
P U B L I S H I N G :

A R e l i a b l e B r o a d c a s t C o m m u n i c a t i o n M e c h a n i s m

Michad L. Powdl
David L. Presotto

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

A B S T R A C T

Publishing is a model and mechanism for
crash recovery in a distributed computing en-
vironment. Published communication works for
systems connected via a broadcast medium by
recording messages transmitted over the network.
The recovery mechanism can .be completely tran-
sparent to the failed process and all processes in-
teracting with it. Although published communi-
cation is intended for a broadcast network such
as a bus, a ring, or an Ethernet, it can be used in
other environments.

A recorder reliably stores all messages that
are transmitted, as well as checkpoint and
recovery information. When it detects a failure,
the recorder may restart affected processes from
checkpoints. The recorder subsequently resends
to each process air messages which were sent to it
since the time its checkpoint was taken, while ig-
noring duplicate messages sent by it.

Message-based systems without shared
memory can use published communications to re-
cover groups of processes. Simulations show that
at least 5 multi-user minicomputers can be sup-
ported on a s tandard Ethernet using a single
recorder. The prototype version implemented in
DEMOS/MP demonstrates that an error recovery
can be transparent to user processes and can be
centralized in the network.

This rerezrch wu eupported by Nztional Science Found~iol ~ t MCS-
8010686, the State of California MICRO program, and the Defense Advance Regearch
Projects AgenCy (DoD) Arpa Order No. 4031 monitored by the Naval Electronic Sys-
tern Command under Contract No. N00089-82-C,-02~.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-115-6/83/010/0100 $00.75

1. Mot ivat ion

To death and taxes we can add another certainty of
life - errors. In a computing system, errors are caused
by many things and often result in the failure of activi-
ties performed by the system. As a computer system
becomes more distributed and contains more auto-
nomous components, not only does the frequency of
errors increase, but also the number of conditions that
are classified as errors. One of the promises of distri-
buted computing is a more available computing system.
To achieve this goal, it is necessary to continue running
despite the presence of errors.

Recovering from failures in a monolithic computer
system has been thoroughly studied. A failure usually
manifests itself as (or requires) the halting of the com-
plete system. Therefore, a single, system-wide, con-
sistent state is all that is needed to restart. Transaction
mechanisms pioneered in database systems[Verhofstad
78, Gray 78], coupled with eheekpointing of system and
user program states, can allow the system to be restored
to some state it had before the failure.

In a distributed system, complete failures are infre-
quent. Moreover, it is rarely preferable to force the
whole distributed system to fail in order to recover from
a partial failure. Thus, in recovering from errors, it is
necessary to weave a restart s tate for part of the system
into the current s tate of the rest of the system.

Because the system is distributed, it is more difficult
to get a completely consistent picture of the system
state. Since the system continues to run as the image is
being formed, special care must b4 taken to ensure that
the snapshot represents a complete and consistent s tate
for the system.

The difficulty of recovery in distributed systems is
due to the interactions between the processes. Unlike a
single-processor system in which the interactions are
strictly ordered, it may be difficult from any particular
perspective to know in what order a set of interactions
occurred. Published communications provides a way to
recover from failures by using the broadcast medium as
the viewpoint from which to obtain a properly ordered
and consistent view of the system.

i00 "

2. P u b l i s h e d C o m m u n l e a t l o n s

In this section, we define our model of processes and
failures, and describe published communications in those
terms.

2.1. Model o f Proeess lng and FsIlures

We define a process as an instance of a program
that has begun to execute. The state of such a process
includes:

• the instructions and variables used in the program

• ~ information related to the sequencing of the pro-
gram such as the program counter and the execu-
tion stack

• information managed by the system for the process
such as messages not yet received or device buffers

Processes interact with one another by sharing or passing
a subset of this state. Since the processors are assumed
to be deterministic, the information contained in an
instantaneous process state is determined by its initial
state and its interactions with other processes.

Processes can fail for a number of reasons and in a
" number of ways. For the purposes of our study we can

classify failures according to two characteristics: whether
or not the failure is detected, and whether or not it is
deterministic. Undetected failures are those that are not
noticed by the process. For instance, if the adder pro-
duces a wrong answer and the program continues run-
ning with the bad result, there may be no way to know
that there is a problem. A failure is also considered
undetected if its effects are allowed to propagate to other
processes before detection. Deterministic failures will
occur whenever the process at tempts the same operation
or sequence. Without detailed knowledge of the cir-
cumstances, deterministic failures cannot he avoided. To
be recoverable, a failure must be detected and must not
be deterministic.

Included in the group of recoverable failures are
hardware errors, transmission errors, resource and load
dependent errors. Generally, a recoverable error would
not have occurred if the processes involved had been
running on different processors or at a different time.
The essential characteristic of recoverable failures is that
there is a (preferably good) chance they will not occur if
the process does the same thing over again.

This paper treats only recoverable failures. A deter-
ministic failure can be avoided only by eliminating some
activity. The decision not to do something that had
been requested is beyond the scope of a general recovery
mechanism. A completely undetected failure cannot, of
course, be recovered. However, since we include in
undetected failures those that are detected too late to
avoid propagation to other processes, it is possible to
change some undetected failures to recoverable ones by
increasing error checking in processes.

A crash is defined as the halting of a process on the
detection of a recoverable failure. Since a crash is
defined in terms of processes, the failure of a processor
can be thought of as the crash of all processes in that

processor. In fact, where convenient, the system is per-
mitted to "round up" any system failure to a crash of all
the processes affected by the failure.

Recovery is the act, following a crash, of returning
the system to a consistent s tate from which it can
proceed as if the crash had not occurred. Recovery
requires two things: the ability to preserve information
across a crash, and the abili ty to construct a consistent
s tate using the information so preserved.

Information is preserved across a crash in a non-
volatile storage facility, that is, one that has low proba-
bility of being altered by the crash. This is usually
achieved by storing the information on devices whose
failure modes are decoupled in some way from those of
the other elements of the system. Often the information
is also duplicated to insure against single failures of the
storage facility. A number of solutions to this problem
have been developed, including MIT's Swallow system
[Svobodova 80,Arena 81] and Lampson's and Sturgis's
stable storage[Lampson and Sturgis 79]. We assume
that a reliable storage facility can he provided for use in
publishing messages.

To allow the reconstruction of consistent states of
processes, it is common to occasionally make copies of
part or all of the process state. In this paper, we call the
information necessary to reconstruct a complete process
state at some point in time a checkpoint. The entire
state of a process may be large, and techniques exist for
recording only the parts of the process state necessary to

reconstruct the complete state. To reduce the cost of
making repeated copies as the process state changes, the
system will make copies of the complete state only infre-
quently, and will usually make a copy of just that part
of the state that has changed since the previous check-
point.

Doing recovery in a multiprocess environment is
more difficult for two reasons: the checkpoints must pro-
vide enough information to create a consistent s tate
among several processes, and the recovered processes
must be brought back to a consistent s tate with
processes that did not fail.

2.2. C o n s i s t e n t S t a t e s

For isolated processes, determining a consistent
state is no problem - any complete state is consistent.
However, sets of processes that interact must he check-
pointed in such a way that all the separate checkpoints
are consistent with one another in light of the interac-
tions. Consider, for example, the three processes with
the interactions shown in Figure 2.1 (adapted from [Ran-
dell 78]). The horizontal axis represents time (increasing
left to right). The dashed vertical lines represent
interactions between two processes in which both
processes may communicate information to each other.
The square brackets represent the checkpoints of indivi-
dual processes. Since processes are deterministic except
for their interactions, a set of checkpoints is consistent
so long as there are no interactions which occur before
some of the checkpoints and after other ones.

i01

p r o c e s s A \! \

2 i \ \ process B]i !

process C / ~ I
, 2//

/ / time

i
= interaction = checkpoint t

FIGURE 2.1: C h e c k p o i n t s e t s 1 & 2 a r e
c o n s i s t e n t . C h e c k p o i n t s e t 3
is no t .

Represented graphically, if a line connecting a set of
checkpoints intersects no interaction lines, then those
checkpoints are consistent.

Figure 2.1 shows two sets of consistent checkpoints.
The checkpoints labeled 1 represent the starting state of
all three processes and are therefore consistent. The
checkpoints labeled 2 are consistent since no interactions
separate them. However, checkpoint set 3 represents an
inconsistent view. If the processes are restarted from
these checkpoints, process A will see the results of the
interaction labeled X, but process B will not. Faced
with these three checkpoints for each of the three
processes, it would be necessary to go to checkpoints
older than the most recent set.

The problem of obtaining consistent views of states
has been addressed in distributed database systems. The
most widely used solution has been that of transaction
processing[Gray 78, Skeen and Stonebraker 81]. A tran-
saction always takes the system from one consistent
state to another. The interacting processes declare when
a state is consistent, and the system prevents updates
from having effect until another consistent state is
reached. Transactions fit well in data base applications
where secondary storage is considered to be the only
important state. Applications are designed so that the
state of a process between transactions is unimportant
and need not be checkpointed. An application must also
be prepared to redo work done for a transaction that
does not complete.

We wish to place as little structure as possible on
the processes that can be recovered. In recovering gen-
eral distributed computation, we wish to have the follow-
ing properties:

1) Programmers are not required to know about the
checkpoint or recovery mechanism.

2) Checkpointing does not require global actions.

3) Recovery should require the minimum possible per-
turbation to nonofailing parts of the system.

Property 1 means that the mechanism cannot
require actions to be taken by the processes involved.
Property 2 means that checkpointing will be done for
individual processes. Property 3 means that individual

processes must be recoverable, despite interactions with
other processes.

One way to obtain these properties is to provide a
way that an individual process may be checkpointed so
that its state can be restored to that at the time of the
failure. This may be done by saving the original state of
the process, plus all of its interactions. The state may
be recovered by restarting the execution of the program
and providing it with the same interactions it had when
it originally ran. If we constrain ourselves to message-
based systems, then the interactions are messages and
can be easily identified. The checkpoint information
must be augmented on each interaction (message). We
call the recording of these messages publishing. In Figure
2.1, process B could be restarted with checkpoint 3 and
subsequently be presented with interaction X in order to
recover it.

Since we are interested only in the most recent state
and not any previous ones, we can often reduce t h e
amount of information saved for a process by occasion-
ally saving its complete state. Once the complete state
has been saved, any older interactions can be discarded.
We need only save those interactions that occurred after
the most recent complete process state. We can state it
as a rule:

A checkpoint for a communicating process taken at
time to is valid at time t > to, if all the interactions
of the process between time to and time t are also
saved.

2 .3 . R e c o v e r i n g f r o m C r a s h e s

To recreate the state of a process at time t from a
checkpoint taken at time t~ it is necessary to cause the
process to redo the computation done between to and t.
Since processes are assumed to be deterministic between
interactions, it is merely necessary to recreate the same
interactions in the same sequence in order to cause the
same computation to take place. It is of course neces-
sary to prohibit a recovering process from affecting other
processes until it reaches the state it had at the time of
the failure. Otherwise, for example, an operation that
should have been done once may be done twice.

102

In the above discussion, the reader might have
assumed that time t was the time of the failure. Cer-
tainly, the above statements are true for that value of t.
However, a more interesting t is the time that recovery
for the process is completed. Since other processes con-
tinue while recovery is taking place, interactions between
the time of the failure and the time recovery is complete
must also be accounted for.

The recovery of a process thus contains several
aspects:

1) The process is restarted from a checkpoint.

2) The process runs and is presented with all interac-
tions that happened after the checkpoint.

3) Messages that were sent by the process before the
failure occurred are discarded.

8. A Published Communications System

In this section, we describe the design of a practical
published communications system. We have imple-
mented published communications in DEMOS/MP, a
message-based distributed operating system.
DEMOS/MP is an experimental system, and does not
actually support a broadcast medium as required by
published communications. Thus, we have emulated an
acceptable network.

Figure 3.1 shows a system in normal operation. A
recording node is attached to the network via a special
interface. The node is in charge of recording all mes-
sages on the network and of initiating and directing all
recovery operations.

The necessary components of a published communi-
cation system are:

• Broadcasting messages

• Storing messages and checkpoints

• Detecting crashes

• Recovering processes

We will discuss our design of these components in turn.

8.1. B r o a d c a s t i n g Messages

In order to centralize the recovery function in a net-
work, it must be possible for some node to see all com-
munications that occur on the network, in the order in
which they were received. On many local area networks
(LANs), not only may any node overhear the messages
destined for another node, but it may do it passively,
that is, without the knowledge of the communicating
parties. Such networks include Ethernet[Metcalfe and
Boggs 76], rings[Farber et al 73,Wolf and Liu 78], and
Datakit[Fraser 79].

These networks were not designed with publishing
in mind. Therefore, they contain some characteristics
that, though avoidable, were not considered harmful in
the current implementations. For example, current Eth-
ernet connections may miss messages because they can-
not transfer data to the host computer fast enough. It
would be necessary to build a fast enough connection
with enough buffering to be guaranteed never to miss a
message.

It is important that the communicating parties and
the message recorder agree on which messages were
correctly transmitted and which were not. Since errors
may occur in the connection between the network and
the receiver of a message, we must rely on a lower level
(link level) communication protocol to correct for these
errors. The recorder must understand the protocol so
that it may determine whether a message was success-
fully transmitted or not.

Although the link level protocol can take care of
messages the recorder accepted but the receiver did not,
it cannot take care of messages the receiver accepted but
the recorder did not. We would normally expect the
recorder to be more reliable than a receiver, but nonethe-
less, it is possible for the latter case to arise. In this
case, it is necessary for the recorder to interfere to cause
the message to be rejected by the receiver (and
retransmitted by the sender).

LOCAL NETWORK

process ing node process ing node n

I
special

r ecord ing node

FIGURE 3.1: All messages are rece ived by bo th the
i n t ended r ece i ve r and the pub l i sh ing
p rocess which saves t h e m on disk.

103

Possible solutions to this problem depend on the
type of network. With an Ethernet, an "acknowledging
Ethernet"[Tokoro and Tamaru 77] may be used, in
which a space for an acknowledgement is inserted after
each packet . This space would be for the recorder to
acknowledge the recording of the message; if no ack-
nowledgement is present, the receiver discards the
packet. In a ring, it is possible to route the message so
that it must pass the recorder before reaching the
receiver (perhaps requiring an extra trip around t h e
ring). The recorder could mark the message to be
ignored if it could not record it. In a star network, all
messages pass through a central point. A recorder
attached to this point can refuse to pass on any messages
it cannot record.

With a combination of slightly re-en.gineered media,
a standard link level protocol, and a special feature to
allow the recorder to destroy messages it cannot record,
it is possible to guarantee that a message is received by
the destination only if it is recorded, and that the
recorder can determine which messages have been suc-
cessfully received by the destination. This guarantee
does not hold in the light of network parti t ioning or
unrecoverable recorder failure. However, the probabili ty
of such failures can be made acceptably low with con-
ventional hardware reliability techniques.

3.2. Storing Messages and Checkpoints
Checkpoint information is stored according to pro-

cess id. When a new process is created, the recorder is
told the initial s tate of the process (usually, a program
name and some parameters).

Messages seen by the recorder are stored in the
order in which they would be received by the destination
process. This is the message stream that will be
transmitted to the process if it is restarted. In addition,
the recorder keeps track of the highest numbered mes-
sage that a process has sent. This will determine when
messages generated by a recovering process should be
transmitted to their destinations.

At any time, the recorder will accept a checkpoint
for a process. After the checkpoint has been reliably
stored, older checkpoints and messages can be discarded.
Frequent checkpointing decreases the amount of storage
required and the t ime to recover a process, but increases
the execution and network cost. The correct choice of
checkpointing frequency will improve performance, but
will not affect the recoverability of a process or the sys-
tem.

3.3. D e t e c t i n g C r a s h e s

The crash detection system has two distinct func-
tions; the detection of a process crash and the detection
of a .processor crash. The lat ter is rounded up to the
crash of all processes on the processor.

Single process crashes are characterized by process
errors. Such errors cause traps to the operating system
kernel, which stops the process and then sends a message
to the recovery manager containing the error type and
process id of the crashed process.

Processor crashes are detected via a timeout proto-
col. For each processor in the system, the recovery
manager starts a watchdog process on the recording
node. The watchdog process watches for messages from
the machine being watched. If no messages have been
seen in a while, the processor is considered to have
crashed and is restarted. Of course, it is a good idea for
each processor to send a message from time to time, even
if it has nothing to say, to avoid appearing to have
crashed.

8.4. Recovering Processes
The system in recovery mode looks as in Figure 3.2.

The main element is the recovery manager, which resides
on the recovery node and is in charge of all recovery
operations. It maintains a database of all known
processes, their locations, and checkpoint information.

When the recovery manager receives notification of
a crash it starts up a recovery process for each crashed
process. The recovery process then performs the follow-
ing steps:

processing node processing node n

FIGURE 3.e: Process B is r e s t a r t ed at
i ts last checkpoint. A recovery
process resends it all i ts
published messages , All messages
resen t by process B are discarded.

I,
special

recording node

104

(1) Pick a node for the process to restart on. Unless
the processor has failed, this will be the same node
that the process used to be on. If the processor has
failed, it would be best to have one or more spare
processors on the network that could assume the
identities of failed processors. Otherwise, in addi-
tion to recovering processes for a failed processor, it
will be necessary to migrate them to other nodes.

(2) Send a message to the node's kernel telling it to
start up a process with the specified process id and
set it in the recovering state. Transmit the infor-
mation from the latest checkpoint to allow the ker-
nel to regenerate the process to the time of that
checkpoint. Also, notify the kernel when to stop
ignoring messages from the process. The process
can then resume running.

(3) Send to the recovering process all messages that it
had received between the time of its last checkpoint
and the subsequent crash.

It is up to the kernel on the new processor to ignore
all messages sent by the recovering process until the pro-
cess sends a message it had not sent before the crash.

As stated above, it is possible that a process will
have to be recovered on a different processor. This is
essentially process migration combined with recovery.
[Powell and Miller 83] explains in detail a mechanism for
migrating processes from a source processor to a destina-
tion processor in a distributed system. Since the
recorder has the requisite process state, it can mimic the
actions of the source processor in order to restart the
crashed process on another node. It is also the duty of
the source processor to forward some messages following
the actual migration of a process. Since the former
location of the process is not responding to messages, the
recorder can forward them itself without interference.

4. R e l a t e d W o r k

Publishing provides a system with reliable message
delivery, the guarantee that all messages will eventually
be delivered despite crashes of either sender or receiver.
A number of systems currently support reliable mes-
sages, including the Reliable Network[Hammer and Ship-
man 80], Tandem's Non-Stop system[Bartlett 81], the
Auregen Computer System[Borg et al 83], and Fred
Schneider's broadcast synchronization
protocols[Schneider 83]. Although each of these systems
has some similarity to publishing, they all differ from it
in one significant way: their mechanisms are all distri-
buted. In all these systems, the application processors
must expend resources, both CPU and memory, to save
the redundant information that will be used in the event
of crash recovery. Publishing, by passively listening to
the network, allows this work to be centralized in one
recorder processor. In many cases this will decrease the
amount of the system power consumed by the reliability
mechanism.

The centralization can also, perhaps counter-
intuitively, increase the reliability of the system. The
broadcast medium is a single point of failure for local
broadcast networks. Nonetheless, the medium can usu-
ally be made significantly more reliable than other parts
of the system. Increasing the reliability of one special
purpose processor, perhaps by adding an uninterruptable
power supply or replicating the processor, can be cheaper
than improving the reliability of all the processors in the
system.

Centralization also means the often complex algo-
rithms for recovery can be implemented once, and in a
straight-forward way. This contrasts with the Tandem
system, which requires servers to interact with the
recovery mechanism, and RelNet, which requires compli-
cated protocols and cooperation between nodes to spool
messages destined for crashed processors.

NODES
SENDING
iL~SSAO~

I
I I I I
I I I
I . ! . I

J i] ,
i , , [,

~ l ~ . ~ _ . ~ _ ~ ~ ~ ! J i~ ,

I . ~ I [t r ~ • I t r a n s m i t i receive process create I

I a t acknowledge I
: r e c o r d e r I s e r e

I on d i sk
J
I

NETWORK NETWORK RECORDING J PUBLISHING
MEDIUM INTERFACE NODE l DISKS

D : meslal~e sou~¢ - - - - -) C] - message sink

4 ~ create new message for each one received

- ~ ag" q 0

........................ = p a t h for s c k n o w i e d a e s f r o m r e c o r d e r

FIGURE 5.1: Queuing Model of Publishing System

105

To build such a recorder, we assume the ability to
listen to all messages on a broadcast network. For at
least one network, the Ethernet, a number of such
listeners exist: In METRIC[McDaniel 77], a passive
recorder was attached to the Ether to record perfor-
mance information generated by programs on the net-
work. [Shoch and Hupp 79] mentions a "passive listener
set to receive every packet on the net." [Wilkinson 81]
used a passive Ethernet listener to resolve concurrency
conflicts for a data base system, and suggested using this
listener to record recovery information in the same
fashion as publishing.

5. A Queuing Model Simulation

In order to get a ball park figure for resource
requirements, we used s queuing system model to simu-
late s system. The model was an open queuing model
and was solved using IBM's RESQ2 model solver[Sauer
et al 81].

The system modeled was that depicted in Figure
3.1. Its open queuing model equivalent is depicted in
Figure 5.1. The processing nodes are represented as
message sources. Messages are assumed to be delivered
when they are broadcast, so the receiving nodes do not
appear in the model. A return path was included from
the recovery node to the network to take care of ack-
nowledgments from the recording process.

Sending nodes feed three types of messages into the
system: short messages (128 bytes long), long messages
(1024 bytes long), and checkpointing messages (1024
bytes long). The checkpoint traffic was generated under
the assumption that a process is checkpointed whenever
its published message storage exceeds its checkpoint size.
This policy tries to balance the cost of doing a check-
point for a process against the disk space required for
published message storage. The results were checkpoint
intervals between 1 second for 4k byte processes during
high message rates and 2 minutes for 64k byte processes
during low message rates. •

Table 5.1 shows the values of hardware parameters
chosen from our computing environment at Berkeley,
which consists of VAX 11/780% connected via a 3
megabit/sec Ethemet.

PARAMETER VALUE

Etherne t in t er face
i n t e r p a c k e t de lay 1,6ms

Network Bandwidth 10 megabi t
per s e c o n d

Disk Latency 3 ms

Disk Transfer Rate 2 megabyte
per s e c o n d

Time to P r o c e s s Packet 0.8 ms

TABLE 5.1: Simulat ion P a r a m e t e r s

The operating points for the model were determined
by three load parameters:

1) load average - the number of processes per proces-
sor.

2) state sizes - the sizes of the changeable state of a
process.

3) message traffic - the amount of network communica-
tion.

These parameters were estimated by measuring the
most heavily utilized research VAX at UCB over the
period of a week. The load average and state sizes were
directly measurable. Figure 5.2 shows the distribution of
state sizes.

p r o c e s s e s

30

, MFAN

I0

o '8' 'is '24 '32 '4o '4s
m e m o r y
(k bytes)

FIGURE 5.2: State Size Distribution for Unix P r o c e s s e s

The message traffic was not measurable, however,
since no distributed system existed at UCB at the time.
Instead, the following method was used to convert meas-
urements of the single processor into a distributed
equivalent. All system calls were assumed to translate to
short messages sent to servers. All I/O requests were
assumed to represent long messages sent to devices or
other processes. The sizes of these messages were
estimated to be 128 and 1024 bytes respectively.

Using these measurements, four operating points
were established, one representing the mean of each
parameter and the other three representing the measure-
ments when each of the parameters was maximized.
Table 5.2 shows the parameter values for those operating
points.

Descr ipt ion

Maximum
Load Average

Maximum Disk
A c c e s s Rate

Maximum System
Call Rate

Mean Value for
All P a r a m e t e r s

23

6

6

7

System
Calls

19/see 106/sec

43/sec lll/sec

51see 860/sec

13/sec ll8/sec

TABLE 5.2: Simulat ion Operat ing P o i n t s

106

Z utilized

100

80

60

40

20

0

Max Disk Rate

Unbuffered

Max Sys Call Rate

Mean

x " Rate

with 4k buffer

NODES

FIGURE 5.3a: Disk Utilization

Z utilized

100

80

60

40

:80

0

Max Sys Call Rate

Max Disk Rate ~ Mean

Max Load Ave

NODES

FIGURE 5.3b: Recovery Node Utilization

Z utilized

100

80

60

40

20

0

Max Sys Call Rate

Max Disk Rate

m~ Load Ave

NODES

FIGURE 5.3e: Network In ter face Utilization

The system was simulated for from 1 to 5 process-
ing nodes and from 1 to 3 disks at the publishing node.
Figure 5.3 shows plots of the utilization of the publishing
node processor, its disk system and its network interface.

The system stayed within physical limits with two
exceptions. The first was the saturation of the disk sys-
tem used with the maximum long m~sage rate. This
saturation was removed by allowing messages to be writ-
ten out in 4k byte buffers rather than forcing one disk
write per message. The second problem occurred at the
high system call rate operating point. If this rate per-
sists for more than a few seconds, all three subsystems
saturate when more than 3 processing nodes are attached
to the system. This saturation cannot be removed by
any simple optimizations; luckily, this operating point
was not a long-lived phenomenon in the system meas-
ured. Therefore saturation at this point should offer no
significant problems.

From this simulation we concluded that the simple
system was viable for at least 5 nodes. We found no
cases in which m , ch buffer space was needed in the
recording node (at most 28k bytes). The worst ease for
checkpoint and message storage was 2.76 megabytes.
However, this was constrained by our choice of check-
point intervals. Making less frequent checkpoints

increases the required storage by the amount of extra
message traffic in the longer intervals between check-
points.

6. Adding Published Communicat ions To A Dis-
tributed Sys t em

An initial implementation of published communica-
tions has been added to DEMOS/MP, a multiprocessor
version of the DEMOS system originally created for the
CRAY-l[Baskett et al 77,Powell 77]. Because it is an
experimental system, we simulate both the hardware and
the workload required to test these ideas. Since we are
primarily interested in whether or not such a system
could be created and how it wouid work, the experimen-
tal environment gave us results more easily and with less
disruption of normal work than a more realistic environ-
ment would have.

6.1. Experimental Environment

DEMOS/MP runs on a number of loosely connected
ZS000-based nodes, connected via point to point parallel
links. The same code also runs under VAX
UNIX[Ritchie and Thompson 78], where we have created
a simulated multiprocessor environment. Generally, all
code except low level device drivers is developed and
debugged on the VAX system. The code can then be
moved without change to the ZS000 systems.

Since we have no reliable broadcast network or pas-
sive network listeners, we simulate them. On the
Z8000s, we accomplish this by making the recording
node the hub of a star configuration. Any messages
received incorrectly by the recorder are not passed on.
In the version running under VAX UNIX, an Ack-
nowledging Ethernet is simulated using a low level proto-
col on top of the datagram sockets provided by
Berkeley's 4.1e UNIX implementation. Any messages
not immediately acknowledged by the recorder are
ignored by the receiver and will subsequently be resent
by the sender.

107

6.2. Changes to the D E M O S / M P Kerne l

Since the idea is to passively record recovery infor-
mation, the changes to the normal nodes were few. Most
significant was the simplest change, that of causing all

• messages (including intra, node) to be broadcast on the
network. Since our processes are spread rather thinly
across the nodes, most messages were already going over
the network, and the effect on performance was not
noticeable.

Applications that have heavy intra-node traffic could
notice a significant performance loss if all messages are
published. One way to reduce this problem is to treat a
group of processes as a single process. Messages within
the group are not published. However, all of the
processes i~ the group must be checkpointed and
recovered as a unit.

A few additions were made to allow the kernel to
notify the recovery manager of significant events such as
process creation and termination (normal or otherwise).

A simpler, but less flexible message forwarding
mechanism was implemented. If the recorder detects an
incorrectly routed message, it sends to the kernel of the
sender a request to update the address field of the send-
ing process's link.

6.8. The Reeording Node

The recording node runs a modified DEMOS/MP
kernel. This kernel includes:

• the checkpoint process

• the publishing process

• the recovery manager

• the recovery processes

• the garbage collector

These functions were put in the kernel to avoid interfer-
ing with message communication.

The crash detection processes run as user processes
and require no change to the DEMOS system. They are
exactly as described in the previous sections. ~

6.4. S ta tus of the Publishing Exper imen t

This implementation is the same as the system
described in previous sections with one exception: at
present no checkpointing is done after the process has
been started. All recovering processes are restarted at
the beginning and all published messages are subse-
quently replayed to them. Checkpointing is being added
and appears to present no particular problems.

A number of experiments still remain to be per-
formed. Questions of storage management and reliabil-
ity in the recorder must be addressed, including proto-
cols for replicated recorders. In addition, mechanisms
for improving the performance for intra-processor mes-
sages, such as treating all processes in a machine as one
process, should be explored.

7. Conclusions

We began by looking for a mechanism that could
centralize the reliability and recovery aspects of a distri-
buted system with a broadcast network. Starting with a
model for processes and their interactions, we identified
the state to be recovered and the information needed to
restore it. Publishing appears to fulfill the requirements
for a passive recorder and a recovery mechanism that
can handle any process at any time.

With the simulation and experiments described
above, we have shown that published communications is
a feasible and practical mechanism. Our implementation
revealed that it can be added naturally to many message
based systems. We have also shown, via our queuing
model, that the resource requirements necessary for pub-
fishing are reasonable for a class of systems typical of
many local area networks.

8. References

[A.rens 81]
G. C. Arens, "Recovery of the Swallow Reposi-
tory," Technical Report 252, MIT Lab for Com-
puter Science (Jan. 81).

[Bartlett 81]
J. Bartlett, "A NonStop Kernel," Proc. of 8th ACM
Symposium on O. S. Principles, pp. 22-29 (Dec 81).

[Baskett et al 77]
F. Baskett, J. H. Howard, and J. T. Montagne,
"Task Communication in DEMOS," Proc. of. 6th
ACM Symposium on O. S. Principles, pp. 23-32
(Dec 1977).

[Borg et al 83]
A. Borg, J. Banmbach, and S. Glazer, "A Message
System Supporting Fault Tolerance," Proc. of 9th
ACM Symposium on O. S. Principles, (Oct 1983).

[Farber et al 73]
D. Farber, J. Feldman, F. Heinrich, M. Hopwood,
K. Larson, D. Loomis, and L. Rowe, "The Distri-
buted Computing System," Proc. of 7th Annual
IEEE Computer Society International Conference,
pp. 31-34 (Feb 1973).

[Fraser 70]
A. G. Fraser, "Datakit - a modular network for syn-
chronous and asynchronous traffic," Conference
Record, International Conference on Comm., pp.
20.1.1-20.1.3 (June 1970).

[Gray 78 l
J. N. Gray, "Notes on Database Operating Sys-
tems," pp. 303-481 in Operating Systems: An
advanced course, Vol 60 of Lecture Notes in Comp.
Sci., Springer-Verlag (1078).

108

[Hammer and Shipman 80]
M. Hammer and D. Shipman, "Reliability Mechan-
isms for SDD-I: A System for Distributed Data-
bases," ACM TODS 6(4) pp. 431-466 (Dec 1980).

[Lampson and Sturgis 79]
B. Lampson and H. Sturgis, "Crash' Recovery in a
Distributed Data Storage System," Technical
Report, XEROX PARC (1979).

[McDaniel 771
G. McDaniel, "METRIC: a kernel instrumentation
system for distributed environments," ACM Proc.
6th Symposium on O.S. Principles, pp. 93-99 (Dec
,977).

[Metealfe and Boggs 76]
R. M. Metcalfe and D. R. Boggs, "Ethernet: distri-
buted packet switching for local computer net-
works," CACM lg pp. 395-404 (July 1976).

[Powell 77]
M. PoweU, "The DEMOS File System," Proc. of 6th
ACM Symposium on 0. S. Principles, pp. 33-42
(Dec 1977).

[PoweU and Miller 83]
M. Powell and B. P. Miller, "Process Migration in
DEMOS/MP," Proc. of #th ACM Symposium on 0.
S. Principles, (Oct 1083).

[Randell 78]
B. RandeU, "Reliable Computing Systems," pp.
282-292 in Operating Systems: An advanced course,
Vol 60 of Lecture Notes in Comp. Sci., Springer-
Verlag (1978).

[Ritchie and Thompson 78]
D. M. Ritchie and K. Thompson, "I~HX Time-
Sharing System," Bell System Technical Journal
67(6} pp. 1005-1029 (1078}.

[Saner et al 81]
C. H. Saner, E. A. MacNair, and'J. F. Kurose,
"Computer/Communications System Modeling with
the Research Queuing Package Version 2," Techni-
cal Report RA 128 (38950), IBM Watson Research
Center (Nov 1981).

[Schneider 83]
F. B. Schneider, "Synchronization in Distributed
Programs," ACM Transactions on Programming
Languages and Systems 4(2) pp. 179-195 (1983).

[Shoch and Hupp 79]
J. F. Shoch and J. A. Hupp, "Measured Perfor-
mance of an Ethernet Local Network," Local Area
Communications Network Symposium, (May 1O7O).

[Skeen and Stonebraker 81]
D. Skeen and M. Stonebraker, "-4. Formal Model of
Crash Recovery in a Distributed System," Proc. 5th
Berkeley workshop on Distributed Data and
Computer Networks, (Feb 1981).

[Svobodova 80]
L. Svobodova, "Management of Object Histories in
the Swallow Repository," Technical Report 243,
MIT Lab for Computer Science (July 1080).

]Tokoro and Tamaru 77]
M. Tokoro and K. Tamaru, "Acknowledging Ether-
net," Fall Compcon proceedings, pp. 320-325
(1977).

[Verhofstad 78]
J. S. M. Verhofstad, "Recovery techniques for data-
base systems," ACM Computing Surveys 10(2)pp.
167-196 (June 1978).

[Wilkinson 81]
W. K. Wilkinson, "Database Concurrency Control
and Recovery in Local Broadcast Networks," Ph.D.
Thesis, University of Wisconsin st Madison (1981).

[Wolf and Liu 78]
J. Wolf and M. Lin, "A Distributed Double-Loop
Computer Network (DDLCN)," Proc. Seventh Tczas
Conference on Computing Systems, pp. 6.19-6.34
(xo78).

109

