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ABSTRACT 

Roscoe is an operating system implemented 
at the University of Wisconsin that allows 
a network of microcomputers to cooperate to 
provide a general-purpose computing facil- 
ity. After presenting an overview of the 
structure of Roscoe, this paper reports on 
experience with Roscoe and presents several 
problems currently being investigated by 
the Roscoe project. 

INTRODUCTION 

Roscoe [9, 10, 16, 17] is a distributed 
operating system designed for a network of 
microprocessors. The goal of the Roscoe 
network is to provide a general-purpose 
computation resource in which individual 
resources such as files and processors are 
shared among processes and control is dis- 
tributed in a non-hierarchical fashion. 

The essential features of Roscoe are: 

I. All processors are identical. Simi- 
larly, all processors run the same operat- 
ing system kernel. However, they may 
differ in the peripheral units connected to 
them. 

2. No memory is shared between processors. 
All communication involves messages expli- 
citly passed between physically connected 
processors. 

3. No assumptions are made about the 
topology of interconnection except that the 

*This research was supported in part by the 
United States Army under contract #DAAG29- 
75-C-0024. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed 
for direct commercial advantage, the ACM copyright notice 
and the title of the publication and its date appear, and notice 
is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permission. 

© 1979 ACM 0-89791-009-5/79/1200/0108 $00.75 

network is connected (that is, there is a 
path between each pair of processors). The 
connecting hardware is assumed to be suffi- 
ciently fast that concurrent processes can 
cooperate in performing tasks. 

4. The network appears to the user to be a 
single powerful machine. A process runs on 
one machine, but communicating processes 
have no need to know if they are on the 
same processor and no way of finding out. 
(Migration of processes to improve perfor- 
mance is transparent to the processes 
involved.) 

5. The network is constructed entirely 
from hardware components commercially 
available at the time of construction 
(January, 1978). 

6. The software is all functional. 
Although Roscoe has undergone much revi- 
sion, it has been working for over a year. 

The decision not to use logical or physical 
sharing of memory for communication is 
influenced both by the constraints of 
currently available hardware and by our 
perception of cost bottlenecks likely to 
arise as the number of processors 
increases. Physical sharing leads to com- 
plicated crossbar switches, whose cost and 
complexity would be prohibitive for large 
numbers of processors. Logical sharing 
hides the cost of communication between 
physically distant processes. Message 
passing is the fundamental form of communi- 
cation in several other networks, including 
Plits [7], Micronet [18], Technec [12], and 
DCN [14]. 

OVERVIEW 

The current Roscoe implementation runs on 
five Digital Equipment Corporation LSI-11 
computers.** Each has 28K words of memory, 
a programmable clock, extended instruction 
set, a bit-serial line (intended for a ter- 
minal), and word-parallel lines to one or 

**This equipment was purchased with 
funds from National Science Foundation 
Research Grant #MCS77-08968. 
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more other LSI-11 machines. In addition, 
each LSI-11 has a word-parallel line to a 
PDP-11/40 running ~he Unix operating system 
[15]. The software is written in the C 
programming language [13] with the excep- 
tion of a small amount of code written in 
assembler language. When Roscoe is run- 
ning, the PDP-11/40 is not part of the net- 
work; its function is to assist in program 
development and initial loading. 

The fundamental concepts of Roscoe are 
files, programs, core images, processes, 
links, and messages. The first four of 
these are roughly equivalent to similar 
concepts in other operating systems; links 
and messages are idiomatic to Roscoe. 

The Roscoe kernel is a module that resides 
on all the machines of the network and pro- 
vides various services for user programs. 
The services are requested by means of ser- 
vice calls, which appear as procedure invo- 
cations to the caller. Other services are 
provided by utility processes that reside 
on some machines, but not necessarily all. 
Library routines are available to facili- 
tate communication with these processes. 

Links 

The link concept is central to Roscoe. It 
is inspired and heavily influenced by the 
concept of the same name in the Demos 
operating system for the Cray-1 computer 
[2]. Although the Cray-1 is a conventional 
uniprocessor, Baskett et al suggest that 
links might also be used-~n a-- multiproces- 
sot environment. Links have proved to be a 
great success in insulating the writer of 
Roscoe processes from the peculiarities of 
a multiprocessor architecture. The demons- 
tration of the usefulness of the link con- 
cept for this architecture is a major 
result of the project thus far. 

A link combines the concepts of a communi- 
cations path and a "capability" [6]. It 
represents a one-way logical connection 
between two processes, and should not be 
confused with a line, which is a physical 
connection between two processors. Each 
link connects two processes: the holder, 
which may send messages over the link, and 
the owner, which receives them. The holder 
may -~icate the link or give it to 
another process, subject to restrictions 
associated with the link itself. The owner 
of a link, on the other hand, never 
changes. 

Links are created by their owners. When a 
link is created, the creator specifies a 
code and a channel. The kernel tags each 
~ncoming message with the code and channel 
of the link over which it was sent. Chan- 
nels are used by a process to partition the 
links it owns into subsets; when a process 
wants to receive a message, it specifies an 
explicit set of channels. The process is 
blocked until a message arrives over a link 
corresponding to one of the specified 

channels. A link is named by its holder by 
a small positive integer called a link 
number, which is an index into a table of 
currently-held links maintained by the ker- 
nel for the holder. All information about 
a link is stored in this table. (No infor- 
mation about a link is stored in the tables 
of the owner.) 

The creator may also specify certain pro- 
perties of the link, for example, that it 
may not be copied, that it may be used only 
once, or that its destruction sends a 
notification to the owner. 

Messages 

A message may be sent by the holder to the 
owner of a link. In addition, certain mes- 
sages, called notifications, are manufac- 
tured by the kernel to inform the owner of 
a link of changes in its status. For exam- 
ple, the creator of a link may ask to be 
informed when the link is destroyed or 
copied. Notifications are identified to 
the recipient by an unforgeable field. 

A message may contain, in addition to arbi- 
trary text, an enclosed link, which was 
previously held by the sender of the mes- 
sage. The kernel adds an entry to the link 
table of the destination process and gives 
its link number to the recipient of the 
message. In this way, the recipient 
becomes the holder of the enclosed link. 
If the sender does not destroy its copy, 
then both processes will hold identical 
copies of the link. 

The holder of a link has no way to name or 
address the process at the other end. In 
particular, it does not know whether that 
process is on the same or a different 
machine. 

Each kernel maintains a pool of buffers 
that are allocated among all local 
processes. Incoming messages that have not 
yet been received by their destination 
processes are queued in these buffers, as 
are outgoing messages that have not yet 
been delivered to a neighboring machine. A 
simple priority algorithm is used to reduce 
the chance of buffer deadlock. 

Service Calls 

The chief function of the kernel is to sup- 
port links and messages by providing ser- 
vice calls to create and distroy links, and 
send and receive messages. Additional ser- 
vice calls create and destroy processes, 
read and set "wall-clock" and high- 
resolution interval timers, and establish 
interrupt handlers for processes that con- 
trol peripheral devices. The service calls 
that create and destroy processes are nor- 
mally issued by the resource manager util- 
ity process described below. 
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Utility Processes 

Roscoe has been designed so that as many as 
possible of the traditional operating sys- 
tem functions are provided not by the ker- 
nel, but by ordinary processes. The termi- 
nal driver is an example. One t e ~  
driver resides on each processor that has a 
terminal. All terminal input/output by 
other processes is performed through mes- 
sages to this process. It understands and 
responds to all commands accepted by a file 
(see below), as well as a few extra ones, 
such as "set modes" (for example 
echo/noecho, hard-copy/soft-copy). 

A file manager process resides on each pro- 
cessor that has mass storage. Each file 
manager controls a tree-structured direc- 
tory. A process wishing to open a file 
sends a message to the appropriate file 
manager, which creates a link to represent 
the open file. To the user of a file, the 
open file behaves like a process that 
understands and responds to messages 
requesting read and write operations. The 
file is closed by destroying the link. 

The most interesting utility process is the 
resource manager (RM). Resource managers 
reside on a-~ processors and are connected 
by a network of links. Any process may 
request its local RM to create a new pro- 
cess. The local RM may create the process 
on its own machine or relay the request to 
another RM, based on local considerations 
such as availability of free memory and the 
possibility that the required program is 
already in memory. The next RM decides in 
a similar way whether to load the process 
or relay the request. 

The new process is started with only a link 
to its local RM. It can use this link to 
request links to the process that requested 
its creation, to a file manager process, to 
a terminal driver, or to other resources. 
The RM can kill the process, or it can give 
a special link to another process (usually 
a terminal driver) that may be used to kill 
it. 

Processes form a hierarchy in two senses. 
First, every process is started by another. 
However, since the RM usually performs the 
starting, this hierarchy is quite flat. 
Second, every process is started at the 
request of another to the RM. The RM main- 
tains this hierarchy in order to satisfy 
requests to terminate processes. 

Library Routines 

Functions provided by service calls are 
rather primitive, and communication with 
utility processes can involve complicated 
protocols. An extensive library of rou- 
tines has been provided to simplify writing 
of programs that use service calls and 
utility processes. For example, general 
message passing is simplified by "call", 

which creates a reply link, sends the mes- 
sage, waits for the reply, and decodes the 
returned message. 

Other routines may be used to correspond 
with the file manager to request directory 
information or to open, create, or delete a 
file. For file or terminal I/O, one rou- 
tine separates strings of text into 
message-sized chunks, and another accepts 
text in chunks and assembles it into a 
buffer. There is also a routine for for- 
matted output. 

EXPERIENCE 

The first version of the Roscoe kernel was 
put into service in June 1978. Since that 
time, additions and enhancements have been 
added, and many parts of Roscoe have been 
modified or completely rewritten. Some of 
our initial decisions have turned out quite 
well; others have been revised. Some dif- 
ficult problems that arose during implemen- 
tation were temporarily resolved by ad hoc 
solutions, awaiting fuller study. 

Links 

The most gratifying result was the concep- 
tual simplification due to the link con- 
cept. Most obviously, it isolates the pro- 
grammer from details of communication. 
Sending a message to another process is the 
same whether or not the destination is on 
the same machine, even if the message needs 
to be relayed by an intermediate processor. 
Acknowledgement a n d  retransmission, if 
needed, could also be hidden from the pro- 
cess, although we find that our transmis- 
sion lines is sufficiently reliable not to 
need such measures. 

The fact that a process sending a message 
names a link, not a destination process, 
has several advantages. First, it allows 
flexibility in allocating resources. A 
client requesting a service may be given a 
link to any process that provides the ser- 
vice. The client has no way of knowing to 
which server it has been connected, only 
that messages sent over the new link are 
understood and answered properly. Second, 
like abstract data types [4], links help to 
separate the behavior of a facility from 
its implementation. For example, to open a 
file, a process sends a message to a file 
manager process and gets back a link to an 
open file. To the user process, the file 
behaves like a process capable of storing 
or retrieving data. In fact, as currently 
implemented, the file manager does not 
create a new process, but only a new link 
to itself. I/O requests are satisfied by 
the file manager masquerading as a file 
process. If we decide to change the imple- 
mentation, no changes are required in user 
processes. 

A related advantage to hiding the identity 
of the owner of a link from the holder is 

110 



the ability to substitute a process that 
fulfills the expectations of the holder but 
does more. One possibility mentioned by 
Baskett et al [2] is to replace a standard 
process by one that not only satisfies 
requests but also monitors them to gather 
performance statistics. Another version of 
this idea is used in Roscoe to implement 
the UNIX "pipe" facility [15]. A "pipe" 
process is interposed between two 
processes. The pipe responds to one pro- 
cess as if it were an output file and to 
the other process as if it were an input 
file, buffering data between them. Simi- 
larly, a terminal driver is capable of 
behaving like a file, so a process needs no 
modification to read or write to a terminal 
rather than a file. 

The link concept has also proved useful to 
solve other problems not so obviously 
related to communication. One example is 
synchronization. Since processes do not 
share address space, synchronization is not 
necessary to prevent interfering memory 
references. In situations where synchroni- 
zation is required, the ability to accept 
messages only on a subset of all incoming 
links can be used to advantage. For exam- 
ple, the pipe process has two incoming 
links, one from the writing process and one 
from the reading process. When the pipe's 
buffer is empty, it stops accepting read 
requests; when it is full, it stops accept- 
ing write requests. Otherwise, it accepts 
whichever request comes first. 

Another application of links involves 
interrupt handling. The terminal input 
driver performs a service call that estab- 
lishes an entry point in itself to be 
invoked when an input interrupt occurs. 
This service call also names a link to the 
terminal driver process. When the input 
buffer is empty, the driver waits for a 
message along this link. When an interrupt 
occurs, the interrupt-handllng routine puts 
the input character into a buffer shared by 
the "higher-level" part of the driver. If 
an input line is found, it invokes a ser- 
vice call in response to which the kernel 
manufactures a message and queues it for 
delivery to the "higher-level" part of the 
driver, which will eventually receive it as 
an ordinary process (not at interrupt 
level). 

Bottlenecks 

We have discovered that the most vexing 
aspect of the inexpensive processor we use 
is not its rather slow speed, but its lack 
of memory management facilities. This 
deficiency manifests itself in three ways. 
First, we have no way of preventing a run- 
away process form damaging other processes 
or the kernel on its machine. Second, a 
process image, once loaded, cannot be moved 
within a processor or to another processor 
except at the same address. This restric- 
tion has prevented us from experimentation 
with process migration. Third, the address 

space of 56K bytes must be shared by the 
kernel, utility processes and applications 
programs. Currently, a processor loaded 
with a kernel, resource manager, terminal 
driver, command interpreter, and file 
manager has no room for application pro- 
grams. Luckily, the Roscoe design miti- 
gates this problem; user programs running 
on other processors may use the services of 
such a "service-only" processor. 

In attempting to live with our space prob- 
lems, we have investigated why programs 
cannot be made smaller. One reason is that 
the general send/receive paradigm for com- 
munication is significantly more compli- 
cated than call/return. Library routines 
such as "call" hide this difficulty from 
the programmer, but separate copies must be 
loaded with each process, thus wasting 
space. 

The memory limitations can be mitigated in 
two ways: One way is software memory 
management. We have designed a language 
and implemented a compiler for it that gen- 
erates code in which all accesses are fully 
checked and are computed relative to fixed 
registers. The kernel can use this fact to 
relocate running programs, performing swap- 
ping or migration if necessary. This 
language also allows us to experiment with 
high level language features supporting 
parallelism. A more permanent solution is 
to use better hardware. Several microcom- 
puters with memory management have recently 
been announced. We plan to switch to PDP- 
11/23 machines in the near future. 

CURRENT WORK 

As we mentioned earlier, several important 
issues have been sidestepped in an effort 
to get Roscoe running. We are currently 
working on solutions to some of these prob- 
lems. These problems include message rout- 
ing, resistance to and recovery from pro- 
cessor failure, flow control, distributed 
file systems, allocation of resources, and 
migration of processes. 

Message Routing 

Messages that are sent between processes 
must be delivered by the cooperation of 
several kernels. If a message generated on 
one machine must be directed to another 
machine, the source kernel must have algo- 
rithms for finding the recipient machine. 
Currently, routing tables are fixed and 
stored in each kernel. In larger networks, 
it would be better to arrange the nodes 
regularly so that routing information can 
be calculated when needed. Several such 
schemes for interconnection have been pro- 
posed [I, 5, 8]; some are suited to algo- 
rithmic routing. Another approach con- 
structs routing tables dynamically [11]. 
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Processor Failure 

When a processor fails, the effect should 
be localized; otherwise the entire network 
is only as robust as the weakest part. 
Distribution of control provides advantages 
in the event of processor failure, since 
vital decisions about resource allocation 
can be made elsewhere. A hierarchical con- 
trol structure would lose an entire subtree 
of the network when a processor fails. 
Roscoe currently will survive the loss of a 
processor only if certain critical 
processes (such as a file manager) are not 
lost. If a processor is "cold started 'f , 
Roscoe is capable of accepting its re- 
integration into the network. However, the 
technique is clumsy and requires some 
manual intervention. 

Flow Control 

The object of flow control is to allocate 
the scarce resources of message buffers and 
use of inter-machine links in such a way 
that no process is continually blocked 
waiting for a message buffer, and lines are 
not left idle when messages are waiting to 
be sent. 

The task of the flow control algorithm is 
to decide whether to honor each request for 
a buffer. If the allocator is too stingy, 
very little communication will take place. 
If it is too generous, the buffer supply 
may be exhausted, blocking all further 
work. Unfortunately, no fixed technique 
can guarantee that the buffer pool will not 
be depleted. 

Roscoe follows a fairly simple strategy at 
present. Buffers are requested at one of 
three priorities, depending on the purpose. 
A high priority request is satisfied if any 
buffers are available; a medium priority 
request only if a fourth of the pool is 
available, and a low priority request only 
if a half of the pool is available. High 
priority is used for messages replying to 
others, medium priority for most messages, 
and low for messages arriving from other 
machines. This strategy avoids buffer 
depletion in most cases, but it can fail in 
pathological situations. A possible alter- 
native is to institute per-process buffer 
quotas. 

Files 

At the moment, Roscoe files are managed by 
the PDP-11/40. We also have a floppy disk 
file driver, but have not yet achieved our 
goal of distributing a hierarchical file 
structure among the non-hierarchical 
machines. 

Our plan is to link the independent file 
manager programs on various machines so 
that each one controls a local piece of the 
file hierarchy and knows which colleague 
controls adjacent pieces. File requests 
that cannot be handled locally can be 

forwarded through the hierarchy until they 
reach a suitable handler, which can then 
carry on a private communication with the 
client process. 

The problems we expect are that the number 
of colleagues may be very high, and a dis- 
abled processor can disconnect a subtree of 
the file directory. 

Resource Allocation 

Nearly all the facilities are in place for 
the resource manager to do intelligent 
allocation of resources. Currently, how- 
ever, the resource manager uses extremely 
simple-minded algorithms for resource allo- 
cation. An example is the allocation of 
main memory. When a resource manager is 
requested to load a program, it first 
attempts to load it locally: It looks for a 
usable image of the program already loaded, 
then for unused memory space, and finally 
for memory currently occupied by an unused 
program image. Failing to load locally, 
the resource manager asks a neighbor to 
load the program. The request is passed 
around the network in a predetermined cir- 
cuit until it is satisfied or returns to 
the originator. If it cannot be satisfied, 
the original resource manager must report 
failure. This algorithm has three flaws. 
First, the predetermined circuit is too 
inflexible. Second, for larger networks a 
circuit of the entire network would be 
impractical. Third, the program may be 
loaded far from other processes with which 
it must communicate. 

Migration of Processes 

As mentioned above, we have been unable to 
experiment with process migration due to 
the lack of dynamic address translation. 
However, even with this problem removed, 
many others remain. Even though a process 
names its correspondent by link number 
rather than process name, its hidden link 
tables do contain names of processes. If a 
process can move, the message-routing func- 
tion of the kernel must be able to discover 
its new location. One technique is to pro- 
vide a forwarding address. As processes 
move, the chains of forwarding addresses 
are liable to get long, so a "change of 
address" notice might be sent to the send- 
ing kernel. However, in a distributed 
organization like Roscoe, in which 
processes are dynamically created and des- 
troyed and in which there is no centralized 
control, "Flying Dutchman" messages can be 
created, forever seeking defunct processes, 
so a message "aging" technique may be 
necessary. 

A more fundamental problem is how to decide 
when and where to move a process. At some 
point, the overhead involved in transmit- 
ting a program image is exceeded by the 
inefficiency of a large amount of communi- 
cation between distant processes. Several 
heuristics come immediately to mind, but 
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this issue seems to be one that can only be 
resolved by experimentation. 

CONCLUSIONS 

The Roscoe operating system has been run- 
ning for over a year. A major thrust in 
its design and development has been to 
decentralize control as much as possible. 
Each resource manager has local control 
over its own machine; the community of 
resource managers can solve larger problems 
if necessary. 

One application that has been successfully 
implemented under Roscoe is a game-playing 
program that uses alpha-beta pruning in a 
fashion that takes advantage of the avail- 
able parallelism [Fishburn 79]. 

The link concept appears to be very suc- 
cessful not only for insulating application 
programs from the details of communication 
implementation but also for organizing dis- 
tributed control. 

We have learned how to program with the 
underlying link structures that Roscoe pro- 
vides; the link concept has undergone vari- 
ous refinements during the course of this 
study. 
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