
THE ROSCOE DISTRIBUTED OPERATING SYSTEM*

Marvin H. Solomon
Raphael A. Finkel

University of Wisconsin -- Madison

ABSTRACT

Roscoe is an operating system implemented
at the University of Wisconsin that allows
a network of microcomputers to cooperate to
provide a general-purpose computing facil-
ity. After presenting an overview of the
structure of Roscoe, this paper reports on
experience with Roscoe and presents several
problems currently being investigated by
the Roscoe project.

INTRODUCTION

Roscoe [9, 10, 16, 17] is a distributed
operating system designed for a network of
microprocessors. The goal of the Roscoe
network is to provide a general-purpose
computation resource in which individual
resources such as files and processors are
shared among processes and control is dis-
tributed in a non-hierarchical fashion.

The essential features of Roscoe are:

I. All processors are identical. Simi-
larly, all processors run the same operat-
ing system kernel. However, they may
differ in the peripheral units connected to
them.

2. No memory is shared between processors.
All communication involves messages expli-
citly passed between physically connected
processors.

3. No assumptions are made about the
topology of interconnection except that the

*This research was supported in part by the
United States Army under contract #DAAG29-
75-C-0024.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0108 $00.75

network is connected (that is, there is a
path between each pair of processors). The
connecting hardware is assumed to be suffi-
ciently fast that concurrent processes can
cooperate in performing tasks.

4. The network appears to the user to be a
single powerful machine. A process runs on
one machine, but communicating processes
have no need to know if they are on the
same processor and no way of finding out.
(Migration of processes to improve perfor-
mance is transparent to the processes
involved.)

5. The network is constructed entirely
from hardware components commercially
available at the time of construction
(January, 1978).

6. The software is all functional.
Although Roscoe has undergone much revi-
sion, it has been working for over a year.

The decision not to use logical or physical
sharing of memory for communication is
influenced both by the constraints of
currently available hardware and by our
perception of cost bottlenecks likely to
arise as the number of processors
increases. Physical sharing leads to com-
plicated crossbar switches, whose cost and
complexity would be prohibitive for large
numbers of processors. Logical sharing
hides the cost of communication between
physically distant processes. Message
passing is the fundamental form of communi-
cation in several other networks, including
Plits [7], Micronet [18], Technec [12], and
DCN [14].

OVERVIEW

The current Roscoe implementation runs on
five Digital Equipment Corporation LSI-11
computers.** Each has 28K words of memory,
a programmable clock, extended instruction
set, a bit-serial line (intended for a ter-
minal), and word-parallel lines to one or

**This equipment was purchased with
funds from National Science Foundation
Research Grant #MCS77-08968.

108

more other LSI-11 machines. In addition,
each LSI-11 has a word-parallel line to a
PDP-11/40 running ~he Unix operating system
[15]. The software is written in the C
programming language [13] with the excep-
tion of a small amount of code written in
assembler language. When Roscoe is run-
ning, the PDP-11/40 is not part of the net-
work; its function is to assist in program
development and initial loading.

The fundamental concepts of Roscoe are
files, programs, core images, processes,
links, and messages. The first four of
these are roughly equivalent to similar
concepts in other operating systems; links
and messages are idiomatic to Roscoe.

The Roscoe kernel is a module that resides
on all the machines of the network and pro-
vides various services for user programs.
The services are requested by means of ser-
vice calls, which appear as procedure invo-
cations to the caller. Other services are
provided by utility processes that reside
on some machines, but not necessarily all.
Library routines are available to facili-
tate communication with these processes.

Links

The link concept is central to Roscoe. It
is inspired and heavily influenced by the
concept of the same name in the Demos
operating system for the Cray-1 computer
[2]. Although the Cray-1 is a conventional
uniprocessor, Baskett et al suggest that
links might also be used-~n a-- multiproces-
sot environment. Links have proved to be a
great success in insulating the writer of
Roscoe processes from the peculiarities of
a multiprocessor architecture. The demons-
tration of the usefulness of the link con-
cept for this architecture is a major
result of the project thus far.

A link combines the concepts of a communi-
cations path and a "capability" [6]. It
represents a one-way logical connection
between two processes, and should not be
confused with a line, which is a physical
connection between two processors. Each
link connects two processes: the holder,
which may send messages over the link, and
the owner, which receives them. The holder
may -~icate the link or give it to
another process, subject to restrictions
associated with the link itself. The owner
of a link, on the other hand, never
changes.

Links are created by their owners. When a
link is created, the creator specifies a
code and a channel. The kernel tags each
~ncoming message with the code and channel
of the link over which it was sent. Chan-
nels are used by a process to partition the
links it owns into subsets; when a process
wants to receive a message, it specifies an
explicit set of channels. The process is
blocked until a message arrives over a link
corresponding to one of the specified

channels. A link is named by its holder by
a small positive integer called a link
number, which is an index into a table of
currently-held links maintained by the ker-
nel for the holder. All information about
a link is stored in this table. (No infor-
mation about a link is stored in the tables
of the owner.)

The creator may also specify certain pro-
perties of the link, for example, that it
may not be copied, that it may be used only
once, or that its destruction sends a
notification to the owner.

Messages

A message may be sent by the holder to the
owner of a link. In addition, certain mes-
sages, called notifications, are manufac-
tured by the kernel to inform the owner of
a link of changes in its status. For exam-
ple, the creator of a link may ask to be
informed when the link is destroyed or
copied. Notifications are identified to
the recipient by an unforgeable field.

A message may contain, in addition to arbi-
trary text, an enclosed link, which was
previously held by the sender of the mes-
sage. The kernel adds an entry to the link
table of the destination process and gives
its link number to the recipient of the
message. In this way, the recipient
becomes the holder of the enclosed link.
If the sender does not destroy its copy,
then both processes will hold identical
copies of the link.

The holder of a link has no way to name or
address the process at the other end. In
particular, it does not know whether that
process is on the same or a different
machine.

Each kernel maintains a pool of buffers
that are allocated among all local
processes. Incoming messages that have not
yet been received by their destination
processes are queued in these buffers, as
are outgoing messages that have not yet
been delivered to a neighboring machine. A
simple priority algorithm is used to reduce
the chance of buffer deadlock.

Service Calls

The chief function of the kernel is to sup-
port links and messages by providing ser-
vice calls to create and distroy links, and
send and receive messages. Additional ser-
vice calls create and destroy processes,
read and set "wall-clock" and high-
resolution interval timers, and establish
interrupt handlers for processes that con-
trol peripheral devices. The service calls
that create and destroy processes are nor-
mally issued by the resource manager util-
ity process described below.

109

Utility Processes

Roscoe has been designed so that as many as
possible of the traditional operating sys-
tem functions are provided not by the ker-
nel, but by ordinary processes. The termi-
nal driver is an example. One t e ~
driver resides on each processor that has a
terminal. All terminal input/output by
other processes is performed through mes-
sages to this process. It understands and
responds to all commands accepted by a file
(see below), as well as a few extra ones,
such as "set modes" (for example
echo/noecho, hard-copy/soft-copy).

A file manager process resides on each pro-
cessor that has mass storage. Each file
manager controls a tree-structured direc-
tory. A process wishing to open a file
sends a message to the appropriate file
manager, which creates a link to represent
the open file. To the user of a file, the
open file behaves like a process that
understands and responds to messages
requesting read and write operations. The
file is closed by destroying the link.

The most interesting utility process is the
resource manager (RM). Resource managers
reside on a-~ processors and are connected
by a network of links. Any process may
request its local RM to create a new pro-
cess. The local RM may create the process
on its own machine or relay the request to
another RM, based on local considerations
such as availability of free memory and the
possibility that the required program is
already in memory. The next RM decides in
a similar way whether to load the process
or relay the request.

The new process is started with only a link
to its local RM. It can use this link to
request links to the process that requested
its creation, to a file manager process, to
a terminal driver, or to other resources.
The RM can kill the process, or it can give
a special link to another process (usually
a terminal driver) that may be used to kill
it.

Processes form a hierarchy in two senses.
First, every process is started by another.
However, since the RM usually performs the
starting, this hierarchy is quite flat.
Second, every process is started at the
request of another to the RM. The RM main-
tains this hierarchy in order to satisfy
requests to terminate processes.

Library Routines

Functions provided by service calls are
rather primitive, and communication with
utility processes can involve complicated
protocols. An extensive library of rou-
tines has been provided to simplify writing
of programs that use service calls and
utility processes. For example, general
message passing is simplified by "call",

which creates a reply link, sends the mes-
sage, waits for the reply, and decodes the
returned message.

Other routines may be used to correspond
with the file manager to request directory
information or to open, create, or delete a
file. For file or terminal I/O, one rou-
tine separates strings of text into
message-sized chunks, and another accepts
text in chunks and assembles it into a
buffer. There is also a routine for for-
matted output.

EXPERIENCE

The first version of the Roscoe kernel was
put into service in June 1978. Since that
time, additions and enhancements have been
added, and many parts of Roscoe have been
modified or completely rewritten. Some of
our initial decisions have turned out quite
well; others have been revised. Some dif-
ficult problems that arose during implemen-
tation were temporarily resolved by ad hoc
solutions, awaiting fuller study.

Links

The most gratifying result was the concep-
tual simplification due to the link con-
cept. Most obviously, it isolates the pro-
grammer from details of communication.
Sending a message to another process is the
same whether or not the destination is on
the same machine, even if the message needs
to be relayed by an intermediate processor.
Acknowledgement a n d retransmission, if
needed, could also be hidden from the pro-
cess, although we find that our transmis-
sion lines is sufficiently reliable not to
need such measures.

The fact that a process sending a message
names a link, not a destination process,
has several advantages. First, it allows
flexibility in allocating resources. A
client requesting a service may be given a
link to any process that provides the ser-
vice. The client has no way of knowing to
which server it has been connected, only
that messages sent over the new link are
understood and answered properly. Second,
like abstract data types [4], links help to
separate the behavior of a facility from
its implementation. For example, to open a
file, a process sends a message to a file
manager process and gets back a link to an
open file. To the user process, the file
behaves like a process capable of storing
or retrieving data. In fact, as currently
implemented, the file manager does not
create a new process, but only a new link
to itself. I/O requests are satisfied by
the file manager masquerading as a file
process. If we decide to change the imple-
mentation, no changes are required in user
processes.

A related advantage to hiding the identity
of the owner of a link from the holder is

110

the ability to substitute a process that
fulfills the expectations of the holder but
does more. One possibility mentioned by
Baskett et al [2] is to replace a standard
process by one that not only satisfies
requests but also monitors them to gather
performance statistics. Another version of
this idea is used in Roscoe to implement
the UNIX "pipe" facility [15]. A "pipe"
process is interposed between two
processes. The pipe responds to one pro-
cess as if it were an output file and to
the other process as if it were an input
file, buffering data between them. Simi-
larly, a terminal driver is capable of
behaving like a file, so a process needs no
modification to read or write to a terminal
rather than a file.

The link concept has also proved useful to
solve other problems not so obviously
related to communication. One example is
synchronization. Since processes do not
share address space, synchronization is not
necessary to prevent interfering memory
references. In situations where synchroni-
zation is required, the ability to accept
messages only on a subset of all incoming
links can be used to advantage. For exam-
ple, the pipe process has two incoming
links, one from the writing process and one
from the reading process. When the pipe's
buffer is empty, it stops accepting read
requests; when it is full, it stops accept-
ing write requests. Otherwise, it accepts
whichever request comes first.

Another application of links involves
interrupt handling. The terminal input
driver performs a service call that estab-
lishes an entry point in itself to be
invoked when an input interrupt occurs.
This service call also names a link to the
terminal driver process. When the input
buffer is empty, the driver waits for a
message along this link. When an interrupt
occurs, the interrupt-handllng routine puts
the input character into a buffer shared by
the "higher-level" part of the driver. If
an input line is found, it invokes a ser-
vice call in response to which the kernel
manufactures a message and queues it for
delivery to the "higher-level" part of the
driver, which will eventually receive it as
an ordinary process (not at interrupt
level).

Bottlenecks

We have discovered that the most vexing
aspect of the inexpensive processor we use
is not its rather slow speed, but its lack
of memory management facilities. This
deficiency manifests itself in three ways.
First, we have no way of preventing a run-
away process form damaging other processes
or the kernel on its machine. Second, a
process image, once loaded, cannot be moved
within a processor or to another processor
except at the same address. This restric-
tion has prevented us from experimentation
with process migration. Third, the address

space of 56K bytes must be shared by the
kernel, utility processes and applications
programs. Currently, a processor loaded
with a kernel, resource manager, terminal
driver, command interpreter, and file
manager has no room for application pro-
grams. Luckily, the Roscoe design miti-
gates this problem; user programs running
on other processors may use the services of
such a "service-only" processor.

In attempting to live with our space prob-
lems, we have investigated why programs
cannot be made smaller. One reason is that
the general send/receive paradigm for com-
munication is significantly more compli-
cated than call/return. Library routines
such as "call" hide this difficulty from
the programmer, but separate copies must be
loaded with each process, thus wasting
space.

The memory limitations can be mitigated in
two ways: One way is software memory
management. We have designed a language
and implemented a compiler for it that gen-
erates code in which all accesses are fully
checked and are computed relative to fixed
registers. The kernel can use this fact to
relocate running programs, performing swap-
ping or migration if necessary. This
language also allows us to experiment with
high level language features supporting
parallelism. A more permanent solution is
to use better hardware. Several microcom-
puters with memory management have recently
been announced. We plan to switch to PDP-
11/23 machines in the near future.

CURRENT WORK

As we mentioned earlier, several important
issues have been sidestepped in an effort
to get Roscoe running. We are currently
working on solutions to some of these prob-
lems. These problems include message rout-
ing, resistance to and recovery from pro-
cessor failure, flow control, distributed
file systems, allocation of resources, and
migration of processes.

Message Routing

Messages that are sent between processes
must be delivered by the cooperation of
several kernels. If a message generated on
one machine must be directed to another
machine, the source kernel must have algo-
rithms for finding the recipient machine.
Currently, routing tables are fixed and
stored in each kernel. In larger networks,
it would be better to arrange the nodes
regularly so that routing information can
be calculated when needed. Several such
schemes for interconnection have been pro-
posed [I, 5, 8]; some are suited to algo-
rithmic routing. Another approach con-
structs routing tables dynamically [11].

111

Processor Failure

When a processor fails, the effect should
be localized; otherwise the entire network
is only as robust as the weakest part.
Distribution of control provides advantages
in the event of processor failure, since
vital decisions about resource allocation
can be made elsewhere. A hierarchical con-
trol structure would lose an entire subtree
of the network when a processor fails.
Roscoe currently will survive the loss of a
processor only if certain critical
processes (such as a file manager) are not
lost. If a processor is "cold started 'f ,
Roscoe is capable of accepting its re-
integration into the network. However, the
technique is clumsy and requires some
manual intervention.

Flow Control

The object of flow control is to allocate
the scarce resources of message buffers and
use of inter-machine links in such a way
that no process is continually blocked
waiting for a message buffer, and lines are
not left idle when messages are waiting to
be sent.

The task of the flow control algorithm is
to decide whether to honor each request for
a buffer. If the allocator is too stingy,
very little communication will take place.
If it is too generous, the buffer supply
may be exhausted, blocking all further
work. Unfortunately, no fixed technique
can guarantee that the buffer pool will not
be depleted.

Roscoe follows a fairly simple strategy at
present. Buffers are requested at one of
three priorities, depending on the purpose.
A high priority request is satisfied if any
buffers are available; a medium priority
request only if a fourth of the pool is
available, and a low priority request only
if a half of the pool is available. High
priority is used for messages replying to
others, medium priority for most messages,
and low for messages arriving from other
machines. This strategy avoids buffer
depletion in most cases, but it can fail in
pathological situations. A possible alter-
native is to institute per-process buffer
quotas.

Files

At the moment, Roscoe files are managed by
the PDP-11/40. We also have a floppy disk
file driver, but have not yet achieved our
goal of distributing a hierarchical file
structure among the non-hierarchical
machines.

Our plan is to link the independent file
manager programs on various machines so
that each one controls a local piece of the
file hierarchy and knows which colleague
controls adjacent pieces. File requests
that cannot be handled locally can be

forwarded through the hierarchy until they
reach a suitable handler, which can then
carry on a private communication with the
client process.

The problems we expect are that the number
of colleagues may be very high, and a dis-
abled processor can disconnect a subtree of
the file directory.

Resource Allocation

Nearly all the facilities are in place for
the resource manager to do intelligent
allocation of resources. Currently, how-
ever, the resource manager uses extremely
simple-minded algorithms for resource allo-
cation. An example is the allocation of
main memory. When a resource manager is
requested to load a program, it first
attempts to load it locally: It looks for a
usable image of the program already loaded,
then for unused memory space, and finally
for memory currently occupied by an unused
program image. Failing to load locally,
the resource manager asks a neighbor to
load the program. The request is passed
around the network in a predetermined cir-
cuit until it is satisfied or returns to
the originator. If it cannot be satisfied,
the original resource manager must report
failure. This algorithm has three flaws.
First, the predetermined circuit is too
inflexible. Second, for larger networks a
circuit of the entire network would be
impractical. Third, the program may be
loaded far from other processes with which
it must communicate.

Migration of Processes

As mentioned above, we have been unable to
experiment with process migration due to
the lack of dynamic address translation.
However, even with this problem removed,
many others remain. Even though a process
names its correspondent by link number
rather than process name, its hidden link
tables do contain names of processes. If a
process can move, the message-routing func-
tion of the kernel must be able to discover
its new location. One technique is to pro-
vide a forwarding address. As processes
move, the chains of forwarding addresses
are liable to get long, so a "change of
address" notice might be sent to the send-
ing kernel. However, in a distributed
organization like Roscoe, in which
processes are dynamically created and des-
troyed and in which there is no centralized
control, "Flying Dutchman" messages can be
created, forever seeking defunct processes,
so a message "aging" technique may be
necessary.

A more fundamental problem is how to decide
when and where to move a process. At some
point, the overhead involved in transmit-
ting a program image is exceeded by the
inefficiency of a large amount of communi-
cation between distant processes. Several
heuristics come immediately to mind, but

112

this issue seems to be one that can only be
resolved by experimentation.

CONCLUSIONS

The Roscoe operating system has been run-
ning for over a year. A major thrust in
its design and development has been to
decentralize control as much as possible.
Each resource manager has local control
over its own machine; the community of
resource managers can solve larger problems
if necessary.

One application that has been successfully
implemented under Roscoe is a game-playing
program that uses alpha-beta pruning in a
fashion that takes advantage of the avail-
able parallelism [Fishburn 79].

The link concept appears to be very suc-
cessful not only for insulating application
programs from the details of communication
implementation but also for organizing dis-
tributed control.

We have learned how to program with the
underlying link structures that Roscoe pro-
vides; the link concept has undergone vari-
ous refinements during the course of this
study.

ACKNOWLEDGMENTS

The authors are pleased to acknowledge the
assistance of the following graduate stu-
dents who have been involved in the Roscoe
project: Jonathan Dreyer, Jack Fishburn,
Michael Horowitz, Will Leland, Paul Pierce,
and Ronald Tischler. Their hard work has
helped Roscoe to reach its current state
and will be essential in continuing this
research.

REFERENCES
[I] Arden, B., Lee, H., A Multi-Tree-

Structured Network, Princeton Univer-
sity Electrical Englneering and Com-
puter Science Department Technical
Report #239, January 1978.

[2] Baskett, F., Howard, J. H., Montague
J. T., "Task Communication in Demos",
Proceedings of the Sixth Symposium on
Operating Systems Pr~ples, November
1977, pp. 23-31.

[3] Corbat6, F. J., Vyssotsky, V. A.,
"Introduction and overview of the MUL-
TICS system", Proceedings of the AFIPS
1965 Fall Joint Computer Conference,
Vol. 27, Part I. New York,
Books, 1965, pp. 185-196.

[4] Dahl, O. J., Dijkstra, E. W.,

Spartan

Hoare,

C. A. R., Structured Programming, New
York: Academic Press, 1972, pp 83-174.

[5] Despain, A. M., Patterson, D. A., "X-
tree: a tree structured multi-
processor computer architecture",
Proceedings of the Fifth Annual Sympo-
sium on Computer Architecture, April,
19--9T~, pp. 144-151.

[6] Fabry, R. ~., "Capability-based
addressing", Communications of the ACM
Vol 17, No. 7, July 1974, pp. 403-412.

[7] Feldman, J. A., "High level program-
ming for distributed conputing", Com-
munication of the ACM Vol 22, No. ~,
June 1979, pp. 353-368.

[8] Finkel, R. A., Solomon, M. H., Proces-
sor Interconnection Strategies,
University of Wisconsin--Madison Com-
puter Sciences Department Technical
Report #301, July 1977.

[9] Finkel, R. A., Solomon, M. H., The
Roscoe Kernel, University --~
Wisconsin--Madison Computer Sciences
Department Technical Report #337, Sep-
tember, 1978.

[10] Finkel, R. A., Solomon, M. H.,
Tischler, R., Roscoe User Guide, Ver-
sion 1.1, University of Wisconsin--
Madison Mathematics Research Center
Technical Report #1930, March 1979.

[11] Finkel, R. A., Horowitz, M., Solomon,
M., "Distributed Algorithms for Global
Structuring", Proceedings of the 1979
NCC, June 1979.

[12] Fishburn, J. and Finkel, R. A. "A
Parallel Implementation of Alpha-beta
Pruning", To appear.

[13] Huen, W., Greene, P., Hochsprung, R.,
and Ei-Dessouki, D., "TECHNEC, a net-
work computer for distributed task
control" Proceedings of the First
Rocky Mountain Symposlum on M fcroeom-
puters, August, 1977.

[14] Kernighan, B. W., Ritchie, D. M., The
C Programming Language, Prentice-Hall,
7978.

[15] Mills, D., "An Overview of the Distri-
buted Computer Network", Proceedings
of the National Computer Conference,
Vol. 45, AFIPS Press, 1975, pp. 523-
531 •

[16] Ritchie, D. M., Thompson, K., "The
UNIX Time-Sharing System", Communica-
tions of the ACM, Vol. 17, No 7, July
1974, pp. 365-375.

[17] Solomon, M. H., Finkel, R. A., "ROS-
COE: a multi-microcomputer operating
system", Proceedings of the Second
Rocky Mountain Symposium on

113

Microcomputers, August 1978, pp. 291-
3fO.

[18] Tischler, R. L., Finkel, R. A., Solo-
mon, M. H., Roscoe Utility Processes,
University of Wisconsin--Madison Com-
puter Sciences Department Technical
Report #338, February 1979.

[19] Wittie, L. D., Micronet: A reconfigur Z
able microcomputer network ~6r distri-
b-6-~d systems research,'State Univer-
si--[-~--of---New York at Buffalo Department
of Computer Science Technical Report
143, April, 1978.

114

