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Abstract 

We discuss the rationale and design of a Generic Mem- 
ory management Interface, for a family of scalable op- 
erating systems. It consists of a general interface for 
managing virtual memory, independently of the un- 
derlying hardware architecture (e.g. paged versus seg- 
mented memory), and independently of the operating 
syst.em kernel in which it is to be integrated. In par- 
ticular, this iuterface provides abstractions for support 
of a single, consistent cache for both mapped objects 
and explicit I/O, and control of data caching in real 
memory. Data management policies are delegated to 
external managers. 

A portable implementation of the Generic Mem- 
ory management Interface for paged architectures, the 
Paged Virtual Memory manager, is detailed. The PVM 
uses the novel history object technique for efficient de- 
ferred copying. The GM1 is used by the Chorus Nu- 
cleus, in particular to support a distributed version of 
Unix. Performance measurements compare favorably 
with other systems. 

1 Introduction 

Memory management services and implementations are 
generally highly dependent on the operating system. 
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Different classes of operating systems use different 
cla.sses of memory management services: 

In real-time executives, memory management ser- 
vices are primitive. Most real-time operating sys- 
tems do not exploit the hardware MMU. They are 
just begimling to integrate the concept of protected 
address spaces. 

General-purpose operating systems, such as Unix’, 
integrate virtual memory management services, al- 
lowing protected address spaces to co-exist on a 
limited hardware. 

Sollle distributed operating systems support dis- 
tributed virtual memory schemes such as [S]. Until 
recently most were research projects (with the no- 
table exception of the Apollo Domain [7]), some are 
now becoming products, e.g. Mach [13] and Chorus 
[15]. 

The Chorus” architecture is designed to support new 
generations of open, distributed, scalable operating sys- 
tems. It allows the integration of various families of op- 
erating systems, ranging from small real-time systems 
to general-purpose operating systems, in a single dis- 
tributed environment. 

The Chorus architecture is based on a minimal real- 
time Nucleus that integrates distributed processing and 
communication at the lowest level. Chorus opera.ting 
systems are built as sets of independent system servers, 
that rely on the basic, generic services provided by the 
Nucleus, i.e. thread scheduling, network transparent 
IPC, virtual memory management and real-time event 
handling. 

The Chorus Nucleus itself can be scaled to exploit a 
wide rauge of hardware configurations, such as embed- 
ded boards, multi-processor and multi-computer config- 
urations, networked workstations and dedicated servers. 

’ Unis is a registered trademark of AT&T 
2Chorus is a registered trademark of Chorus systemes 

123 



Operating systems currently implemented on top of 
this Nucleus are, for instance, Chorus/MIX, a Unix Sys- 
tem V compatible distributed real-time system [6, 21, 
and PCTE [lo]. W or is currently in progress toI imple- k 
ment object-oriented distributed systems [lG, 91. 

The design of the right memory management service 
was a delicate task, due to the multiple purposes of 
the Chorus Nucleus. The memory management service 
must be a replaceable unit, independent from the other 
Nucleus pieces. Therefore, we defined the “Generic 
Memory management Interface” (GMT). The GM1 is 
suitable for various architectures (e.g. paged and/or 
segmented) and implementation schemes; it is scalable, 
and kernel-independent. We present in detail the archi- 
tecture of the PVM, a demand-paged virtual memory 
implementation of the GMI. The PVM uses hisi!ory ob- 
jects, a novel technique for deferred copying. The PVM 
is hardware-independent. 

The outline of the rest of this paper is the follow- 
ing. In section 2 we briefly present an overview of the 
memory management services, as seen by a user pro- 
gram. Section 3 describes the architecture: major ab- 
stractions, layering, and interface. In section 4, we fo- 
cus on the PVM. We describe history objects, which we 
compare with the “shadow objects” of Mach. Section 
5 describes the integration of the GM1 in the Chorus 
Nucleus, and presents some encouraging performance 
measurements. 

2 Basic services 

A memory management subsystem must support exe- 
cution of independent programs, and data transfer on 
their behalf. 

It will provide separate address spaces (if the hard- 
ware gives adequate support), into which the code of 
a program is mapped, along with the data it accesses. 
Address spaces will be called “contexts” in the remain- 
der of this paper. 

It will provide efficient and versatile mechanisms for 
data transfer between contexts, and between secondary 
storage and a context. The mechanisms must adapt 
to various needs, such as Inter-Process Communication 
(IPC), file read/write or mapping, memory sharing be- 
tween contexts, and context duplication. 

Our memory management system considers the data 
of a context to be a set of non-overlapping regions, 
which form the valid portions of the context. 

In this paper, we consider Memory Management as 
an independent component of the operating system ker- 
nel. It offers an architecture-independent Generic Mem- 
ory management Interface, the GMI, to the other ker- 

nel components. Secondary storage objects, called seg- 
me& in this paper, are assumed to be managed outside 
of the memory manager subsystem, by external servers, 
called segment managers. These servers manage the 
implementation of the segments, as well as protection 
and designation. They provide a simple segment access 
interface (described in section 3) to the Memory Man- 
agement. A memory manager accesses this interface by 
upcalls across the GMI. 

The “host” kernel for the Memory Management must 
provide a simple synchronization interface, to allow con- 
current Memory Management operations. 

3 Architecture 

We will now define precisely the memory management 
abstractions, and describe the GhIII. Please refer to Fig- 
ure 1 for all of this section. 

3.1 Memory management layers 

The memory management architecture defines a 
generic, kernel-independent, architecture-independent 
memory management interface, the GMI. 

Above the GM1 is a kernel-dependent layer for system 
calls, IPC, and synchronization. 

Underneath the GM1 is a particular memory man- 
ager (MM) for some memory architecture; in this article 
we concentrate on the PVM, for demand-paged virtual 
memory. The PVM is designed and implemented in- 
dependently of a particular addressing scheme or hard- 
ware memory management unit (MMU). The few de- 
pendencies to a particular MMU are insulated under a 
hardware-independent PVM interface. 

3.2 Memory management abstractions 

In first approximation, a context is identical to a pro- 
gram’s protected virtual address space. A context is 
sparsely populated with non-overla.pping regions, sep- 
arated by unallocated zones. A region is a contigu- 
ous portion of virtual address space. Some regions are 
sparse, i.e. their contents is mostly undefined. 

A region is mapped to a segment through a local 
cache, an object which manages the real memory cur- 
rently in use for a particular segment. 

A region may map a whole segment, or may be a 
window into part of it. A protection (e.g. read/write/ 
execute, user/system) is associated with each entire re- 
gion. Different parts of a segment can be protected 
differently, by mapping each to a separate region. 
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Figure 1: Memory Management Architecture 

In a Unix-like system with demand-paging, there are 
two potential conflicts between read/write and mapped 
access to segments. Firstly, the file buffers and the page 
buffers compete for real memory, which can lead to con- 
tention and a poor utilization of real memory. Secondly, 
if a segment can be both mapped and read/ written, and 
if each access has its own cache, the two caches can be- 
come inconsistent; this is known as the dual caching 
problem [ll]. The GM1 solves these problems by of- 
fering a unified interface to segments: in addition to 
the mapped-memory access described above, the same 
cache can be accessed by explicit data transfer through 
copy (i.e. read/write) operations. 

Concurrent access to a segment is allowed: a given 
segment may be mapped into any number of regions, 
allocated to any number of contexts; it can also, at the 
same time, be accessed by copy operations, again from 
any number of contexts. 

The GM1 defines the operations on regions, contexts, 
segments and local-caches. The segment is implemented 
above the GM1 (see section 3), whereas the others are 
implemented below the GMI, as we will now describe. 

3.3 Memory management interface 

The following sections and tables describe the GMI. 
This is a faithful description of the real GMI, but some 
needless detail has been abstracted away. The proce- 
dures do not check for logical errors, such as an out-of- 
bounds offset, which are assumed to have been checked 
by the upper layers of the kernel. Other problems, such 
as resource exhaustion, may cause error returns; these 
are not indicated here. 

All these primitives, except those of Table 3, are 
memory management procedures called by the upper 
layer of the kernel. Table 3 describes upcalls performed, 
by the memory management upon segment managers, 
to initiate the movement of data between a cache and 
its associated segment. 

3.3.1 Copy data access 

A segment is always accessed via its corresponding 
cache. Table 1 describes the cache operations pertain- 
ing to explicit data access. 

The cachecreate operation binds a segment to a 
newly-created (empty) cache. The cache can then be 
used in explicit data transfer operations (move and/or 
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cachecreate (segment) -t cache 
bind a new cache to a segment 

cache . copy (offset, size, srccache, srcoffset:) 
copy a fragment from another segment 

cache . move (offset, size, srccacho, srcoffset) 

cache . destroy () 
destroy, flushing all modified portions 
back to segment I 

move a fragment from another segment 

Table 1: GMI: segment access. 

copy). It can also be used to create a mapping of the 
segment into some existing virtual address spa.ce, with 
the regioncreate operation. (Operations on regions are 
described in the next section.) 

The copy operation copies data from a source cache 
(segment) to a destination cache (segment). Move is 
similar, except that the contents of the source becomes 
undefined; this allows the lower levels to implement it 
by changing the real-page-to-cache assignments, rather 
than by copying, whenever possible (i.e. if hardware and 
alignment allows it). Either operation may cause faults, 
which will cause it to block. 

3.3.2 Mapped data access 

Table 2 pertains to mapped data access; it describes the 
operations on contexts and regions. 

The setprotection and IocklnMemory operations asso- 
ciate hardware protection and in-memory pinning at- 
tributes to the whole region. In order to set different 
attributes on parts of a region, it can be split in two 
using the split operation. Splitting never occurs spon- 
taneously; this allows the upper layers to keep track 
easily of the status of a region, and associate additional 
information with it. 

After IocklnMemory the data are pinned in real mem- 
ory; furthermore, the underlying hardware MMU maps 
are guaranteed to remain fixed. This property is impor- 
tant for real-time kernels. 

The getRegionList and getstatus operations allow to 
obtain useful information about the current state of a 
virtual address space. 

3.3.3 Cache management 

This section describes the interface for cache manage- 
ment (as opposed to cache access). 

The data management policy (e.g. page-in and page- 
out decisions) is performed by the memory manager 

contextcreate () + context 
create an empty context (address space) 

context . getRegionList () + regionList 
list regions of context 

context . switch () 
set current user context 

context . destroy () 
destroy address space 

regioncreate (context, address, size, prot, cache, offset) 
--+ region 

map a cache into context 
region1 . split (offset) -f region2 

cut a region in two 
region . setprotection (prot) 

change hardware protections 
region . IocklnMemory () 

ensure access to region without faults 
region . unlock () 

faults may occur during access to region 
region . status () 

return address, site, protection, cache, etc. 
region . destroy () 

unmap corresponding cache from context 

Table 2: GMI: address space management. 

(MM) implemented underneath the GMI. The MM per- 
forms the requests described in Table 3, as upcalls to 
the appropriate segments. Conversely, the cache man- 
agement downcalls of Table 4 are available to segment 
managers. The MM may unilaterally decide to cache a 
fragment of data. When it needs data, it calls the pullln 
operation of the corresponding segment. The segment 
implementation provides the data using fillUp opera- 
tion. Cached data carries the access rights defined by 
the accessMode argument to pullln; when a write ac- 
cess to read-only cached data occurs, the MM invokes 
getWriteAccess, to request write access. 

When, at the time of a cache synchronization, flush, 
or destruction, the MR.1 needs to save a fragment of 
cached data, it calls the pushOut operation on the cor- 
responding segment. The MM gets the data from the 
cache using copyBack or moveBack. 

While a pullln or a pushOut operation is in progress, 
any concurrent access to the fragment is suspended, un- 
til the operation terminates. For that reason the cache 
access operations copy and move of Table 1 are differ- 
ent from the operations fillUp, copyBack and moveBack 

described here (Table 4): the former may cause faults, 
whereas the latter are used to resolve faults. 

The MM sometimes creates caches unilaterally; see 
for instance history objects in section 4.2. With the seg- 
mentcreate upcall, the MM may declares such a cache 
to the upper layer, so that it can be swapped out. 
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segment , pullln (offset, size, accessMode) 

read in data from segment 
segment . getWriteAccess (offset, size) 

request utrite access 
segment . pushOut (offset, size) 

write data to segment 
segmentcreate (cache) -+ segment 

create segment 

Table 3: GM1 to segment manager upcall interface. 

cache . fillUp (offset, size, srccache, srcOffset) 

fill a cache fragment with data 
cache . copyBack (offset, size, dstcache, dstoffset) 

copy a cache jragment to be written back 
cache . moveBack (offset, size, dstcache, dstoffset) 

move a cache fragment to be written back 
cache . sync (offset, size) 

write all modi$ed portions of a cache fragment 
back to segment 

cache . invalidate (offset, size) 

invalidate cache fragment 
cache . flush (offset, size) 

synchronize and invalidate fragment 
cache . setprotection (offset, size, prot) 

set hardware protection of fragment 
cache . IocklnMemory (offset, size) 

pin fragment in real memory 
cache . unlock (offset, size) 

permit a cache fragment to be Pushed 

Table 4: GMI: cache management. 

A segment server may need to control some aspects 
of caching. For instance, to implement distributed co- 
herent virtual memory [&?I, it needs to flush and/or lock 
the cache at times. The GM1 provides operations flush, 

sync, invalidate and s&Protection to control the cache 
state. Sync and flush operation may cause pushouts; 

IocklnMemory may cause pulllns. 

4 The PVM: a demand-paged 
implementation 

A portable implementation of the GM1 for paged ar- 
chitectures has been developed in the Chorus Nucleus. 
It is referred to as the PVM (Paged Virtual memory 
Manager) and supports a number of hardware memory 

management architectures. It is characterized by: 

l Support for large, sparse segments and large virtual 
address spaces, 

l Efficient deferred copy (copy-on-write [3] and copy- 
on-reference), 

l Easy and efficient portability to different paged 
memory management units (MMU’s). 

The PVM is layered into a hardware-independent 
layer (the PVM proper) and a (much smaller) hardware- 
dependent one, separated by a hardware-independent 
interface. 

Techniques used to support large segments and ad- 
dress spaces are comparable to those of Mach. How- 
ever, our approach to copy optimization is quite differ- 
ent. Two different techniques are used in order to allow 
optimization in different cases: 

l history objects to defer the copy of large data, such 
as a big data segment for a Unix process. 

l a per-virtual-page technique to copy relatively 
small amounts of data (e.g. an IPC message). 

In section 4.1 we briefly describe the technique used 
for address space and cache implementation, indepen- 
dently of deferred-copy issues. Sections 4.2 and 4.3 de- 
scribe the rationale and implementation of the history 
object and per-virtual-page techniques, respectively. 

4.1 Large segments and address spaces 

The key to the efficient support of large segments and 
virtual address spaces is that the size of the data struc- 
tures should not, depend on the size of those segments or 
address spaces.. The size of the management structures 
should depend only on the amount of physical memory, 
and possibly on some configuration parameters, such as 
the maximum number of contexts or caches. 

4.1.1 Data structures 

The basic memory management objects (see Figures 1 
and 2) are the following. 

There is a global list of all the context descriptors on 
the host. 

There is a context descriptor per context, which refers 
to descriptors of the (doubly-linked) list of regions it 
contains, sorted by start address. 

There is a region descriptor per region. Each region 
descriptor holds the region start address, size and access 
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Figure 2: PVM data structures 

rights, and a pointer to the cache descriptor for the 
segment that the region maps, and its start offset in 
that segment. Two different regions may refer to the 
same cache descriptor. 

A cache descriptor holds an identifier of its data 
segment. It also holds the (doubly-linked) list of its 
currently-cached real page descriptors. A page in that 
list may be replaced by a synchroniralion page dub (de- 
fined below). 

A real page descriptor holds a back pointer to the 
cache descriptor, and the page’s offset in the segment. 

Furthermore, the PVM maintains a single global map, 
hashing real page descriptors by the page’s cache, and 
its offset in the segment. The global map is used to find 
real pages efficiently. 

4.1.2 Handling a page fault 

When a page fault occurs, the hardware page fault de- 
scriptor holds the virtual address of the fault. Knowing 
the currently active context, the PVM searches in its 
list of region descriptors for the region con’taining the 
fault address. If the region is not found, the l?VM raises 
the “segmentation fault” exception. 

Otherwise, using the fault address, the region start 
address in the context, and the region start offset in 
the segment, the PVM computes the fault offset in the 
segment. The PVM then uses this offset and the iden- 
tifier of the cache descriptor, to look up the page in 

the global map. If it is found, the page is already in 
physical memory and the page fault can be recovered 
immediately. 

Otherwise, the data are not in physical memory and 
the pullln operation shall be invoked on the segment. 
Before calling pullln, the PVM places a synchronization 
page stub in the global map for that page. This will 
cause any future access to the virtual page to sleep, 
as long as it is in transit. When pullln returns, the 
synchronization page stub is removed and replaced with 
the received page descriptor. 

4.2 History objects 

We use the novel history object technique to defer copies 
of large amounts of data. This technique can be used 
to implement both copy-on-write and copy-on-reference 
policies. 

First, we describe the case when a new segment is 
created as a copy of a fragment of another. Then we 
discuss the case of a copy between existing segments. 
Finally we compare history objects to the “shadow ob- 
jects” of Mach. 

In the following description, for simplicity reasons we 
consider that all relevant pages are in memory. Con- 
sidering swapped-out pages presents no extra difficulty 
but would obscure the presentation. 
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4.2.1 History trees 

As copies take place between segments, we construct 
trees of their cache objects, as shown in Figure 3. A 
tree is rooted at the source of a copy; successive copies 
add new leaves. The following shape invariant holds: it 
is a binary tree, and each source of a copy operation has 
a single immediate descendant, called its history object. 

Each cache contains the current version of its own 
pages. Pages not present in some cache (cache misses) 
are found by looking upwards (towards the root) in the 
tree. For this purpose, each node holds a pointer to its 
parent. 

As pages are modified in the source of a copy, their 
original version is placed in its history object. Therefore 
each source holds a pointer to its history. 

We will now explain by 
constructed and used. 

4.2.2 The simple case 

example how the tree gets 

Initially, a new segment cpyl is created as a copy of a 
fragment of source segment src (see Figure 3.a). The 
cache for src will be at the root of the tree; cpyl is its 
single descendant, and also its history object. When 
the data in cpyl is accessed, any page not in cpyl will 
be found, searching upwards in the tree, in src. 

Copy-on-write is implemented as follows. When the 
copy cpyl is created, all the pages of (the corresponding 
fragment of) the source src are made read-only. When a 
write violation occurs in the copy, a new (unprotected) 
page frame is allocated for the copy, and its value is 
copied from the corresponding src page. When a write 
violation occurs in the source, two cases are possible. 
If the history object (i.e. cpyl, in this case) already 
has its own version of the page, it suffices to make the 
page writable. Otherwise, an unprotected page frame 
is allocated in the history object, the data copied into 
it, and the source page is made writable. 

A copy-on-reference scheme is implemented in a sim- 
ilar fashion. Immediately after cpyl is created, access 
to any of its pages will fault; at that point a copy is 
allocated in cpyl as above. Similarly, a write violation 
in src will cause (a copy of) the original version of the 
page to be placed in its history, i.e. in cpyl. 

When the copy segment is deleted, its cache may sim- 
ply be discarded. This is the normal case in Unix: the 
source is the data segment of a process which forks; the 
copy is the child process’s data. When the child exits, 
its data are deleted. 

In the case where the source is deleted first (the par- 
ent process exits while the child continues), remaining 

unmodified source data must be kept until the copy is 
deleted (see section 4.2.5). 

4.2.3 Successive copies 

Suppose the cpyl object in the previous example be- 
comes in turn the source of a copy to segment copy- 
OfCpyl, as in Figure 3.b. In Unix this occurs when a 
child process forks. The same tree construction algo- 
rithm applies: the tree is extended downwards. All the 
pages of (the corresponding fragment of) cpyl are made 
read-only. The history object of cpyl is copyOfCpy1. A 
cache miss in copyOfCpy1 goes to cpyl, and then possi- 
bly to src. The write-violation algorithm is the same as 
above (with the appropriate shift of roles, the source be- 
ing cpyl, and the target and history being copyOfCpy1). 

A small complication does arise in this case. When 
a write violation occurs in cpyl, a copy of the page is 
taken from src, but copyOfCpy1 must also get its own 
copy, since at the time of creation of CopyOfCpyl, its 
value was logically taken from src. 

Now, suppose src is again the source of a second copy, 
to cpy2 (see Figure 3.~); in Unix this occurs for instance 
when creating a pipeline, or with daemons. Then an 
intermediate “working” cache and segment wl must be 
created to preserve the shape invariant. wl is inserted 
between src and cpyl. wl is the history object of src 
and the parent of both cpyl and cpy2. A cache miss in 
cpyl may be resolved either in wl or in src; similarly 
for cpy2. At the time of the second copy, the corre- 
sponding pages of src must again be set read-only. The 
write violation algorithm above is unchanged (with the 
appropriate name substitutions: src is the source, cpyl 
or cpy2 is the copy, and wl is the history object). 

If src is the source of a third copy, as in Figure 3.d, 
then again a working cache w2 is inserted in the tree to 
preserve its shape, and the src pages protected again. 

4.2.4 Copying into an existing segment 

Suppose we wish to copy a large amount of data into 
an existing segment. If the destination has been al- 
ready initialized from another one, it already has a par- 
ent. Therefore, applying the above technique to the 
new copy requires a generalization, so that individual 
fragments may have different, arbitrary, parents. 

To allow this, the “parent” attribute of a cache de- 
scriptor is in fact a list of parent descriptors. Each such 
descriptor holds the start offset and size of a fragment, 
and a pointer to the parent local-cache descriptor. The 
list is sorted by this offset. 
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4.2.5 Comparison with shadow objects 

The history objects technique was inspired by the 
Mach’s shadow objects [13]. When Mach initializes a 
cache (which they call a memory object) as a copy of an 
other, the source is set read-only, and two new memory 
objects, the shadow objects, are created. The shadows 
are to keep the pages modified by the source and copy 
objects respectively; the original pages remain in the 
source object. 

If successive copies occur, a chain of shadows may 
build up. The current state of the source object is dis- 
persed across the original object and its shadows; sim- 
ilarly for the copy. This causes some difficulties. For 
instance: 

1. When a Unix process forks, the child’s data seg- 
ment is a copy of the parent’s After the fork, data 
modified by the parent is held by its shadow, even 
after the child exits. To prevent the creation of long 
chains of shadow objects, when the parent forks re- 
peatedly (as do Unix shells), the shadow must be 
merged with the source after the child exits. This 
garbage collection is a major complication of the 
Mach algorithm [12]. 

2. The actual reference of a particular cache (i.e. the 
starting point for a cache look-up) changes dynam- 
ically as it is copied. 

Our data structures are inverted with respect to the 
Mach structures. By construction of the history tree, 
the second problem does not occur. The history object 
technique eliminates the first problem for the source 
cache. The destination cache is a problem (i.e. chains 
of inactive history objects build up, which should be 
merged), only if a process forks and then exits, while 
its child continues, forks and exits, and so on. This kind 
of behavior is exceptional in Unix applications. 

4.3 Per-virtual-page copy-on-write 

When a copy of a relatively small fragment is required, 
a different optimization is applied: in this case, we use 
a per-virtual-page technique. Sprite [12] and SunOS 4.0 
[5] defer copies on a per-virtual-page basis only. 

For each page of the source fragment present in real 
memory, the PVM protects the page read-only. For all 
pages of the destination, it puts a copy-on-write page 
stub in the global map. The stub allows to find the cor- 
responding source page: if the latter is in real memory, 
the stub contains a pointer to the source page descrip- 
tor; otherwise, it contains a pointer to the source local- 
cache descriptor and its offset within the source seg- 
ment. All the stubs for some source page are threaded 

together on a list attached to its page descriptor. In this 
way, the source page is accessible, for reads, through any 
cache to which it was copied. 

When a write violation occurs on a copy-on-write 
page stub, a new page frame is allocated with a copy 
of the source page, and inserted in the global map in 
replacement of the stub. 

5 Application and experience 

An operating system kernel integrating a GM1 imple- 
mentation must provide a segment manager and a set 
of basic synchronization mechanisms. That kernel uses 
the GM1 to manage the address spaces according to its 
own memory management model. 

We discuss, in section 5.1, some policies adopted by 
the Chorus Nucleus in its use of the GM1 to implement 
the Chorus memory management interface [l], and the 
Chorus/MIX implementation of Unix. Sections 5.2 and 
5.3 discuss the current status and some performance 
results, respectively. 

5.1 The Chorus Nucleus and the GM1 

This section starts with a brief description of Chorus 
Nucleus abstractions. In sections 5.1.2 and 5.1.3, we 
describe the functionality and implementation of the 
segment manager, the Nucleus interface between map- 
pers and a GM1 implementation. Section 5.1.4 describes 
the implementation of some Nucleus operations, based 
on the GM1 and the segment manager. Section 5.1.5 de- 
scribes the Chorus/MIX memory management. Finally, 
we discuss the relationship between memory manage- 
ment and IPC message passing. 

5.1.1 Background 

The physical support for a Chorus system [15] is com- 
posed of a set of sites, interconnected by a communica- 
tions network. There is one Nucleus per site. A given 
site can support many simultaneous actors, i.e. address 
spaces, each supporting the execution of many parallel 
threads. Each actor normally has its own protected ad- 
dress space, but different actors may also use the same 
address space if necessary. 

The Nucleus offers an IPC (Inter-Process Commu- 
nication) message communication mechanism, allow- 
ing threads to communicate with each other (including 
across actor boundaries). Messages are not addressed 
directly to threads, but to intermediate entities called 
ports. A port is an address to which messa.ges can be 
sent, and a queue holding the messages received but not 
yet consumed. 
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Nucleus memory management. considers the text and 
data of an actor to be a set of non-overla.pping regions, 
which form the valid portions of the actor address space. 
These regions are generally mapped to seconldary stor- 
age objects, called segments. 

A segment is implemented by an independent ac- 
tor, its mapper, generally on secondary storage. Seg- 
ments are designated by sparse capabilities (similar to 
Amoeba’s [17]), containing the mapper’s port name and 
a key. The key is opaque data of the mapper, allowing 
it to manage and protect segment access. ,4 mapper 
exports a standard read/write interface, invoked using 
the IPC mechanisms, Some mappers are kno#wn to the 
Nucleus as defaults; these export an additional interface 
for the allocation of temporary segments. 

5.12 Segment manager 

The segment manager maps each segment used on the 
site to a GM1 local-cache. Given a segment capabil- 
ity, the segment manager either finds the correspond- 
ing local-cache if it exists, or assigns one. A l,ocal-cache 
may be discarded (see section 5.1.3) when the segment 
is no longer in use on the site. 

The segment manager associates a local-ca.che in use 
with a local-cache capability, containing the segment 
manager port name, a reference to the local-cache, and 
some protection information. The cache control oper- 
ations of Table 4 can be invoked by sending an IPC 
request to the segment manager, containing lthe appro- 
priate capability. The segment manager, acting as cache 
server, transforms such a request into the corresponding 
GM1 operation. 

Similarly, the segment manager transforms a GM1 
upcall (of Table 3) into IPC upcalls to the correspond- 
ing segment mapper. For instance, when th.e memory 
manager calls pullln, the segment manager sends an IPC 
read request, to the appropriate segment mapper port 
(taken from the segment capability). The request con- 
tains the segment capability and the local-cache capa- 
bility, and the start offset, size, and access type of the 
required data. The mapper replies with a message con- 
taining the required data (transported as explained in 
section 5.1.6). Mappers may use the local-c,ache capa- 
bility parameter to implement distributed consistency 
maintenance protocols above the different local-caches. 

Finally, the segment manager may allocate a tempo- 
rary local-cache. The segmeut manager waits for the 
first pushOut upcall for such a temporary cache to al- 
locate it a “swap” temporary segment with a default 
mapper. 

5.1.3 Segment cachiug 

When some segment is no longer in use, the correspond- 
ing GM1 cache could be discarded. Instead, the segment 
manager keeps such an unreferenced cache as long as 
possible, i.e. as long as there is enough free physical 
memory, and enough space in the sagment manager ta- 
bles. When a program requests the use of a permanent 
segment, the manager first checks if there is a cache al- 
ready kept for it. This segment caching strategy has a 
very significant impact on the performance of program 
loading (Unix exec) when the same programs are loaded 
frequently, such as occurs during a large make. 

5.1.4 Nucleus memory management 

The Nucleus interface contains high-level memory man- 
agement operations, combining the functionality of a 
few GM1 operations. We will describe a few examples 
of operations. 

The Chorus rgnAllocate operation allocates a new 
memory region within an actor. To implement it, the 
the segment manager creates a temporary local-cache, 
which it maps into the actor using regioncreate the GM1 
operation. 

Another operation, rgnMap, maps an existing seg- 
ment into an actor. For this operation, the segment 
manager first finds (or creates) a corresponding GM1 
local-cache, and then maps it, using the regioncreate 
GhJI operation. 

The Chorus rgnlnit creates a new region in an actor 
as a copy of an given existing segment. The segment 
manager creates a temporary local-cache, finds (or cre- 
ates) the cache corresponding to the source segment, 
invokes cache.copy to initialize the new cache contents, 
and finally maps it, using regioncreate. 

The rgnMapFromActor and rgnlnitFromActor opera- 
tions are similar to rgnMap and rgnlnit, except that the 
source segment is designated by an address within an 
actor. These operations find the source local-cache us- 
ing the context.findRegion and region.status GhiiI oper- 
ations. 

5.1.5 Chorus/MIX memory management 

Chorus/MIX [6, 21 is a System V compatible Unix im- 
plementation in Chorus. Many of the functionalities of 
a standard Unix kernel are implemented by an actor, 
the process manager, which maps Unix process seman- 
tics onto the Chorus Nucleus objects. A standard Unix 
process is implemented as a Chorus actor hosting a sin- 
gle thread. 

The Unix exec invokes the Chorus rgnMap operation 
to map the text segment of the process, rgnlnit for its 
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data segment, and rgnAllocate for the stack. A Unix fork 
uses rgnMapFromActor to share the text segment be- 
tween the parent and child processes. It invokes rgnlnit- 
FromActor to create the child’s data and stack areas as 
copies of the parent’s. 

5.1.6 IPC and memory management 

IPC messages serve to transport data, both for users 
and for the system. Therefore we decouple IPC from 
memory management, in that IPC never has the side 
effect of creating, destroying, or changing the size of 
any region. In this sense, our concepts are more similar 
to the V-System’s view [4] than to Mach [I8]. However, 
IPC uses the per-page deferred copy, and the move se- 
mantics (see section 3.3-l), to optimize message trans- 
fers. 

Messages are of limited size (64 Kbytes in the cur- 
rent implementation). They are not suitable for trans- 
ferring large and/or sparse data. To transfer large or 
sparse data, users should call the memory management 
operations, and not IPC. 

The kernel has a single fixed-sized transit segment, 
mapped in the kernel address space, made of 64 Kbyte 
slots. An IPC send is implemented as a cachcxopy be- 
tween the user-space segment and a transit slot, if the 
segment is large enough, otherwise as a bcopy. A receive 
is implemented by cache.movc or bcopy. 

5.2 Current status 

We have made several different implementations of the 
GM1 in the Chorus Nucleus: 

The PVM, described in this paper, suitable for 
general-purpose operating systems on paged hard- 
ware architectures. 

A minimal implementation, suited for embedded 
real-time systems and small hardware configura- 
tions. 

A simulation implementation that uses a Unix pro- 
cess as a virtual machine. This implementation is 
integrated into the Chorus Nucleus Simulator.3 

Implementations of GMI for segmented (iAPX 286) and 
paged-segmented (iAPX 386) architectures are under 
development. 

3The Chorus Nucleus Simulator is a Nucleus, implemented as 
a process on Uuix systems. It is used as a development tool: 
it allows machine-independent kernel evolutions to be developed 
and validated comfortably. ln addition, it is a practical teaching 
aid, and allows Chorus users to develop applications while the 
Nucleus is uot yet ported on their hardware architecture. 

The RIM implementation is the only difference be- 
tween these Nucleus versions. All the other Nucleus 
components, which access memory management facili- 
ties via the GMI, are unaffected. 

The Nucleus and the PVM are written in C++, and 
have been ported to various hardware: Sun 3, Bull 
DPX 1000 (a MC68020 workstation with a Motorola 
PMMU), Telmat T3000 (a MC68020-based multi- 
processor with a custom MMU), various MC68030 
boards and AT/386 PC’s. Work is in progress on several 
RISC architectures: SPARC (4Q89), MC88000 (4Q89) 
and ARM-3 (lQ90) processor based machines. 

On the memory management point of view, these dif- 
ferent ports require only the rewriting of the (small) 
machine-dependent part of the PVM. On average, it 
takes about one manxmonth of work to port to a new 
MMU. Table 5 shows the sizes of the various compo- 
nents. The number of lines of code includes header files 
and comments. It does not include per-virtual-page de- 
ferred copy, which is not fully operational at the time 
of this writing. The Nucleus part includes the system 
call interface. 

Independent 1 1980 1 0 1 7.5 I<b 

Total 1 3700 1 0 1 15.3 Kb 

MMU Dependent Part 
Component C++ assembler object 

(lines) lines (bytes) 
PVM: Machine- 

Dependent on Sun 790 150 3.2 I<b 
PVM: Machine- 

Dependent on PMMU 1120 30 4.0 Kb 
PVM: Machine- 

Dependent on iAPX 386 980 200 3.8 Kb 

Table 5: Chorus Memory Management Components 
Sizes. 

5.3 Perforinauce 

Two benchmark programs illustrate the performance of 
the Chorus virtual memory management based on the 
Paged Virtual Memory manager. These measure: 

l The cost of allocating large, sparse regions, 
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Chorus: zero-filled memory allocation 
region actual allocation of real memory 

0 Kb 8 Kb 256 Kb 1024 Kb 
0 pages 1 page 32 pages 128 pages 

8 Kb 0.350 ms 1.50 ms - 
256 Kb 0.352 ms 1.60 ms 36.6 ms - 

1024 Kb 0.390 ms 1.63 ms 37.7 ms 145.9 ms 

Mach: zero-filled memory ahocation 
region size I actual allocation of real memors 1 

Table 6: Performance for zero-filled memory allocation. 

l The overhead of deferred copy based on history 
trees, and 

l The overhead of a real page copy, after delaying it. 

For the purpose of comparison, those benchmark pro- 
grams have also been run on Math/4.3 operating sys- 
tem. 

The measurements presented below were made on a 
SUN-3/60 workstation with 8 megabytes of memory, 8- 
Kbyte pages, a MC68020 CPU running at BOMHZ, i.e. 
about 3 MIPS of processing power. 

A copy (Unix bcopy) of 8 Kbytes in real m,emory, im- 
plemented in assembler, takes 1.4 ms. Filling 8 K bytes 
of real memory with zeroes (bzero) takes 0.87 ms. 

5.3.1 Benchmarks 

The first benchmark program creates a region, accesses 
some of the data within the region in order to demand 
allocation of filled-zero memory and, finally, deallocates 
the region. The following tables give the results of this 
benchmark on Chorus and Mach. For each region size, 
the table 6 shows the time elapsed for creating the re- 
gion, allocating and deallocating some real memory, and 
destroying the region, averaged over some large number 
of iterations. 

The second program creates a region, which is en- 
tirely allocated in real memory. It then copies it, and 
modifies some of the data within the source region (in 
order to force a real copy). The table 7 gives the results 
of this measurement. The source region is created and 

Chorus: copy-on-write 
region size Actual amount of data copied 

0 Kb 1 8 Kb 1 256 Kb 1 1024 Kb 
0 pages 1 page 32 pages 128 pages 

8 Kb 1 0.4 ms 1 2.10 ms 1 - I 

I 256 Kb 
1024 Kb 

Mach: copy-on-write 
region size Actual amount of data copied 

0 Kb 8 Kb 256 Kb 1024 Kb 
0 pages 1 page 32 pages 128 pages 

8 Kb 2.7 ms 4.82 ms - - 

256 Kb 2.9 ms 5.12 ms 66.4 ms - 
1024 Kb 3.08 ms 5.18 ms 67 ms 256.41 ms 

Table 7: Performance of copy-on-write. 

allocated before starting the measurement. For each re- 
gion size, the table shows the time elapsed for creating 
the copy region, forcing a copy of some amount of data, 
and deallocating and destroying the copy region. 

5.3.2 Discussion 

The above figures show that the strong structure of 
our design does not preclude an efficient implementa- 
tion. On the contrary: the simplicity of our machine- 
dependent part allows fine optimization with a minimal 
effort. 

In Chorus, the cost of creating and destroying a re- 
gion is practically independent of its size: the difference 
between creating a l-page region and a 128-page region 
is only 10%. In fact, the region creation is totally inde- 
pendent of the region size, but its destruction requires 
the invalidation of the corresponding portion of the vir- 
tual address space. This is consistent with our initial 
goals. 

The structural management overhead of a simple de- 
ferred copy initialization is of the order of 0.03 ms for 
the history tree (i.e. 10% of a simple region creation 
cost), plus 0.02 ms per page frame allocated in the ini- 
tial region before the copy. The overhead per page is 
the cost of the page protection, calculated as the cost of 
a creation/copy of 128 pages region, minus the cost of a 
creation/copy of a one page region, divided by the num- 
ber of additional pages, i.e. (2.4 rns - 0.4 ms)/127. The 
overhead of tree mana.gement is calculated as the cost of 
a l-page region creation/copy, minus the cost of creat- 
ing aud allocating 0 pages in a l-page region, minus the 
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per-page overhead, i.e. 0.4 ms - 0.35 ms - 0.02 ms = 
0.03 ms. 

The overhead of copy-on-write (including the protec- 
tion violation handling, page lookup in the history tree, 
new page allocation and mapping) is 0.31 ms per page. 
The formula used here is the cost of doing a deferred 
copy and a real copy of a region, minus the cost of a 
deferred copy of the same size region with no real copy, 
divided by the size of the region, minus the cost of copy- 
ing a real page, i.e. (221.9 ms - 2.4 ms)/128 - 1.4 ms. 

The overhead of the history tree using may be de- 
duced by comparing the last result with the cost of a 
simple on-demand page allocation, which is 0.27 ms. 
Here again, the overhead is of the order of 10%. The 
simple on-demand page allocation cost is calculated as 
the cost of creating (and deleting) and zero-filling a 12% 
page region, minus the cost of creating/deleting the 
same-sized region with no data allocation, divided by 
128, minus the cost of filling a real page with zeroes, 
i.e. (145.9 ms - 0.39 ms)/l% - 0.87 ms. 

6 Conclusion 

The multiple purposes of the Chorus kernel led to de- 
sign its memory management as a truly independent, 
replaceable part. It provides a generic, architecture- 
independent, interface to the other components. 

We identified generic memory management abstrac- 
tions, matching the needs of different kinds of operation 
systems. They are independent of the particularities of 
different hardware architectures, while still allowing ef- 
ficient implementations. 

In this paper, we discussed in some detail one 
(hardware-independent) implementation of this generic 
interface, suited for state-of-the art demand-paged vir- 
tual memory. Our encouraging performance figures 
show the validity of our approach. 
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