocated in cpyl as above. Similarly, a write violation
in src will cause (a copy of) the original version of the
page to be placed in its history, i.e. in cpyl.

When the copy segment is deleted, its cache may sim-
ply be discarded. This is the normal case in Unix: the
source is the data segment of a process which forks; the
copy is the child process’s data. When the child exits,
its data are deleted.

In the case where the source is deleted first (the par-
ent process exits while the child continues), remaining

unmodified source data must be kept until the copy is
deleted (see section 4.2.5).

4.2.3 Successive copies

Suppose the cpyl object in the previous example be-
comes in turn the source of a copy to segment copy-
OfCpyl, as in Figure 3.b. In Unix this occurs when a
child process forks. The same tree construction algo-
rithm applies: the tree is extended downwards. All the
pages of (the corresponding fragment of) cpyl are made
read-only. The history object of cpyl is copyOfCpy1. A
cache miss in copyOfCpy1 goes to cpyl, and then possi-
bly to src. The write-violation algorithm is the same as
above (with the appropriate shift of roles, the source be-
ing cpyl, and the target and history being copyOfCpy1).

A small complication does arise in this case. When
a write violation occurs in cpyl, a copy of the page is
taken from src, but copyOfCpy1 must also get its own
copy, since at the time of creation of CopyOfCpyl, its
value was logically taken from src.

Now, suppose src is again the source of a second copy,
to cpy2 (see Figure 3.~); in Unix this occurs for instance
when creating a pipeline, or with daemons. Then an
intermediate “working” cache and segment wl must be
created to preserve the shape invariant. wl is inserted
between src and cpyl. wl is the history object of src
and the parent of both cpyl and cpy2. A cache miss in
cpyl may be resolved either in wl or in src; similarly
for cpy2. At the time of the second copy, the corre-
sponding pages of src must again be set read-only. The
write violation algorithm above is unchanged (with the
appropriate name substitutions: src is the source, cpyl
or cpy2 is the copy, and wl is the history object).

If src is the source of a third copy, as in Figure 3.d,
then again a working cache w2 is inserted in the tree to
preserve its shape, and the src pages protected again.

4.2.4 Copying into an existing segment

Suppose we wish to copy a large amount of data into
an existing segment. If the destination has been al-
ready initialized from another one, it already has a par-
ent. Therefore, applying the above technique to the
new copy requires a generalization, so that individual
fragments may have different, arbitrary, parents.

To allow this, the “parent” attribute of a cache de-
scriptor is in fact a list of parent descriptors. Each such
descriptor holds the start offset and size of a fragment,
and a pointer to the parent local-cache descriptor. The
list is sorted by this offset.

129

lw rw

6ul

CPYl

2 3'

Figure 3.a: cpyl is a copy-on-write of pages l--3 of src. Page
2 has been updated in src. page 3 has been updaM in cpyl. A
cache. miss on page 1 in cpyl is resolved by look5ng it up in
src.

I rmm

YP

i 2 3'4
I
I histoly

V

src

CPY2

I rw I rw

m

src

1 2' 3 4
.
; history

rw

drl

c CPYl

2 3'

4
i
I history I w

m
copyOfCpy1

3

Figure 3.b: src ~agesl--3 am copied-on-write into cpyl. Page 2 of
arc is modified. Then cpyl is copied-on-write to copyOfCpy1. Page
3 of cpyl is modified: both src and copyOfCpy1 get a page frame
with the original value. Page 1 of both copies ia read from src. Page
2 of copyOfcpy1 is read fmln cpyl.

CPY2

Figure 3.~: Pages l--4 of src have been copied twice, into Figure 3.d: src is copied-on-write three times. Two working
cpyl and cpy2. A working history object ~1 has been created history objects are created.
and inserted in the tree. The following pages hve beett
modified: page 3 of src, page 3 of cpyl, and page 4 of cpy2.

Figure 3: History objects for copy-on-write
2 stands for the original value of page 2; 2’ stands for a new value. Grcy pages frames are hardware protected
read-only. Crossed-out frames are UnaIloeated.

130

4.2.5 Comparison with shadow objects

The history objects technique was inspired by the
Mach’s shadow objects [13]. When Mach initializes a
cache (which they call a memory object) as a copy of an
other, the source is set read-only, and two new memory
objects, the shadow objects, are created. The shadows
are to keep the pages modified by the source and copy
objects respectively; the original pages remain in the
source object.

If successive copies occur, a chain of shadows may
build up. The current state of the source object is dis-
persed across the original object and its shadows; sim-
ilarly for the copy. This causes some difficulties. For
instance:

1. When a Unix process forks, the child’s data seg-
ment is a copy of the parent’s After the fork, data
modified by the parent is held by its shadow, even
after the child exits. To prevent the creation of long
chains of shadow objects, when the parent forks re-
peatedly (as do Unix shells), the shadow must be
merged with the source after the child exits. This
garbage collection is a major complication of the
Mach algorithm [12].

2. The actual reference of a particular cache (i.e. the
starting point for a cache look-up) changes dynam-
ically as it is copied.

Our data structures are inverted with respect to the
Mach structures. By construction of the history tree,
the second problem does not occur. The history object
technique eliminates the first problem for the source
cache. The destination cache is a problem (i.e. chains
of inactive history objects build up, which should be
merged), only if a process forks and then exits, while
its child continues, forks and exits, and so on. This kind
of behavior is exceptional in Unix applications.

4.3 Per-virtual-page copy-on-write

When a copy of a relatively small fragment is required,
a different optimization is applied: in this case, we use
a per-virtual-page technique. Sprite [12] and SunOS 4.0
[5] defer copies on a per-virtual-page basis only.

For each page of the source fragment present in real
memory, the PVM protects the page read-only. For all
pages of the destination, it puts a copy-on-write page
stub in the global map. The stub allows to find the cor-
responding source page: if the latter is in real memory,
the stub contains a pointer to the source page descrip-
tor; otherwise, it contains a pointer to the source local-
cache descriptor and its offset within the source seg-
ment. All the stubs for some source page are threaded

together on a list attached to its page descriptor. In this
way, the source page is accessible, for reads, through any
cache to which it was copied.

When a write violation occurs on a copy-on-write
page stub, a new page frame is allocated with a copy
of the source page, and inserted in the global map in
replacement of the stub.

5 Application and experience

An operating system kernel integrating a GM1 imple-
mentation must provide a segment manager and a set
of basic synchronization mechanisms. That kernel uses
the GM1 to manage the address spaces according to its
own memory management model.

We discuss, in section 5.1, some policies adopted by
the Chorus Nucleus in its use of the GM1 to implement
the Chorus memory management interface [l], and the
Chorus/MIX implementation of Unix. Sections 5.2 and
5.3 discuss the current status and some performance
results, respectively.

5.1 The Chorus Nucleus and the GM1

This section starts with a brief description of Chorus
Nucleus abstractions. In sections 5.1.2 and 5.1.3, we
describe the functionality and implementation of the
segment manager, the Nucleus interface between map-
pers and a GM1 implementation. Section 5.1.4 describes
the implementation of some Nucleus operations, based
on the GM1 and the segment manager. Section 5.1.5 de-
scribes the Chorus/MIX memory management. Finally,
we discuss the relationship between memory manage-
ment and IPC message passing.

5.1.1 Background

The physical support for a Chorus system [15] is com-
posed of a set of sites, interconnected by a communica-
tions network. There is one Nucleus per site. A given
site can support many simultaneous actors, i.e. address
spaces, each supporting the execution of many parallel
threads. Each actor normally has its own protected ad-
dress space, but different actors may also use the same
address space if necessary.

The Nucleus offers an IPC (Inter-Process Commu-
nication) message communication mechanism, allow-
ing threads to communicate with each other (including
across actor boundaries). Messages are not addressed
directly to threads, but to intermediate entities called
ports. A port is an address to which messa.ges can be
sent, and a queue holding the messages received but not
yet consumed.

131

Nucleus memory management. considers the text and
data of an actor to be a set of non-overla.pping regions,
which form the valid portions of the actor address space.
These regions are generally mapped to seconldary stor-
age objects, called segments.

A segment is implemented by an independent ac-
tor, its mapper, generally on secondary storage. Seg-
ments are designated by sparse capabilities (similar to
Amoeba’s [17]), containing the mapper’s port name and
a key. The key is opaque data of the mapper, allowing
it to manage and protect segment access. ,4 mapper
exports a standard read/write interface, invoked using
the IPC mechanisms, Some mappers are kno#wn to the
Nucleus as defaults; these export an additional interface
for the allocation of temporary segments.

5.12 Segment manager

The segment manager maps each segment used on the
site to a GM1 local-cache. Given a segment capabil-
ity, the segment manager either finds the correspond-
ing local-cache if it exists, or assigns one. A l,ocal-cache
may be discarded (see section 5.1.3) when the segment
is no longer in use on the site.

The segment manager associates a local-ca.che in use
with a local-cache capability, containing the segment
manager port name, a reference to the local-cache, and
some protection information. The cache control oper-
ations of Table 4 can be invoked by sending an IPC
request to the segment manager, containing lthe appro-
priate capability. The segment manager, acting as cache
server, transforms such a request into the corresponding
GM1 operation.

Similarly, the segment manager transforms a GM1
upcall (of Table 3) into IPC upcalls to the correspond-
ing segment mapper. For instance, when th.e memory
manager calls pullln, the segment manager sends an IPC
read request, to the appropriate segment mapper port
(taken from the segment capability). The request con-
tains the segment capability and the local-cache capa-
bility, and the start offset, size, and access type of the
required data. The mapper replies with a message con-
taining the required data (transported as explained in
section 5.1.6). Mappers may use the local-c,ache capa-
bility parameter to implement distributed consistency
maintenance protocols above the different local-caches.

Finally, the segment manager may allocate a tempo-
rary local-cache. The segmeut manager waits for the
first pushOut upcall for such a temporary cache to al-
locate it a “swap” temporary segment with a default
mapper.

5.1.3 Segment cachiug

When some segment is no longer in use, the correspond-
ing GM1 cache could be discarded. Instead, the segment
manager keeps such an unreferenced cache as long as
possible, i.e. as long as there is enough free physical
memory, and enough space in the sagment manager ta-
bles. When a program requests the use of a permanent
segment, the manager first checks if there is a cache al-
ready kept for it. This segment caching strategy has a
very significant impact on the performance of program
loading (Unix exec) when the same programs are loaded
frequently, such as occurs during a large make.

5.1.4 Nucleus memory management

The Nucleus interface contains high-level memory man-
agement operations, combining the functionality of a
few GM1 operations. We will describe a few examples
of operations.

The Chorus rgnAllocate operation allocates a new
memory region within an actor. To implement it, the
the segment manager creates a temporary local-cache,
which it maps into the actor using regioncreate the GM1
operation.

Another operation, rgnMap, maps an existing seg-
ment into an actor. For this operation, the segment
manager first finds (or creates) a corresponding GM1
local-cache, and then maps it, using the regioncreate
GhJI operation.

The Chorus rgnlnit creates a new region in an actor
as a copy of an given existing segment. The segment
manager creates a temporary local-cache, finds (or cre-
ates) the cache corresponding to the source segment,
invokes cache.copy to initialize the new cache contents,
and finally maps it, using regioncreate.

The rgnMapFromActor and rgnlnitFromActor opera-
tions are similar to rgnMap and rgnlnit, except that the
source segment is designated by an address within an
actor. These operations find the source local-cache us-
ing the context.findRegion and region.status GhiiI oper-
ations.

5.1.5 Chorus/MIX memory management

Chorus/MIX [6, 21 is a System V compatible Unix im-
plementation in Chorus. Many of the functionalities of
a standard Unix kernel are implemented by an actor,
the process manager, which maps Unix process seman-
tics onto the Chorus Nucleus objects. A standard Unix
process is implemented as a Chorus actor hosting a sin-
gle thread.

The Unix exec invokes the Chorus rgnMap operation
to map the text segment of the process, rgnlnit for its

132

data segment, and rgnAllocate for the stack. A Unix fork
uses rgnMapFromActor to share the text segment be-
tween the parent and child processes. It invokes rgnlnit-
FromActor to create the child’s data and stack areas as
copies of the parent’s.

5.1.6 IPC and memory management

IPC messages serve to transport data, both for users
and for the system. Therefore we decouple IPC from
memory management, in that IPC never has the side
effect of creating, destroying, or changing the size of
any region. In this sense, our concepts are more similar
to the V-System’s view [4] than to Mach [I8]. However,
IPC uses the per-page deferred copy, and the move se-
mantics (see section 3.3-l), to optimize message trans-
fers.

Messages are of limited size (64 Kbytes in the cur-
rent implementation). They are not suitable for trans-
ferring large and/or sparse data. To transfer large or
sparse data, users should call the memory management
operations, and not IPC.

The kernel has a single fixed-sized transit segment,
mapped in the kernel address space, made of 64 Kbyte
slots. An IPC send is implemented as a cachcxopy be-
tween the user-space segment and a transit slot, if the
segment is large enough, otherwise as a bcopy. A receive
is implemented by cache.movc or bcopy.

5.2 Current status

We have made several different implementations of the
GM1 in the Chorus Nucleus:

The PVM, described in this paper, suitable for
general-purpose operating systems on paged hard-
ware architectures.

A minimal implementation, suited for embedded
real-time systems and small hardware configura-
tions.

A simulation implementation that uses a Unix pro-
cess as a virtual machine. This implementation is
integrated into the Chorus Nucleus Simulator.3

Implementations of GMI for segmented (iAPX 286) and
paged-segmented (iAPX 386) architectures are under
development.

3The Chorus Nucleus Simulator is a Nucleus, implemented as
a process on Uuix systems. It is used as a development tool:
it allows machine-independent kernel evolutions to be developed
and validated comfortably. ln addition, it is a practical teaching
aid, and allows Chorus users to develop applications while the
Nucleus is uot yet ported on their hardware architecture.

The RIM implementation is the only difference be-
tween these Nucleus versions. All the other Nucleus
components, which access memory management facili-
ties via the GMI, are unaffected.

The Nucleus and the PVM are written in C++, and
have been ported to various hardware: Sun 3, Bull
DPX 1000 (a MC68020 workstation with a Motorola
PMMU), Telmat T3000 (a MC68020-based multi-
processor with a custom MMU), various MC68030
boards and AT/386 PC’s. Work is in progress on several
RISC architectures: SPARC (4Q89), MC88000 (4Q89)
and ARM-3 (lQ90) processor based machines.

On the memory management point of view, these dif-
ferent ports require only the rewriting of the (small)
machine-dependent part of the PVM. On average, it
takes about one manxmonth of work to port to a new
MMU. Table 5 shows the sizes of the various compo-
nents. The number of lines of code includes header files
and comments. It does not include per-virtual-page de-
ferred copy, which is not fully operational at the time
of this writing. The Nucleus part includes the system
call interface.

Independent 1 1980 1 0 1 7.5 I<b

Total 1 3700 1 0 1 15.3 Kb

MMU Dependent Part
Component C++ assembler object

(lines) lines (bytes)
PVM: Machine-

Dependent on Sun 790 150 3.2 I<b
PVM: Machine-

Dependent on PMMU 1120 30 4.0 Kb
PVM: Machine-

Dependent on iAPX 386 980 200 3.8 Kb

Table 5: Chorus Memory Management Components
Sizes.

5.3 Perforinauce

Two benchmark programs illustrate the performance of
the Chorus virtual memory management based on the
Paged Virtual Memory manager. These measure:

l The cost of allocating large, sparse regions,

133

Chorus: zero-filled memory allocation
region actual allocation of real memory

0 Kb 8 Kb 256 Kb 1024 Kb
0 pages 1 page 32 pages 128 pages

8 Kb 0.350 ms 1.50 ms -
256 Kb 0.352 ms 1.60 ms 36.6 ms -

1024 Kb 0.390 ms 1.63 ms 37.7 ms 145.9 ms

Mach: zero-filled memory ahocation
region size I actual allocation of real memors 1

Table 6: Performance for zero-filled memory allocation.

l The overhead of deferred copy based on history
trees, and

l The overhead of a real page copy, after delaying it.

For the purpose of comparison, those benchmark pro-
grams have also been run on Math/4.3 operating sys-
tem.

The measurements presented below were made on a
SUN-3/60 workstation with 8 megabytes of memory, 8-
Kbyte pages, a MC68020 CPU running at BOMHZ, i.e.
about 3 MIPS of processing power.

A copy (Unix bcopy) of 8 Kbytes in real m,emory, im-
plemented in assembler, takes 1.4 ms. Filling 8 K bytes
of real memory with zeroes (bzero) takes 0.87 ms.

5.3.1 Benchmarks

The first benchmark program creates a region, accesses
some of the data within the region in order to demand
allocation of filled-zero memory and, finally, deallocates
the region. The following tables give the results of this
benchmark on Chorus and Mach. For each region size,
the table 6 shows the time elapsed for creating the re-
gion, allocating and deallocating some real memory, and
destroying the region, averaged over some large number
of iterations.

The second program creates a region, which is en-
tirely allocated in real memory. It then copies it, and
modifies some of the data within the source region (in
order to force a real copy). The table 7 gives the results
of this measurement. The source region is created and

Chorus: copy-on-write
region size Actual amount of data copied

0 Kb 1 8 Kb 1 256 Kb 1 1024 Kb
0 pages 1 page 32 pages 128 pages

8 Kb 1 0.4 ms 1 2.10 ms 1 - I

I 256 Kb
1024 Kb

Mach: copy-on-write
region size Actual amount of data copied

0 Kb 8 Kb 256 Kb 1024 Kb
0 pages 1 page 32 pages 128 pages

8 Kb 2.7 ms 4.82 ms - -

256 Kb 2.9 ms 5.12 ms 66.4 ms -
1024 Kb 3.08 ms 5.18 ms 67 ms 256.41 ms

Table 7: Performance of copy-on-write.

allocated before starting the measurement. For each re-
gion size, the table shows the time elapsed for creating
the copy region, forcing a copy of some amount of data,
and deallocating and destroying the copy region.

5.3.2 Discussion

The above figures show that the strong structure of
our design does not preclude an efficient implementa-
tion. On the contrary: the simplicity of our machine-
dependent part allows fine optimization with a minimal
effort.

In Chorus, the cost of creating and destroying a re-
gion is practically independent of its size: the difference
between creating a l-page region and a 128-page region
is only 10%. In fact, the region creation is totally inde-
pendent of the region size, but its destruction requires
the invalidation of the corresponding portion of the vir-
tual address space. This is consistent with our initial
goals.

The structural management overhead of a simple de-
ferred copy initialization is of the order of 0.03 ms for
the history tree (i.e. 10% of a simple region creation
cost), plus 0.02 ms per page frame allocated in the ini-
tial region before the copy. The overhead per page is
the cost of the page protection, calculated as the cost of
a creation/copy of 128 pages region, minus the cost of a
creation/copy of a one page region, divided by the num-
ber of additional pages, i.e. (2.4 rns - 0.4 ms)/127. The
overhead of tree mana.gement is calculated as the cost of
a l-page region creation/copy, minus the cost of creat-
ing aud allocating 0 pages in a l-page region, minus the

134

per-page overhead, i.e. 0.4 ms - 0.35 ms - 0.02 ms =
0.03 ms.

The overhead of copy-on-write (including the protec-
tion violation handling, page lookup in the history tree,
new page allocation and mapping) is 0.31 ms per page.
The formula used here is the cost of doing a deferred
copy and a real copy of a region, minus the cost of a
deferred copy of the same size region with no real copy,
divided by the size of the region, minus the cost of copy-
ing a real page, i.e. (221.9 ms - 2.4 ms)/128 - 1.4 ms.

The overhead of the history tree using may be de-
duced by comparing the last result with the cost of a
simple on-demand page allocation, which is 0.27 ms.
Here again, the overhead is of the order of 10%. The
simple on-demand page allocation cost is calculated as
the cost of creating (and deleting) and zero-filling a 12%
page region, minus the cost of creating/deleting the
same-sized region with no data allocation, divided by
128, minus the cost of filling a real page with zeroes,
i.e. (145.9 ms - 0.39 ms)/l% - 0.87 ms.

6 Conclusion

The multiple purposes of the Chorus kernel led to de-
sign its memory management as a truly independent,
replaceable part. It provides a generic, architecture-
independent, interface to the other components.

We identified generic memory management abstrac-
tions, matching the needs of different kinds of operation
systems. They are independent of the particularities of
different hardware architectures, while still allowing ef-
ficient implementations.

In this paper, we discussed in some detail one
(hardware-independent) implementation of this generic
interface, suited for state-of-the art demand-paged vir-
tual memory. Our encouraging performance figures
show the validity of our approach.

Acknowledgments

We would like to thank Francois Armand and F&dkric
Herrmamr for their important influence on the design
described here.

Hugo Coyotte, Corinne Delorme, Pierre Lebee and
Pierre Leonard ported the PVM to several architec-
tures. They provided useful feedback, particularly
on the portability aspect. Ivan Boule, Jean-Jacques
Germond, Sabine Habert, Sylvain Langlois, Marc
Maathuis, Denis Metral-Charvet, Laurence Mosseri,
Francois Saint-Lu, Eric Pouyoul, Eric Valette, were the
first, patient and exacting users of the Chorus memory
management system.

Michel Gicn, Marc Guillemont, Claude Kaiser and
Will Neuhauser supplied many ideas improving of this
presentation. Hubert Zimmermann, leader of the
Chorus-systkmes industrial venture, made all this pos-
sibIe.

Finally, we thank Richard Rashid for communicating
benchmark results on Mach.

References

PI

PI

PI

[41

PI

k4

PI

PI

PI

WI

V. Abrossimov, M. Rozier, and M. Gien. Virtual Mem-
ory Management in Chorus. In Lecture Notes in Com-
puter Sciences, Workshop on Progress in Distribtrtsd
Systems Management, Springer-Verlag, Berlin (Ger-
many) April 1989.

F. Armand, M. Gien, F. Herrmann and M. Rozier.
Revolution 89 or “Distributing Unix Brings it Back to
its Original Virtues”. In Proc. “Workshop on Eqe-
riences with Building Distributed (and Multiprocessor)
Systems”, Ft. Lauderdale FL (USA), October 1989.

D.G. Bobrow et al. TENEX, a paged time sharing sys-
tem for PDP-10. Communications of the A Chfxx, 15(3),
1972.

David R. Cheriton. The Unified Management of Mem-
ory in the V Distributed System. Technical Report,
Computer Science, Stanford University CA (USA),
1988.

Robert A. Gingell, Joseph P. Moran, and William A.
Shannon. Virtual Memory Architecture in SunOS. In
Proc. USENIX Summer’87 Conference, Phoenix AR
(USA), June 1987.

Frederic Herrmann, Francois Armand, Marc Rozier,
Michel Gien, Vadim Abrossimov, Ivan Boule, Marc
Guillemont, Pierre Leonard, Sylvain Langlois, and Will
Neuhauser. Chorus, a new technology for building Unix
systems. In Proc. EUUG Autumn ‘88 Conference, Cas-
cais (Portugal), October 1988.

Paul J. Leach, Paul H. Levine, James A. Hamilton, and
Bernard L. Stumpf. The file system of an integrated
local network. In ACM Computer Science Conference,
New Orleans LA (USA), March 1985.

Kai Li and Paul Hudak. Memory coherence in shared
virtual memory systems. In Proc. Principles of Dia-

tributed Computing (PODC) Symposium, pages 229-
239, 1986.

Jose Alves Marques, Roland Balter, Vinny Cahill,
Paulo Guedes, Neville Harris, Chris Horn, Sacha
Krakowiak, Andre Kramer, John Slattery, and Gerard
Vend&me. Implementing the Comandos architecture. In
Esprit%& Putting the Technology to Use, pages 1140-
1157, 1988 North-Holland.

RCgis Minot, P ierre Courcoureux, Hubert Zimmer-
mann, Jean-Jacques Germond, Paolo Alvari, Vincenzo
Ambriola, and Ted Dowling. The spirit of Aphrodite. In
Proc. Esprit Technical Week 1988, Brussels (Belgium),
pages 519-539, November 1988.

135

[ll] Michael N. Nelson, Brent B. Welch, and John 1~.
Ousterhout. Caching in the Sprite Network File Sys-
tem. In ACM Transactions on Computer Systems, 6(l),
February 1988.

[12] Michael N. Nelso n and John K. Ousterhout. Copy-on-
write for Sprite. In Proc. Summer Usenix ‘$8 COT&
San Francisco CA (USA), pages 187-201, June 1988.

[13] Richard Rashid, Avadis Tevanian, Michael Young,
David Young, Robert Baron, David Black, William
Bolosky, and Jonathan Chew. Machine-independent
virtual memory management for paged uniprocessor
and multiprocessor architectures. IEEE Transactions
on Computers, 37(8):896-908, August 1988.

[14] Marc Rozier and Jose Legatheaux-Martins. The Cho-
rus distributed operating system: some design issues.
In Distributed Operating Systems, Theory and Practice,
Springer-Verlag, Berlin, 1987.

[15] Marc Rozier, Vadim Abrossimov, Francois Armand,
Ivan Boule, Michel Gien, Marc Guillemont, Frkd&ic
Herrmann, Pierre LBonard, Sylvain Langlois, and Will
Neuhauser. Chorus distributed operating sysiems.
Computing Systems, l(4), 1988.

[16] Marc Shapiro. The design of a distributed object-
oriented operating system for office applications. In
Proc. Esprit Technical Week 1988, Brussels (Belgium),
November 1988.

[17] Andrew S. Tanenbaum, Sape J. Mullender, and Rob-
bert van Renesse. Using sparse capabilities in a dis-
tributed operating system. In Proc. Gth IEEE Int.
Conj. on Distributed Computing Systems, Cambridge,
MA (USA), May 1986.

[18] Michael Young, Avadis Tevanian, Richard Rashid,
David Golub, Jeffrey Eppinger, Jonathan Chew,
William Bolosky, David Black and Robert Baron. The
Duality of Memory and Communication in the Imple-
mentation of a Multiprocessor Operating System. In
Proc. 11th ACM Symp. on Operating Systems Princi-
ples, Austin TX (USA), November 1987.

191 Hubert Zimmermann, Jean-Serge Banino, Alain Caris-
tan, Marc Guillemont, and GCrard Morisset. Basic
Concepts for the Support of Distributed Systems: the
CHORUS approach. In Proc. 2nd IEEE Int. Conj.
on Distributed Computing Systems, Versailles (France),
April 1981.

136

