
/

/
j - - /

CDMPUTATIONAL PROCESSOR D~ANDS OF ALGOL-60 PROGRA,~*

bY

Robert E. Brundage** and Alan P. Batson
Department of Applied Mathematics and C~u~uter Science

University of Virginia, Charlottesville, Virginia 22901

The characteristics of ccmputational processor requirements of a sample of Algol-60 programs
have been measured. Distributions are presented for intervals of processor activity as defined by
input-output requests and segment allocation requests occurring within the Johnston contour model
and within a stack model in which array allocations are treated separately. The results provide new
empirical data concerning the behavior of this class of programs. Some implications of the empirical
results which may influence computer system design and performance are presented and discussed.

Ke~words: program behavior, contour model, Algol-60, processor distributions, resource allocation.

CR Categories: 4.22, 4.35, 4.6, 6.21

i. Introduction

An earlier report (1,2) described measure-
ments of the virtual memory requirements of a
collection of Algol-60 programs, and ~ present
here same additional results which ccmplement
the previous study. The measurements presented
below pertain to the computational and input-
output processing requirements of the same
collection of programs. For the computational
processor, we give distributions for intervals
of processor activity determined by certain
events which cause a process to bea3me blocked
on a resource request; for the input-output
processor we present the characteristics of in-
tervals in pro~ss time between successive
input-output requests. We first describe briefly
the conceptual models used in this study.

2. Conceptual Models

(i) The contour model, presented by
Johnston (3), has been used for the description
of the semantics of several block-structured
languages. Basically, a process is described by
an algorithm (i.e. the symbolic program itself)
and a time-ordered sequence of "snapshots" or
records of execution. The contours enclose the
blocks of the algorithm, and the execution record
immediately following block entry will contain a
fresh copy of the contour which has been entered.
Thus a procedure call in Algol-60 correspoDJdS to

This research ~s supported by NSF Grant GJ-1005

Present address: Depaxh~ent of Mathematics,
Florida State University,
Tallahassee, Florida 32306

the "activation" of a contour as the site of
execution in the contour model. The importance
of the contour model for our purposes is that it
provides a conceptual framework and a terminology
with which to describe and delimit execution
phases of a process in terms of its use of the
virtual machine resources. Further details of
the contour model and Johnston's contour model
machine may be found in (3).

(ii) The resou~e model is a primitive
representation of a virtual mchine which executes
Algol-60 programs, and where the representation
is chosen so as to portray the constmption of
resources during process execution. This machine
is shown in Figure i. We represent three distinct

I V i RTUAL I
MEMORY

PROCESSOR '

EXECUTION I ~ I
TRACE COtIPUTAT I ORAL

INTERPRETER -~ - - I _ I PROCESSOR

I It/PUT/OUTPUT PROCESSOR

Figure 1 Algol Process Machine

resources - a ccmputational processor, an input-
output processor, and a virtual memory prccessor.
An executing Algol program can be represented as
a linear sequence of requests for these resources,
which is called an execution trace. Figure 2 gives
an exanple of the execution trace of a

161

BEGIN INTEGER ISJ;

INTEGER ARPAY A [0:2];

PROCEDURE P(K); INTEGER K;

BEGIN

A [K] ~- K x K;

K ÷ K + I ;

IF K # 2 THEN WRITE (K)

END P;

J~O;

FO__R I ~ O, 1, 2 DO P(J);

WRITE (A)

END EXAMPLE:

FIGURE 2 (a)

SAMPLE ALGOL PROGRAM

B - BLOCK ENTRY

E - BLOCK EXIT

M - ARRAY SEGMENT ALLOCATION

D - ARRAY SEGMENT DELETION

C - COMPUTATION INTERVAL

I - INPUT/OUTPUT EVENT

FIGURE 2 (b)

RESOURCE REQUEST EVENT TYPES

BMC BCIE C BCE C BCIE CIDE

FIGURE 2 (c)

EXECUTION TRACE OF PROGRAM

Figure 2 Algol-60 Program Example

simple Algol-60 program in terms of the symbols
representing requests for the virtual machine re-
sources. The symbols and their descriptions are
given in Figure 2b; the sanlole execution trace
in Figure 2c. Each occurrence of the symbol C
represents an interval of ccmputation on the
ccmputational processor, while each symbol I
represents an input-output request. The language
of execution traces generated by Algol-60 pro-
grams has a simple formal BNF-syntax description
which is given in (4).

The operation of the abstract virtual
mchine in Figure 1 can be visualized as
follows: The execution trace, representing
the stream of resource demands made during
process execution, is input to the interpreter,
which directs the resource requests to the
appropriate processor. In the example in
Figure 2, the sequence BCIE representing
one instance of activation of procedure P
corresponds to (i) a request to the virtual
memory processor for the memory associated
with entry to a contour (symbol B), (ii) a
request for services from the ocmputational
processor (symbol C), (iii) a request for
input-output by the I/O processor (symbol I) ,
and finally, (iv) a request to the virtual
ine~ory processor for exiting a contour.

We next specify the measurement units for
the resource model. We have chosen to define
time in units of werk performed by the cc~pu-
tational processor; thus in our example above,
the lifetime of the contour associated with an
activation of procedure P is simply the pro-
cessor time indicated by the resource request C
in the trace sequence BCIE. In the model, the
occurrence of symbols such as B, E, and I in the
execution trace do not "consume" time but they
do signify that the computational processor has
been halted because of a request for service by
a different processor. Thus the process is
blocked frcrn using the computational processor
until this request has been satisfied. We now
give a brief description of the measurement

technique which was used and some information on
the sample of programs.

3. Measurement Technique

The hardware and software of a Burroughs
B5500 were modified to permit the acquisition of
a magnetic tape of execution events with each
event precisely time-stamped. A software-
controlled hardware counter was designed and con-
structed by A. O. Baxter (5). The 1 M~z clock
pulses of the B5500 processor were input to the
counter, which could be started, stopped, read,
and reset under program control. The B5500 Algol
cor~piler and t/le operating system were modified
such that each event of interest during execution
of an Algol program caused a time-stamped event
record to be written on magnetic tape. This trace
tape was used, in conjunction with an inverse
symbol table, to generate symbolic trace tapes
which were processed to obtain the results pre-
sented here. More ccmlolete details of the techni-
que for data collection and reduction is described
elsewhere (2,4). All times given in the results
are for the B5500 equivalent of our computational
processor and do not include time normally spent
on that real pr~ssor for virtual memory alloca-
tion or for I/O processing. These activities
were filtered out from the raw trace data during
processing to permit presentation of the results
in terms of the virtual machine of Figure i.

The sample consisted of 34 programs, written
in B5500 Algol, which were production programs
for scientific and engineering problems. They
included a BASIC cc~piler, a linear progranlning
package, and some standard statistical routines.
As an example of the range of program sizes, the
maximum virtual memory requirement ranged from
162 words to 89,976 9x)rds. The largest program
contained 99 Algol blocks. For the larger pro-
grams, the input data was chosen to keep execution
time relatively short in view of the trace data
volume, but there was a considerable range in
total processor times - the total time used on
our 1 Mhz version of the computational processor
of Figure 1 for the programs in the sample varied
between 90 ms. and 126 seconds. With 34 programs
selected partly with the goal of achieving diver-
sity in size and execution time, there is some
danger that t/le smaller, shorter programs are
relatively under-represented in the c~nulative
data, since many typical mixes contain a preponder-
ance of short, small programs. However, for many
of the statistics to be presented here, it would
seem likely that programming style, rather than a
program's size or execution time, is likely to be
a greater biassing factor in the results. This
possibly is being actively explored, and some
early results which confirm this hypothesis are
described elsewhere (6).

4. Results

The measurement results are displayed in the
form of cumulative distributions of saqole values
obtained from the collection of 34 Algol programs.
The sanlole values from a given program are not
independent because of the cyclic characteristics
of cc~puter programs, and in most cases we present
two distributions for items of interest. The
first is a distribution of averages of values

162

arising from a single source, such as the execu-
tion lifetime of a particular block, and the
second is a distribution of all values obtained
(the "dynamic" distribution) where each source
may contribute multiple values. Both distribu-
tions have meaningful interpretations which
will be discussed below.

The sanple values for the first three distri-
butions to bepresentedare determined by the
process time intervals between dle occurrence
of either

i. requests for allocation or de-
allocation of virtual memory;

2. requests for input-output processor
assignment.

As mentioned earlier, the requests in beth i) and
2) above cause the cc~putational processor to
halt, denoting the end of a process active inter-
val. The processor is relinquished, and the
process enters a blocked state, waiting until
the request is fulfilled. An inportant point to
be noted here is that the "standard" B5500
Algol-60 procedures (sin, sqrt, etc.) were not
treated as procedure calls during data collec-
tion and thus do not give rise to a contour
crossing in our measure~L~nts. However, the com-
putational processor time for the standard
function is included in the measured processor
time. --

Contour Transition Intervals. The first
distribution consists of the intervals between
contour transitions, which occur as each contour
(block) is entered or exited. The crossing of
a contour causes a request for either allocation
of a contour data segment (block entry) or de-
allocation of a contour data segment (block
exit). A contour data segment (1,2) is the
virtual memory allocated for each procedure
activation and contains the parameter list, local
declarations and return address in the contour
model. A contour (block) entry will also cause
an allocation request for any local arrays or
files; this request immediately follows the re-
quest for the contour data segment, so that for
measurement purposes we consider both requests
as a single request for several virtual memory
blocks. The distribution of contour transition
intervals is given as a distribution of averages
in Figure 3a and a distribution of all transi-
tions in Figure 3b. We define the average
contour transition interval to be the sum of
all intervals occurring wit/tin a given block
(i.e. when control resides within that block)
divided by the n~nber of such intervals, taken
over the entire execution of the program.

The medians of the two distributions are not
significantly different (0.38 ms for the distri-
bution of averages and 0.36 ms for the dynamic
distribution). The lower value for the mean of
the dynamic distribution is due to the occurrence
of frequently-called procedures. The difference
between the two distributions is more strikingly
shown by their 90th percentiles: that of the dis-
tribution of averages is 28 ms, while that of the
dynamic distribution is 2 ms. This pair of

o

o

M o

o

S
SAMPLE

MEAN

MEDIAN

STD. DEV.

280

589.0

0.38

5990.

Figure 3a.

5 I0 15

Contour Transition Intervals -
Average (milliseconds)

co

6

c:i
uJ • # o

N
o

/
SAMPLE 67788

MEAN 8.85

MEDIAN 0.36

5T0. DEV. 891.

20

s]0 15 20

Figure 3b. Contour Transition Intervals -
Dynamic (milliseconds)

distributions illustrates the i~ortance of having
efficient hard~are mechanisms for implementing
procedure calls and exits in Algol-like languages.
These measurements were made on a 1 ~z processor,
and the times given here should be adjusted pro-
portionally to get equivalent figures for a
processor of different speed - e.q. for a i0 ~z
processor, our results indicate that 90% of the
co~outation time intervals between procedure
entry/exit events would last for less than 200 us.

Input-Output P.equests. The distribution for
input-output request intervals in Figure 4 is
only given as a dynamic distribution. The median
of 0.16 ms is really quite short, indicating
some of the more cammon structural features of
the programs - i.e. the occurrence of input-
output statements in tight iterative loops and in
close textual proximity in the source language.
It should be emphasized that our results simply
portray the distribution of the cc~putational
work performed between successive read or write
statements in Algol-60 programs. These intervals
of processor time between input-output requests
cannot be directly cc~pared with the corresponding
arithmetic processor (CPU) intervals on many
"real" machines. Firstly, in our model, no com-
putational processor time is associated with the
usual interpretive formatting of the input-output

163

o

o

~o
M

o

f
, . _ r

SAHPLE 7380

MEAN 52.2

MEDIAN 0.16
STD. DEV. 1840

Figure 4 Input-output Request
Intervals (milliseconds)

list or with the processes of blocking, buffering,
or file control, since these are performed by the
input-output processor. Secondly, when the
arit~netic processor of a real machine is used
for these purposes, then any blocking of the
logical input-output requests significantly in-
creases the time between requests for physical
input-output. The data given here is in rough
agreement with the results given for prograns
running on the University of Texas CDC 6600 by
Sherman et al. (7) when these factors and
machine speed are taken into account.

Process Active Intervals. The effect of
superimposing the above two process mechanisms
is illustrated in the distribution of process
active intervals (Figure 5). Not suzprisingly,

CO'
6

,a. • ~o

0

, , I - - /
SAMPLE 65202

MEAN 7.84
MEDIAN 0.29

STD. DEV. 781.

, , , , J

5 10 15 20

Figure 5 Process Active Intervals
(milliseconds)

the contour transition events dominate since
they represent over 88% of the sample events.
Both the median (0.29 ms) and the mean (7.84 ms)"
fall between the medians and means of the distri-
butions of contour transition intervals (Figure 3b)
and the distribution of input-output requests
(Figure 4). The distribution of process active
intervals exhibits the characteristic clustering
of values evident in several of the dynamic dis-
tributions, causing this distribution to be highly
skewed towards the lower end of the range. This
phenomenon is due largely to the effects of

frequently-called procedures as mentioned earlier,
where many of the frequently-called procedures
also have a short execution time as we show later.

Resource Allocation MDdel. The three distri-
butions we have just presented may in themselves
be used in the context of a sinple resource al-
location model. Figure 6 illustrates a simple

STAGE 2

STAGE I F a "l
I I

I
I ','

, ,'

BLOCKED l

CP--COMPUTATIONAL PROCESSOR
VM--VIRTUAL MEMORY

IO--INPUT-OUTPUT PROCESSOR

Figure 6 Resource Network Mmdel

cvclic neh~ork of three servers corresponding to
the three process-machine resources we have been
considering. In the active state, represented
by stage i, the process is being executed by the
ccx~putational processor. Whenever the process
issues a virtual memory or input-output processor
request, it enters one of two blocked states,
represented by stages 2a and 2b of the network.
Stage 2a represents the process state "blocked
on virtual memory" while stage 2b represents the
process state "blocked on input-output". In
most of the current network models to be found in
the literature stage 2a also includes the
occurrence of process stoppage caused by informs-
tion segments being missing from executable
memory. These interruptions of process activity,
although related to the se~nantics of process ex-
ecution, are dependent on the policies which de-
fine how virtual memory components are loaded
into main memory by the memory management algo-
rithms within the system. In our model, the
interruptions caused by segments~missin~from
main memory are not classified as virtual memory
requests, since the segment already has been
allocated in virtual memory. Any extension of
the state "blocked on memory" to include requests
for segment transfers between levels of the
memory hierarchy necessitates some asstmptions or
empirical data regarding the characteristics of
information referencing patterns at the symbolic
level (8).

In the resource allocation model of Figure 6,
the distribution of contour transition intervals
(Figure 3b) models the processor service time
associated with transitions between stages 1 and
2a, while the distribution of input-output re-
quests (Figure 4) measures the effect of

164

transitions between stages 1 and 2b. The distri-
bution of process active intervals (Figure 5) is
the superposition of these two effects. Analysis
of the model in Figure 6 could be carried out in
a queueing theoretic framework once the distribu-
tions for service at stages 2a and 2b were deter-
mined. Network analysis such as (9) could then
be used to study the effects of varying service
time rates on each of the three resources to iso-
late potential "bottlenecks" which would cause
significant performance degradation in real
systes~.

Resource Model of a Stack-Based Machine.
The results given above have all been related to
the behavior of a contour model machine, where
all virtual memory allocations are made on demand.
In stack-based machines such as the Burroughs
B5500/B6700 series, contour data segments are
placed in the stack, which is a single data seg-
ment allocated only once at the t/me of pr~ess
initiation. In such machines, therefore, the
only requests for virtual memory occur on entering
those blocks having array or file declarations.
The distribution of intervals between these data
segment requests is given in Figure 7. The first

o

u~

uJ

o

SAMPLE 238

MEAl4 1620

MEDIAN 17.7

STD. DEV. 11400

50 100 150 200

Figure 7 Data Segment Allocation
Request Intervals (milliseconds)

characteristic noticed in conparing this dis-
tribution with the analogous distribution
(Figure 3b) for the contour-based machine is
the extreme difference in the sanple sizes,
with 238 virtual memory requests in the stack-
based machine as cc,~?ared with 57788 in the
contour-based machine. A second striking
difference between these two distributions is
that the median interval be~geen requests in the
stack-'based machine is 18 ms, while in the
contour-based machine it is only 0.36 ms.
This illustrates a possible inefficiency which
must be dealt with before a contour-based machine
can become a practical base for implementation.
This observation must be t~/pered by noting that
a n~ber of new block-structured languages,
such as Oregano (i0) and Algol-68 (ii), cannot
be implemented on a p~irely stack-based machine.

To make further comparison of the stack-
based and contour-based machines, we can determine
the distribution of intervals between all re-
source requests in the stack-based machine:
these are delimited by input-output requests and
entry/exit to blocks containing arrays/files.
We find that in this distribution the input-
output request events almost totally dominate
since they represent about 97% of the sample;
thus the distribution appears almost identical to
that given ih Figure 4 and is not presented here.
The mean of this distribution is 50.4 ms and its
median is 0.16 ms.

Block Execution Time Characteristics. In
the next series of distributions we examine some
characteristics of the execution time for individ-
ual program blocks. By the execution time of a
block we mean the total process time acc~nulated
within a given block epoch between block entry
and exit, excluding all process intervals during
which control resides at a different dynamic
level. The lifetime of a block, defined as the
elapsed total process time between block entry
and exit, is equal to its execution time only if
the block contains no nested inner blocks and no
calls on procedures.

In Figure 8a we give the distribution of the

o

co
6~

o

S~
m

c~

c~
o

J

F
SAMPLE

MEAN

MEDIAN

STD. DEV,

280

I000

0.94

9540

a0

o

cs ~o
6

o . • ~o

20 40 60

Figure 8a Block Execution Time -
Average (mill iseconds)

SAMPLE 28911

MEAN 17.7

MEDIAN 0.63

STD. DEV. 1260

20 40 60

Figure 8b Block Execution Time -
Dyn~c (milliseconds)

SO

80

165

average block execution time for all program
blocks. The median of 0.94 ms is surprisingly
small. The considerably larger mean of 1
second is essentially due to several blocks in
the sample which had an execution time of several
seconds. An interesting contrast is found in
the distribution of execution times for all block
activations, given in Figure 8b. Here the median
of 0.65 ms is about 2/3 of the median for the
distribution of average block execution time,
while the mean of 18 ms is two orders of magni-
tude s~aller. This illustrates that in the
dynamics of pro~ss execution, most block
execution times will be quite short. The 90th
percentile of the dynamic distribution is less
than 2 ms.

The sample of block execution times can be
viewed in another interesting way. Dividing
each sample block execution time by the total
processor time consigned by the entire program of
which it is part yields a "nozmalized" block
execution time. A distribution of such values
should not only be essentially independent of
the timing characteristics of the ccmputational
processor, but more i~ortantly, should provide
some insight into the way in which real Algol
programs make use of sub-program structure.
The results of normalizing the data of Figures
8a and 8b in this way are given in Figures 9a
and 9b, respectively. The results are rather

o

co
6

B ~
~6

SAMPLE
MEAN

6 MEDIAN
STD. DEV.

6

0.002 0.0~ 0.0'06

280

.066

.00062

.209

0.008

o

~o

~o

Figure 9a Block Execution Time
(Average, normalized)

_ J

J
SAMPLE
MEAN
MEDIAN
STD. DEV.

28911

.0012

.00007

.024

o~02 o;o4 0.006
Figure 9b Block Execution Time

(Dynamic, normalized)

0.008

surprising: the median of the distribution given
in Figure 9a (average) is 0.0006; the median
of the distribution of Figure 9b (dynamic) is
0.00007. Putting this another way, we see that
if all the events of Figure 9b had been generated
by a single program, then the ctmnulative time
taken up by 50% of its block executions would
account for much less than 3% of the total pro-
cess time. This again illustrates that the time
required to activate a block or procedure may be
a significant factor in total process execution
time in a real system.

There are other observations which can be
made about the block execution times. The
first is that the mean block execution time on
an equivalent 10 ~nz computational processor
will be less t/~an 2 ms. This is considerably
shorter t/nan the time required to transfer a
segment or page frc~ conventional rotating mass
storage. On a paged virtual storage syste~n, a
large, highly modular program may produce a
high rate of page faults if the object code
modules and data structures are not properly
packed into the (linear) page space. The vx)rk
of Hatfield and Gerald (12) has given sc~e indi-
cation of t~he i~ortance of this effect on the
performance of current virtual systems.

A second method of analyzing block execution
times is based on normalizing each sample value
by its associated block lifetin~. This distribu-
tion is given in Figure 10a for the average ratio
for each block; the distribution of all normal-
ized block execution times is given in Figure 10b.

o

o

m

uJ •

e~
o

__,_r ~ w SAMPLE 280

f MEAN O. 56
S f MEDIAN 0.61

STD. DEV. 0.42

Figure 10a
o

o

6

e~

Ficfure 10b

0.25 0.50 0.75

(Execution time) / (Lifetime) Average

1.00

SAMPLE 289]I

MEAN 0.88

MEDIAN 1.00

STD. DEV. 0.26

i] i i

0.25 0.50 0,75 1.00

(Execution Time) / (Lifetime) Dynamic"

166

Here we see a striking phenomenon--in the dynamic
distribution, about 80% of the block activations
(consisting almost entirely of procedure blocks)
are due to blocks which did not cause entry to a
nested block and did not make any procedure calls.
This figure ~Duld be considerably greater than
80% if the standard functions of Algol-60 had
been incln~ed as procedure activations. This
fact strongly suggests that mechani~s for im-
plementing procedure calls should incorporate a
special, highly efficient mode for calling
"simple" procedures.

The sample values of block lifetimes, used
above, are interesting in ther~selves. These
lifetir~es are in fact the s&~e as the lifetimes
of the contour data segments, which have been
presented elsewhere (1,2). Briefly, the median
lifetime for all instances of block activation is
i. 0 ms. The 90th percentile of the dynamic
distribution of lifetimes is 3 ms (as compared
with 2 ms for block execution time) and is only
40 ms at the 99th percentile level. Again, we
can see the crucial importance of the frequently-
called, short-lived procedure block in the
dyna~cs of program behavior.

5. Discussion

In this paper we have examined several
characteristics of how Algol-60 processes make
use of conputational and input-output resources.
The empirical distributions were presented in
the context of a formal model for describing how
a process requests and makes use of these re-
sources, and we point out here that these distri-
butions can be related to real systems in
several ways. For exanple, the distribution of
process active intervals in Figure 5, which
gives the distribution of intervals for the type
C symbols in the resource model, represent a
sanple of processor burst times for a real system
where virtual me~nory allocation and unbuffered
input-output are performed by separate processors.
Similarly, the distribution of input-output re-
quest intervals (Figure 4) corresponds to the
distribution of processor burst times on a real,
non-virtual mEmDry, system in which all input-
output processing (formatting, blocking,
buffering, etc.) is performed bv a separate
processor.

The enpirical performance data presented
here portrays aspects of program behavior at
the symbolic level, rather than in more primitive
machine-oriented terms. The data reflects the
performance of Algol programs, whereas many
conte~orary measurements describe the behavioral
characteristics of the machine code generated
by the ccmplex of cc~pilers, loaders, and other
software which serves to implement a high level
language machine on contemporary hardware. Our
results therefore can be construed as grist for
the mill of those dreamers who advocate that
machines should be designed so as to be suitable
instr~nents for the tasks specified by programmers,
in that this research is an attempt to specify
some of the characteristics of these tasks.
Knuth (13) has made a somewhat similar arg~nent in
a study of Fortran program characteristics, where
the enphasis was placed on the incidence of
different statement types and their ccmplexity.

We believe that these results, together with
those reported earlier on virtual memory alloca-
tion (1,2), serve as useful data for comparative
design studies of cc~puter systems. The inpli-
cations of the results are relatively obvious
for the design of a machine which directly
executes Algol-60, but there are equally important,
and perhaps more practical, inferences to be
drawn for the design of more conventional hard-
ware systems and their software. To give just
one exampleA the results on block lifetimes and
contour transition intervals illustrate the im-
portance of having a lo~-overhead parameter-
passing mechanism for procedure calls. Moreover,
the extremely large number of calls made on
"simple" procedures (which make no procedure
calls themselves), indicates that significant per-
formance improvement of a processor can be
achieved by the provision of a special, simple,
procedure-calling mechanism for such cases.

In short, the results could be useful in
design studies for any system which is to support
high level languages. The model and the tech-
niques which have been used here are of a general
nature, but the results only represent a relative-
ly ~nall sample of Algol-60 programs. Equivalent
data from Fortran, and particularly Cobol,
programs might have sc~ewhat different character-
istics. Further work of this type on large
samples of programs written in other languages
could prove to be of significant value to design-
ers of ccmputer systems.

REFER~CES

i. Batson, A. P. and R. E. Brundage, "Measure-
ments of the Virtual Memory Demands of
Algol-60 Programs", (Extended Abstract),
Proc. 2nd Annual ACM SIGMETRICS Sym. on
Measurement and Evaluation, Montreal, 1974,
pp. 121-126.

2. Batson, A. P. and R. E. Brundage, "Segment
Sizes and Lifetimes in Algol-60 Programs",
submitted for publication.

3. Johnston, J. B., "The Contour Model of
Block-Structured Pr~esses", ACM SIGPLAN
Notices, 6,2 (Feb., 1971), pp. 55-82.

4.

5.

Brundage, R. E., Ph.D. Thesis, University of
Virginia, 1974.

Baxter, A. Q., Ph.D. Thesis, University of
virginia, 1973.

6. Batson, A. P., R. E. Brundage, and J. P.
Kearns, "Design Data for Algol-60 Machines"-
Submitted for publication.

7. Sherman, S., F. Baskett, and J. C. Browne,
"Trace-Driven Modelling and Analysis of CPU
Scheduling in a M~itiprogramming System",
C~/~I, 15, 12 (Dec., 1972), pp. 1063-1069.

8. Madison, A. W. and A. P. Batson, "Character-
istics of Program Localities" - Proceedings
of 5th Annual Symposi~ml on Operating Systems
Principles, Austin, Texas. November 1975.

167

9.

I0.

ii.

12.

13.

Hofri, M. and Yadin, M., "A Processor in
Series with Demand-Interrupting Devices - A
Stochastic MDdel", JAC~, 22, 2 (Apr., 1975),
pp. 270-290.

Berry, D. M., "Introduction to Oregano",
ACM SIGPLAN Notices, 6, 2 (Feb., 1971),
pp. 171-190.

Van Wijngaarden, A. (ed.), "Report on the Algo-
rithmic Language Algol-68", Numer. Math.,
14, 2 (1969), pp. 79-218.

Hatfield, D. J. and J. Gerald, "Program Re-
Structing for Virtual Memory," IBM Sys. J.,
i0, 3 (1971), pp. 168-172.

Knuth, D. E., "An Empirical Study of FORTRAN
Programs", Software-Practice and Experience,
1 (1971) pp. 105-133.

168

