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A B S T R A C T  

Publishing is a model and mechanism for 
crash recovery in a distributed computing en- 
vironment. Published communication works for 
systems connected via a broadcast medium by 
recording messages transmitted over the network. 
The recovery mechanism can .be completely tran- 
sparent to the failed process and all processes in- 
teracting with it. Although published communi- 
cation is intended for a broadcast network such 
as a bus, a ring, or an Ethernet,  it  can be used in 
other environments. 

A recorder reliably stores all messages that  
are transmitted,  as well as checkpoint and 
recovery information. When it detects a failure, 
the recorder may restart  affected processes from 
checkpoints. The recorder subsequently resends 
to each process air messages which were sent to it  
since the time its checkpoint was taken, while ig- 
noring duplicate messages sent by it. 

Message-based systems without shared 
memory can use published communications to re- 
cover groups of processes. Simulations show that  
at least 5 multi-user minicomputers can be sup- 
ported on a s tandard Ethernet using a single 
recorder. The prototype version implemented in 
DEMOS/MP demonstrates that  an error recovery 
can be transparent  to user processes and can be 
centralized in the network. 
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1. Mot ivat ion  

To death and taxes we can add another certainty of 
life - errors. In a computing system, errors are caused 
by many things and often result in the failure of activi- 
ties performed by the system. As a computer system 
becomes more distributed and contains more auto- 
nomous components, not only does the frequency of 
errors increase, but  also the number of conditions that  
are classified as errors. One of the promises of distri- 
buted computing is a more available computing system. 
To achieve this goal, it is necessary to continue running 
despite the presence of errors. 

Recovering from failures in a monolithic computer 
system has been thoroughly studied. A failure usually 
manifests itself as (or requires) the halting of the com- 
plete system. Therefore, a single, system-wide, con- 
sistent state is all that  is needed to restart. Transaction 
mechanisms pioneered in database systems[Verhofstad 
78, Gray 78], coupled with eheekpointing of system and 
user program states, can allow the system to be restored 
to some state it  had before the failure. 

In a distributed system, complete failures are infre- 
quent. Moreover, it is rarely preferable to force the 
whole distributed system to fail in order to recover from 
a partial  failure. Thus, in recovering from errors, it  is 
necessary to weave a restart  s tate for part  of the system 
into the current s tate of the rest of the system. 

Because the system is distributed, it is more difficult 
to get a completely consistent picture of the system 
state. Since the system continues to run as the image is 
being formed, special care must b4 taken to ensure that  
the snapshot represents a complete and consistent s tate 
for the system. 

The difficulty of recovery in distributed systems is 
due to the interactions between the processes. Unlike a 
single-processor system in which the interactions are 
strictly ordered, it  may be difficult from any particular 
perspective to know in what order a set of interactions 
occurred. Published communications provides a way to 
recover from failures by using the broadcast medium as 
the viewpoint from which to obtain a properly ordered 
and consistent view of the system. 
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2. P u b l i s h e d  C o m m u n l e a t l o n s  

In this section, we define our model of processes and 
failures, and describe published communications in those 
terms. 

2.1. Model  o f  Proeess lng and FsIlures 

We define a process as an instance of a program 
that  has begun to execute. The state of such a process 
includes: 

• the instructions and variables used in the program 

• ~ information related to the sequencing of the pro- 
gram such as the program counter and the execu- 
tion stack 

• information managed by the system for the process 
such as messages not yet received or device buffers 

Processes interact with one another by sharing or passing 
a subset of this state. Since the processors are assumed 
to be deterministic, the information contained in an 
instantaneous process state is determined by its initial 
state and its interactions with other processes. 

Processes can fail for a number of reasons and in a 
" number of ways. For  the purposes of our study we can 

classify failures according to two characteristics: whether 
or not the failure is detected, and whether or not it  is 
deterministic. Undetected failures are those that  are not 
noticed by the process. For  instance, if the adder pro- 
duces a wrong answer and the program continues run- 
ning with the bad result, there may be no way to know 
that  there is a problem. A failure is also considered 
undetected if its effects are allowed to propagate to other 
processes before detection. Deterministic failures will 
occur whenever the process at tempts the same operation 
or sequence. Without  detailed knowledge of the cir- 
cumstances, deterministic failures cannot he avoided. To 
be recoverable, a failure must be detected and must not 
be deterministic. 

Included in the group of recoverable failures are 
hardware errors, transmission errors, resource and load 
dependent errors. Generally, a recoverable error would 
not have occurred if the processes involved had been 
running on different processors or at a different time. 
The essential characteristic of recoverable failures is that  
there is a (preferably good) chance they will not occur if 
the process does the same thing over again. 

This paper treats only recoverable failures. A deter- 
ministic failure can be avoided only by eliminating some 
activity. The decision not to do something that  had 
been requested is beyond the scope of a general recovery 
mechanism. A completely undetected failure cannot, of 
course, be recovered. However, since we include in 
undetected failures those that  are detected too late to 
avoid propagation to other processes, it  is possible to 
change some undetected failures to recoverable ones by 
increasing error checking in processes. 

A crash is defined as the halting of a process on the 
detection of a recoverable failure. Since a crash is 
defined in terms of processes, the failure of a processor 
can be thought of as the crash of all processes in that  

processor. In fact, where convenient, the system is per- 
mitted to "round up" any system failure to a crash of all 
the processes affected by the failure. 

Recovery is the act, following a crash, of returning 
the system to a consistent s tate from which it can 
proceed as if the crash had not occurred. Recovery 
requires two things: the ability to preserve information 
across a crash, and the abili ty to construct a consistent 
s tate using the information so preserved. 

Information is preserved across a crash in a non- 
volatile storage facility, that  is, one that  has low proba- 
bility of being altered by the crash. This is usually 
achieved by storing the information on devices whose 
failure modes are decoupled in some way from those of 
the other elements of the system. Often the information 
is also duplicated to insure against single failures of the 
storage facility. A number of solutions to this problem 
have been developed, including MIT's Swallow system 
[Svobodova 80,Arena 81] and Lampson's and Sturgis's 
stable storage[Lampson and Sturgis 79]. We assume 
that  a reliable storage facility can he provided for use in 
publishing messages. 

To allow the reconstruction of consistent states of 
processes, it is common to occasionally make copies of 
part  or all of the process state. In this paper, we call the 
information necessary to reconstruct a complete process 
state at some point in time a checkpoint. The entire 
state of a process may be large, and techniques exist for 
recording only the parts  of the process state necessary to 

reconstruct the complete state. To reduce the cost of 
making repeated copies as the process state changes, the 
system will make copies of the complete state only infre- 
quently, and will usually make a copy of just  that  part  
of the state that  has changed since the previous check- 
point. 

Doing recovery in a multiprocess environment is 
more difficult for two reasons: the checkpoints must pro- 
vide enough information to create a consistent s tate 
among several processes, and the recovered processes 
must be brought back to a consistent s tate with 
processes that  did not fail. 

2.2. C o n s i s t e n t  S t a t e s  

For  isolated processes, determining a consistent 
state is no problem - any complete state is consistent. 
However, sets of processes that  interact must he check- 
pointed in such a way that  all the separate checkpoints 
are consistent with one another in light of the interac- 
tions. Consider, for example, the three processes with 
the interactions shown in Figure 2.1 (adapted from [Ran- 
dell 78]). The horizontal axis represents time (increasing 
left to right). The dashed vertical lines represent 
interactions between two processes in which both 
processes may communicate information to each other. 
The square brackets represent the checkpoints of indivi- 
dual processes. Since processes are deterministic except 
for their interactions, a set of checkpoints is consistent 
so long as there are no interactions which occur before 
some of the checkpoints and after other ones. 
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FIGURE 2.1: C h e c k p o i n t  s e t s  1 & 2 a r e  
c o n s i s t e n t .  C h e c k p o i n t  s e t  3 
is no t .  

Represented graphically, if a line connecting a set of 
checkpoints intersects no interaction lines, then those 
checkpoints are consistent. 

Figure 2.1 shows two sets of consistent checkpoints. 
The checkpoints labeled 1 represent the starting state of 
all three processes and are therefore consistent. The 
checkpoints labeled 2 are consistent since no interactions 
separate them. However, checkpoint set 3 represents an 
inconsistent view. If the processes are restarted from 
these checkpoints, process A will see the results of the 
interaction labeled X, but process B will not. Faced 
with these three checkpoints for each of the three 
processes, it would be necessary to go to checkpoints 
older than the most recent set. 

The problem of obtaining consistent views of states 
has been addressed in distributed database systems. The 
most widely used solution has been that of transaction 
processing[Gray 78, Skeen and Stonebraker 81]. A tran- 
saction always takes the system from one consistent 
state to another. The interacting processes declare when 
a state is consistent, and the system prevents updates 
from having effect until another consistent state is 
reached. Transactions fit well in data base applications 
where secondary storage is considered to be the only 
important state. Applications are designed so that the 
state of a process between transactions is unimportant 
and need not be checkpointed. An application must also 
be prepared to redo work done for a transaction that 
does not complete. 

We wish to place as little structure as possible on 
the processes that can be recovered. In recovering gen- 
eral distributed computation, we wish to have the follow- 
ing properties: 

1) Programmers are not required to know about the 
checkpoint or recovery mechanism. 

2) Checkpointing does not require global actions. 

3) Recovery should require the minimum possible per- 
turbation to nonofailing parts of the system. 

Property 1 means that the mechanism cannot 
require actions to be taken by the processes involved. 
Property 2 means that checkpointing will be done for 
individual processes. Property 3 means that individual 

processes must be recoverable, despite interactions with 
other processes. 

One way to obtain these properties is to provide a 
way that an individual process may be checkpointed so 
that its state can be restored to that at the time of the 
failure. This may be done by saving the original state of 
the process, plus all of its interactions. The state may 
be recovered by restarting the execution of the program 
and providing it with the same interactions it had when 
it originally ran. If we constrain ourselves to message- 
based systems, then the interactions are messages and 
can be easily identified. The checkpoint information 
must be augmented on each interaction (message). We 
call the recording of these messages publishing. In Figure 
2.1, process B could be restarted with checkpoint 3 and 
subsequently be presented with interaction X in order to 
recover it. 

Since we are interested only in the most recent state 
and not any previous ones, we can often reduce t h e  
amount of information saved for a process by occasion- 
ally saving its complete state. Once the complete state 
has been saved, any older interactions can be discarded. 
We need only save those interactions that occurred after 
the most recent complete process state. We can state it 
as a rule: 

A checkpoint for a communicating process taken at 
time to is valid at time t > to, if all the interactions 
of the process between time to and time t are also 
saved. 

2 .3 .  R e c o v e r i n g  f r o m  C r a s h e s  

To recreate the state of a process at time t from a 
checkpoint taken at time t~ it is necessary to cause the 
process to redo the computation done between to and t. 
Since processes are assumed to be deterministic between 
interactions, it is merely necessary to recreate the same 
interactions in the same sequence in order to cause the 
same computation to take place. It  is of course neces- 
sary to prohibit a recovering process from affecting other 
processes until it reaches the state it had at the time of 
the failure. Otherwise, for example, an operation that 
should have been done once may be done twice. 
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In the above discussion, the reader might have 
assumed that time t was the time of the failure. Cer- 
tainly, the above statements are true for that value of t. 
However, a more interesting t is the time that recovery 
for the process is completed. Since other processes con- 
tinue while recovery is taking place, interactions between 
the time of the failure and the time recovery is complete 
must also be accounted for. 

The recovery of a process thus contains several 
aspects: 

1) The process is restarted from a checkpoint. 

2) The process runs and is presented with all interac- 
tions that happened after the checkpoint. 

3) Messages that were sent by the process before the 
failure occurred are discarded. 

8. A Published Communications System 

In this section, we describe the design of a practical 
published communications system. We have imple- 
mented published communications in DEMOS/MP, a 
message-based distributed operating system. 
DEMOS/MP is an experimental system, and does not 
actually support a broadcast medium as required by 
published communications. Thus, we have emulated an 
acceptable network. 

Figure 3.1 shows a system in normal operation. A 
recording node is attached to the network via a special 
interface. The node is in charge of recording all mes- 
sages on the network and of initiating and directing all 
recovery operations. 

The necessary components of a published communi- 
cation system are: 

• Broadcasting messages 

• Storing messages and checkpoints 

• Detecting crashes 

• Recovering processes 

We will discuss our design of these components in turn. 

8.1. B r o a d c a s t i n g  Messages  

In order to centralize the recovery function in a net- 
work, it must be possible for some node to see all com- 
munications that occur on the network, in the order in 
which they were received. On many local area networks 
(LANs), not only may any node overhear the messages 
destined for another node, but it may do it passively, 
that is, without the knowledge of the communicating 
parties. Such networks include Ethernet[Metcalfe and 
Boggs 76], rings[Farber et al 73,Wolf and Liu 78], and 
Datakit[Fraser 79]. 

These networks were not designed with publishing 
in mind. Therefore, they contain some characteristics 
that, though avoidable, were not considered harmful in 
the current implementations. For example, current Eth- 
ernet connections may miss messages because they can- 
not transfer data to the host computer fast enough. It 
would be necessary to build a fast enough connection 
with enough buffering to be guaranteed never to miss a 
message. 

It is important that the communicating parties and 
the message recorder agree on which messages were 
correctly transmitted and which were not. Since errors 
may occur in the connection between the network and 
the receiver of a message, we must rely on a lower level 
(link level) communication protocol to correct for these 
errors. The recorder must understand the protocol so 
that it may determine whether a message was success- 
fully transmitted or not. 

Although the link level protocol can take care of 
messages the recorder accepted but the receiver did not, 
it cannot take care of messages the receiver accepted but 
the recorder did not. We would normally expect the 
recorder to be more reliable than a receiver, but nonethe- 
less, it is possible for the latter case to arise. In this 
case, it is necessary for the recorder to interfere to cause 
the message to be rejected by the receiver (and 
retransmitted by the sender). 

LOCAL NETWORK 

process ing  node process ing  node n 

I 
special  

r ecord ing  node 

FIGURE 3.1: All messages  are  rece ived  by bo th  the  
i n t ended  r ece i ve r  and  the  pub l i sh ing  
p rocess  which saves  t h e m  on disk. 
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Possible solutions to this problem depend on the 
type of network. With an Ethernet,  an "acknowledging 
Ethernet"[Tokoro and Tamaru  77] may be used, in 
which a space for an acknowledgement is inserted after 
each packet . This space would be for the recorder to 
acknowledge the recording of the message; if no ack- 
nowledgement is present, the receiver discards the 
packet. In a ring, it  is possible to route the message so 
that  it  must pass the recorder before reaching the 
receiver (perhaps requiring an extra trip around t h e  
ring). The recorder could mark the message to be 
ignored if it  could not record it. In a star network, all 
messages pass through a central point. A recorder 
attached to this point can refuse to pass on any messages 
it cannot record. 

With a combination of slightly re-en.gineered media, 
a standard link level protocol, and a special feature to 
allow the recorder to destroy messages it cannot record, 
it  is possible to guarantee that  a message is received by 
the destination only if it is recorded, and that  the 
recorder can determine which messages have been suc- 
cessfully received by the destination. This guarantee 
does not hold in the light of network parti t ioning or 
unrecoverable recorder failure. However, the probabili ty 
of such failures can be made acceptably low with con- 
ventional hardware reliability techniques. 

3.2. Storing Messages and Checkpoints 
Checkpoint information is stored according to pro- 

cess id. When a new process is created, the recorder is 
told the initial s tate of the process (usually, a program 
name and some parameters). 

Messages seen by the recorder are stored in the 
order in which they would be received by the destination 
process. This is the message stream that  will be 
transmitted to the process if it  is restarted. In addition, 
the recorder keeps track of the highest numbered mes- 
sage that  a process has sent. This will determine when 
messages generated by a recovering process should be 
transmitted to their destinations. 

At  any time, the recorder will accept a checkpoint 
for a process. After the checkpoint has been reliably 
stored, older checkpoints and messages can be discarded. 
Frequent checkpointing decreases the amount of storage 
required and the t ime to recover a process, but  increases 
the execution and network cost. The correct choice of 
checkpointing frequency will improve performance, but  
will not affect the recoverability of a process or the sys- 
tem. 

3.3. D e t e c t i n g  C r a s h e s  

The crash detection system has two distinct func- 
tions; the detection of a process crash and the detection 
of a .processor crash. The lat ter  is rounded up to the 
crash of all processes on the processor. 

Single process crashes are characterized by process 
errors. Such errors cause traps to the operating system 
kernel, which stops the process and then sends a message 
to the recovery manager containing the error type and 
process id of the crashed process. 

Processor crashes are detected via a timeout proto- 
col. For  each processor in the system, the recovery 
manager starts  a watchdog process on the recording 
node. The watchdog process watches for messages from 
the machine being watched. If no messages have been 
seen in a while, the processor is considered to have 
crashed and is restarted. Of course, it is a good idea for 
each processor to send a message from time to time, even 
if it  has nothing to say, to avoid appearing to have 
crashed. 

8.4. Recovering Processes 
The system in recovery mode looks as in Figure 3.2. 

The main element is the recovery manager, which resides 
on the recovery node and is in charge of all recovery 
operations. It maintains a database of all known 
processes, their locations, and checkpoint information. 

When the recovery manager receives notification of 
a crash it starts up a recovery process for each crashed 
process. The recovery process then performs the follow- 
ing steps: 

processing node processing node n 

FIGURE 3.e: Process  B is r e s t a r t ed  at  
i ts  last  checkpoint.  A recovery 
process  resends  it  all i ts 
published messages ,  All messages  
resen t  by process  B are  discarded. 

I, 
special 

recording node 
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(1) Pick a node for the process to restart on. Unless 
the processor has failed, this will be the same node 
that the process used to be on. If the processor has 
failed, it would be best to have one or more spare 
processors on the network that could assume the 
identities of failed processors. Otherwise, in addi- 
tion to recovering processes for a failed processor, it 
will be necessary to migrate them to other nodes. 

(2) Send a message to the node's kernel telling it to 
start up a process with the specified process id and 
set it in the recovering state. Transmit the infor- 
mation from the latest checkpoint to allow the ker- 
nel to regenerate the process to the time of that 
checkpoint. Also, notify the kernel when to stop 
ignoring messages from the process. The process 
can then resume running. 

(3) Send to the recovering process all messages that it 
had received between the time of its last checkpoint 
and the subsequent crash. 

It is up to the kernel on the new processor to ignore 
all messages sent by the recovering process until the pro- 
cess sends a message it had not sent before the crash. 

As stated above, it is possible that a process will 
have to be recovered on a different processor. This is 
essentially process migration combined with recovery. 
[Powell and Miller 83] explains in detail a mechanism for 
migrating processes from a source processor to a destina- 
tion processor in a distributed system. Since the 
recorder has the requisite process state, it can mimic the 
actions of the source processor in order to restart the 
crashed process on another node. It is also the duty of 
the source processor to forward some messages following 
the actual migration of a process. Since the former 
location of the process is not responding to messages, the 
recorder can forward them itself without interference. 

4. R e l a t e d  W o r k  

Publishing provides a system with reliable message 
delivery, the guarantee that all messages will eventually 
be delivered despite crashes of either sender or receiver. 
A number of systems currently support reliable mes- 
sages, including the Reliable Network[Hammer and Ship- 
man 80], Tandem's Non-Stop system[Bartlett 81], the 
Auregen Computer System[Borg et al 83], and Fred 
Schneider's broadcast synchronization 
protocols[Schneider 83]. Although each of these systems 
has some similarity to publishing, they all differ from it 
in one significant way: their mechanisms are all distri- 
buted. In all these systems, the application processors 
must expend resources, both CPU and memory, to save 
the redundant information that will be used in the event 
of crash recovery. Publishing, by passively listening to 
the network, allows this work to be centralized in one 
recorder processor. In many cases this will decrease the 
amount of the system power consumed by the reliability 
mechanism. 

The centralization can also, perhaps counter- 
intuitively, increase the reliability of the system. The 
broadcast medium is a single point of failure for local 
broadcast networks. Nonetheless, the medium can usu- 
ally be made significantly more reliable than other parts 
of the system. Increasing the reliability of one special 
purpose processor, perhaps by adding an uninterruptable 
power supply or replicating the processor, can be cheaper 
than improving the reliability of all the processors in the 
system. 

Centralization also means the often complex algo- 
rithms for recovery can be implemented once, and in a 
straight-forward way. This contrasts with the Tandem 
system, which requires servers to interact with the 
recovery mechanism, and RelNet, which requires compli- 
cated protocols and cooperation between nodes to spool 
messages destined for crashed processors. 
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FIGURE 5.1: Queuing Model of Publishing System 
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To build such a recorder, we assume the ability to 
listen to all messages on a broadcast network. For at 
least one network, the Ethernet, a number of such 
listeners exist: In METRIC[McDaniel 77], a passive 
recorder was attached to the Ether to record perfor- 
mance information generated by programs on the net- 
work. [Shoch and Hupp 79] mentions a "passive listener 
set to receive every packet on the net." [Wilkinson 81] 
used a passive Ethernet listener to resolve concurrency 
conflicts for a data base system, and suggested using this 
listener to record recovery information in the same 
fashion as publishing. 

5. A Queuing Model  Simulation 

In order to get a ball park figure for resource 
requirements, we used s queuing system model to simu- 
late s system. The model was an open queuing model 
and was solved using IBM's RESQ2 model solver[Sauer 
et al 81]. 

The system modeled was that depicted in Figure 
3.1. Its open queuing model equivalent is depicted in 
Figure 5.1. The processing nodes are represented as 
message sources. Messages are assumed to be delivered 
when they are broadcast, so the receiving nodes do not 
appear in the model. A return path was included from 
the recovery node to the network to take care of ack- 
nowledgments from the recording process. 

Sending nodes feed three types of messages into the 
system: short messages (128 bytes long), long messages 
(1024 bytes long), and checkpointing messages (1024 
bytes long). The checkpoint traffic was generated under 
the assumption that a process is checkpointed whenever 
its published message storage exceeds its checkpoint size. 
This policy tries to balance the cost of doing a check- 
point for a process against the disk space required for 
published message storage. The results were checkpoint 
intervals between 1 second for 4k byte processes during 
high message rates and 2 minutes for 64k byte processes 
during low message rates. • 

Table 5.1 shows the values of hardware parameters 
chosen from our computing environment at Berkeley, 
which consists of VAX 11/780% connected via a 3 
megabit/sec Ethemet. 

PARAMETER VALUE 

Etherne t  in t er face  
i n t e r p a c k e t  de lay  1,6ms 

Network Bandwidth 10 megabi t  
per  s e c o n d  

Disk Latency 3 ms 

Disk Transfer  Rate 2 megabyte  
per  s e c o n d  

Time to  P r o c e s s  Packet  0.8 ms 

TABLE 5.1: Simulat ion  P a r a m e t e r s  

The operating points for the model were determined 
by three load parameters: 

1) load average - the number of processes per proces- 
sor. 

2) state sizes - the sizes of the changeable state of a 
process. 

3) message traffic - the amount of network communica- 
tion. 

These parameters were estimated by measuring the 
most heavily utilized research VAX at UCB over the 
period of a week. The load average and state sizes were 
directly measurable. Figure 5.2 shows the distribution of 
state sizes. 

p r o c e s s e s  

30 

, MFAN 

I0 

o '8' 'is '24 '32 '4o '4s 
m e m o r y  
(k bytes )  

FIGURE 5.2: State Size Distribution for Unix P r o c e s s e s  

The message traffic was not measurable, however, 
since no distributed system existed at UCB at the time. 
Instead, the following method was used to convert meas- 
urements of the single processor into a distributed 
equivalent. All system calls were assumed to translate to 
short messages sent to servers. All I/O requests were 
assumed to represent long messages sent to devices or 
other processes. The sizes of these messages were 
estimated to be 128 and 1024 bytes respectively. 

Using these measurements, four operating points 
were established, one representing the mean of each 
parameter and the other three representing the measure- 
ments when each of the parameters was maximized. 
Table 5.2 shows the parameter values for those operating 
points. 

Descr ipt ion  

Maximum 
Load Average  

Maximum Disk 
A c c e s s  Rate 

Maximum System 
Call Rate 

Mean Value for 
All P a r a m e t e r s  

23 

6 

6 

7 

System 
Calls 

19/see  106/sec 

43/sec lll/sec 

51see 860/sec 

13/sec ll8/sec 

TABLE 5.2: Simulat ion Operat ing P o i n t s  
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FIGURE 5.3a: Disk Utilization 
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FIGURE 5.3b: Recovery Node Utilization 
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FIGURE 5.3e: Network In ter face  Utilization 

The system was simulated for from 1 to 5 process- 
ing nodes and from 1 to 3 disks at the publishing node. 
Figure 5.3 shows plots of the utilization of the publishing 
node processor, its disk system and its network interface. 

The system stayed within physical limits with two 
exceptions. The first was the saturation of the disk sys- 
tem used with the maximum long m~sage rate. This 
saturation was removed by allowing messages to be writ- 
ten out in 4k byte buffers rather than forcing one disk 
write per message. The second problem occurred at the 
high system call rate operating point. If this rate per- 
sists for more than a few seconds, all three subsystems 
saturate when more than 3 processing nodes are attached 
to the system. This saturation cannot be removed by 
any simple optimizations; luckily, this operating point 
was not a long-lived phenomenon in the system meas- 
ured. Therefore saturation at this point should offer no 
significant problems. 

From this simulation we concluded that the simple 
system was viable for at least 5 nodes. We found no 
cases in which m ,  ch buffer space was needed in the 
recording node (at most 28k bytes). The worst ease for 
checkpoint and message storage was 2.76 megabytes. 
However, this was constrained by our choice of check- 
point intervals. Making less frequent checkpoints 

increases the required storage by the amount of extra 
message traffic in the longer intervals between check- 
points. 

6. Adding Published Communicat ions To  A Dis- 
tributed Sys t em 

An initial implementation of published communica- 
tions has been added to DEMOS/MP, a multiprocessor 
version of the DEMOS system originally created for the 
CRAY-l[Baskett et al 77,Powell 77]. Because it is an 
experimental system, we simulate both the hardware and 
the workload required to test these ideas. Since we are 
primarily interested in whether or not such a system 
could be created and how it wouid work, the experimen- 
tal environment gave us results more easily and with less 
disruption of normal work than a more realistic environ- 
ment would have. 

6.1. Experimental Environment  

DEMOS/MP runs on a number of loosely connected 
ZS000-based nodes, connected via point to point parallel 
links. The same code also runs under VAX 
UNIX[Ritchie and Thompson 78], where we have created 
a simulated multiprocessor environment. Generally, all 
code except low level device drivers is developed and 
debugged on the VAX system. The code can then be 
moved without change to the ZS000 systems. 

Since we have no reliable broadcast network or pas- 
sive network listeners, we simulate them. On the 
Z8000s, we accomplish this by making the recording 
node the hub of a star configuration. Any messages 
received incorrectly by the recorder are not passed on. 
In the version running under VAX UNIX, an Ack- 
nowledging Ethernet is simulated using a low level proto- 
col on top of the datagram sockets provided by 
Berkeley's 4.1e UNIX implementation. Any messages 
not immediately acknowledged by the recorder are 
ignored by the receiver and will subsequently be resent 
by the sender. 
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6.2. Changes  to  the  D E M O S / M P  Kerne l  

Since the idea is to passively record recovery infor- 
mation, the changes to the normal nodes were few. Most 
significant was the simplest change, that of causing all 

• messages (including intra, node) to be broadcast on the 
network. Since our processes are spread rather thinly 
across the nodes, most messages were already going over 
the network, and the effect on performance was not 
noticeable. 

Applications that have heavy intra-node traffic could 
notice a significant performance loss if all messages are 
published. One way to reduce this problem is to treat a 
group of processes as a single process. Messages within 
the group are not published. However, all of the 
processes i~ the group must be checkpointed and 
recovered as a unit. 

A few additions were made to allow the kernel to 
notify the recovery manager of significant events such as 
process creation and termination (normal or otherwise). 

A simpler, but less flexible message forwarding 
mechanism was implemented. If the recorder detects an 
incorrectly routed message, it sends to the kernel of the 
sender a request to update the address field of the send- 
ing process's link. 

6.8. The  Reeording Node 

The recording node runs a modified DEMOS/MP 
kernel. This kernel includes: 

• the checkpoint process 

• the publishing process 

• the recovery manager 

• the recovery processes 

• the garbage collector 

These functions were put in the kernel to avoid interfer- 
ing with message communication. 

The crash detection processes run as user processes 
and require no change to the DEMOS system. They are 
exactly as described in the previous sections. ~ 

6.4. S ta tus  of  the  Publishing Exper imen t  

This implementation is the same as the system 
described in previous sections with one exception: at 
present no checkpointing is done after the process has 
been started. All recovering processes are restarted at 
the beginning and all published messages are subse- 
quently replayed to them. Checkpointing is being added 
and appears to present no particular problems. 

A number of experiments still remain to be per- 
formed. Questions of storage management and reliabil- 
ity in the recorder must be addressed, including proto- 
cols for replicated recorders. In addition, mechanisms 
for improving the performance for intra-processor mes- 
sages, such as treating all processes in a machine as one 
process, should be explored. 

7. Conclusions 

We began by looking for a mechanism that could 
centralize the reliability and recovery aspects of a distri- 
buted system with a broadcast network. Starting with a 
model for processes and their interactions, we identified 
the state to be recovered and the information needed to 
restore it. Publishing appears to fulfill the requirements 
for a passive recorder and a recovery mechanism that 
can handle any process at any time. 

With the simulation and experiments described 
above, we have shown that published communications is 
a feasible and practical mechanism. Our implementation 
revealed that it can be added naturally to many message 
based systems. We have also shown, via our queuing 
model, that the resource requirements necessary for pub- 
fishing are reasonable for a class of systems typical of 
many local area networks. 
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