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The characteristics of ccmputational processor requirements of a sample of Algol-60 programs 
have been measured. Distributions are presented for intervals of processor activity as defined by 
input-output requests and segment allocation requests occurring within the Johnston contour model 
and within a stack model in which array allocations are treated separately. The results provide new 
empirical data concerning the behavior of this class of programs. Some implications of the empirical 
results which may influence computer system design and performance are presented and discussed. 
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i. Introduction 

An earlier report (1,2) described measure- 
ments of the virtual memory requirements of a 
collection of Algol-60 programs, and ~ present 
here same additional results which ccmplement 
the previous study. The measurements presented 
below pertain to the computational and input- 
output processing requirements of the same 
collection of programs. For the computational 
processor, we give distributions for intervals 
of processor activity determined by certain 
events which cause a process to bea3me blocked 
on a resource request; for the input-output 
processor we present the characteristics of in- 
tervals in pro~ss time between successive 
input-output requests. We first describe briefly 
the conceptual models used in this study. 

2. Conceptual Models 

(i) The contour model, presented by 
Johnston (3), has been used for the description 
of the semantics of several block-structured 
languages. Basically, a process is described by 
an algorithm (i.e. the symbolic program itself) 
and a time-ordered sequence of "snapshots" or 
records of execution. The contours enclose the 
blocks of the algorithm, and the execution record 
immediately following block entry will contain a 
fresh copy of the contour which has been entered. 
Thus a procedure call in Algol-60 correspoDJdS to 
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the "activation" of a contour as the site of 
execution in the contour model. The importance 
of the contour model for our purposes is that it 
provides a conceptual framework and a terminology 
with which to describe and delimit execution 
phases of a process in terms of its use of the 
virtual machine resources. Further details of 
the contour model and Johnston's contour model 
machine may be found in (3). 

(ii) The resou~e model is a primitive 
representation of a virtual mchine which executes 
Algol-60 programs, and where the representation 
is chosen so as to portray the constmption of 
resources during process execution. This machine 
is shown in Figure i. We represent three distinct 
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Figure 1 Algol Process Machine 

resources - a ccmputational processor, an input- 
output processor, and a virtual memory prccessor. 
An executing Algol program can be represented as 
a linear sequence of requests for these resources, 
which is called an execution trace. Figure 2 gives 
an exanple of the execution trace of a 
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BEGIN INTEGER ISJ; 

INTEGER ARPAY A [0:2];  

PROCEDURE P(K); INTEGER K; 

BEGIN 

A [K] ~- K x K; 

K ÷ K + I ;  

IF K # 2 THEN WRITE (K) 

END P; 

J~O; 

FO__R I ~ O, 1, 2 DO P(J); 

WRITE (A) 

END EXAMPLE: 

FIGURE 2 (a) 

SAMPLE ALGOL PROGRAM 

B - BLOCK ENTRY 

E - BLOCK EXIT 

M - ARRAY SEGMENT ALLOCATION 

D - ARRAY SEGMENT DELETION 

C - COMPUTATION INTERVAL 

I - INPUT/OUTPUT EVENT 

FIGURE 2 (b) 

RESOURCE REQUEST EVENT TYPES 

BMC BCIE C BCE C BCIE CIDE 

FIGURE 2 (c) 

EXECUTION TRACE OF PROGRAM 

Figure 2 Algol-60 Program Example 

simple Algol-60 program in terms of the symbols 
representing requests for the virtual machine re- 
sources. The symbols and their descriptions are 
given in Figure 2b; the sanlole execution trace 
in Figure 2c. Each occurrence of the symbol C 
represents an interval of ccmputation on the 
ccmputational processor, while each symbol I 
represents an input-output request. The language 
of execution traces generated by Algol-60 pro- 
grams has a simple formal BNF-syntax description 
which is given in (4). 

The operation of the abstract virtual 
mchine in Figure 1 can be visualized as 
follows: The execution trace, representing 
the stream of resource demands made during 
process execution, is input to the interpreter, 
which directs the resource requests to the 
appropriate processor. In the example in 
Figure 2, the sequence BCIE representing 
one instance of activation of procedure P 
corresponds to (i) a request to the virtual 
memory processor for the memory associated 
with entry to a contour (symbol B), (ii) a 
request for services from the ocmputational 
processor (symbol C), (iii) a request for 
input-output by the I/O processor (symbol I) , 
and finally, (iv) a request to the virtual 
ine~ory processor for exiting a contour. 

We next specify the measurement units for 
the resource model. We have chosen to define 
time in units of werk performed by the cc~pu- 
tational processor; thus in our example above, 
the lifetime of the contour associated with an 
activation of procedure P is simply the pro- 
cessor time indicated by the resource request C 
in the trace sequence BCIE. In the model, the 
occurrence of symbols such as B, E, and I in the 
execution trace do not "consume" time but they 
do signify that the computational processor has 
been halted because of a request for service by 
a different processor. Thus the process is 
blocked frcrn using the computational processor 
until this request has been satisfied. We now 
give a brief description of the measurement 

technique which was used and some information on 
the sample of programs. 

3. Measurement Technique 

The hardware and software of a Burroughs 
B5500 were modified to permit the acquisition of 
a magnetic tape of execution events with each 
event precisely time-stamped. A software- 
controlled hardware counter was designed and con- 
structed by A. O. Baxter (5). The 1 M~z clock 
pulses of the B5500 processor were input to the 
counter, which could be started, stopped, read, 
and reset under program control. The B5500 Algol 
cor~piler and t/le operating system were modified 
such that each event of interest during execution 
of an Algol program caused a time-stamped event 
record to be written on magnetic tape. This trace 
tape was used, in conjunction with an inverse 
symbol table, to generate symbolic trace tapes 
which were processed to obtain the results pre- 
sented here. More ccmlolete details of the techni- 
que for data collection and reduction is described 
elsewhere (2,4). All times given in the results 
are for the B5500 equivalent of our computational 
processor and do not include time normally spent 
on that real pr~ssor for virtual memory alloca- 
tion or for I/O processing. These activities 
were filtered out from the raw trace data during 
processing to permit presentation of the results 
in terms of the virtual machine of Figure i. 

The sample consisted of 34 programs, written 
in B5500 Algol, which were production programs 
for scientific and engineering problems. They 
included a BASIC cc~piler, a linear progranlning 
package, and some standard statistical routines. 
As an example of the range of program sizes, the 
maximum virtual memory requirement ranged from 
162 words to 89,976 9x)rds. The largest program 
contained 99 Algol blocks. For the larger pro- 
grams, the input data was chosen to keep execution 
time relatively short in view of the trace data 
volume, but there was a considerable range in 
total processor times - the total time used on 
our 1 Mhz version of the computational processor 
of Figure 1 for the programs in the sample varied 
between 90 ms. and 126 seconds. With 34 programs 
selected partly with the goal of achieving diver- 
sity in size and execution time, there is some 
danger that t/le smaller, shorter programs are 
relatively under-represented in the c~nulative 
data, since many typical mixes contain a preponder- 
ance of short, small programs. However, for many 
of the statistics to be presented here, it would 
seem likely that programming style, rather than a 
program's size or execution time, is likely to be 
a greater biassing factor in the results. This 
possibly is being actively explored, and some 
early results which confirm this hypothesis are 
described elsewhere (6). 

4. Results 

The measurement results are displayed in the 
form of cumulative distributions of saqole values 
obtained from the collection of 34 Algol programs. 
The sanlole values from a given program are not 
independent because of the cyclic characteristics 
of cc~puter programs, and in most cases we present 
two distributions for items of interest. The 
first is a distribution of averages of values 

162 



arising from a single source, such as the execu- 
tion lifetime of a particular block, and the 
second is a distribution of all values obtained 
(the "dynamic" distribution) where each source 
may contribute multiple values. Both distribu- 
tions have meaningful interpretations which 
will be discussed below. 

The sanple values for the first three distri- 
butions to bepresentedare determined by the 
process time intervals between dle occurrence 
of either 

i. requests for allocation or de- 
allocation of virtual memory; 

2. requests for input-output processor 
assignment. 

As mentioned earlier, the requests in beth i) and 
2) above cause the cc~putational processor to 
halt, denoting the end of a process active inter- 
val. The processor is relinquished, and the 
process enters a blocked state, waiting until 
the request is fulfilled. An inportant point to 
be noted here is that the "standard" B5500 
Algol-60 procedures (sin, sqrt, etc.) were not 
treated as procedure calls during data collec- 
tion and thus do not give rise to a contour 
crossing in our measure~L~nts. However, the com- 
putational processor time for the standard 
function is included in the measured processor 
time. -- 

Contour Transition Intervals. The first 
distribution consists of the intervals between 
contour transitions, which occur as each contour 
(block) is entered or exited. The crossing of 
a contour causes a request for either allocation 
of a contour data segment (block entry) or de- 
allocation of a contour data segment (block 
exit). A contour data segment (1,2) is the 
virtual memory allocated for each procedure 
activation and contains the parameter list, local 
declarations and return address in the contour 
model. A contour (block) entry will also cause 
an allocation request for any local arrays or 
files; this request immediately follows the re- 
quest for the contour data segment, so that for 
measurement purposes we consider both requests 
as a single request for several virtual memory 
blocks. The distribution of contour transition 
intervals is given as a distribution of averages 
in Figure 3a and a distribution of all transi- 
tions in Figure 3b. We define the average 
contour transition interval to be the sum of 
all intervals occurring wit/tin a given block 
(i.e. when control resides within that block) 
divided by the n~nber of such intervals, taken 
over the entire execution of the program. 

The medians of the two distributions are not 
significantly different (0.38 ms for the distri- 
bution of averages and 0.36 ms for the dynamic 
distribution). The lower value for the mean of 
the dynamic distribution is due to the occurrence 
of frequently-called procedures. The difference 
between the two distributions is more strikingly 
shown by their 90th percentiles: that of the dis- 
tribution of averages is 28 ms, while that of the 
dynamic distribution is 2 ms. This pair of 
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distributions illustrates the i~ortance of having 
efficient hard~are mechanisms for implementing 
procedure calls and exits in Algol-like languages. 
These measurements were made on a 1 ~z processor, 
and the times given here should be adjusted pro- 
portionally to get equivalent figures for a 
processor of different speed - e.q. for a i0 ~z 
processor, our results indicate that 90% of the 
co~outation time intervals between procedure 
entry/exit events would last for less than 200 us. 

Input-Output P.equests. The distribution for 
input-output request intervals in Figure 4 is 
only given as a dynamic distribution. The median 
of 0.16 ms is really quite short, indicating 
some of the more cammon structural features of 
the programs - i.e. the occurrence of input- 
output statements in tight iterative loops and in 
close textual proximity in the source language. 
It should be emphasized that our results simply 
portray the distribution of the cc~putational 
work performed between successive read or write 
statements in Algol-60 programs. These intervals 
of processor time between input-output requests 
cannot be directly cc~pared with the corresponding 
arithmetic processor (CPU) intervals on many 
"real" machines. Firstly, in our model, no com- 
putational processor time is associated with the 
usual interpretive formatting of the input-output 
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Figure 4 Input-output Request 
Intervals (milliseconds) 

list or with the processes of blocking, buffering, 
or file control, since these are performed by the 
input-output processor. Secondly, when the 
arit~netic processor of a real machine is used 
for these purposes, then any blocking of the 
logical input-output requests significantly in- 
creases the time between requests for physical 
input-output. The data given here is in rough 
agreement with the results given for prograns 
running on the University of Texas CDC 6600 by 
Sherman et al. (7) when these factors and 
machine speed are taken into account. 

Process Active Intervals. The effect of 
superimposing the above two process mechanisms 
is illustrated in the distribution of process 
active intervals (Figure 5). Not suzprisingly, 
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Figure 5 Process Active Intervals 
(milliseconds) 

the contour transition events dominate since 
they represent over 88% of the sample events. 
Both the median (0.29 ms) and the mean (7.84 ms)" 
fall between the medians and means of the distri- 
butions of contour transition intervals (Figure 3b) 
and the distribution of input-output requests 
(Figure 4). The distribution of process active 
intervals exhibits the characteristic clustering 
of values evident in several of the dynamic dis- 
tributions, causing this distribution to be highly 
skewed towards the lower end of the range. This 
phenomenon is due largely to the effects of 

frequently-called procedures as mentioned earlier, 
where many of the frequently-called procedures 
also have a short execution time as we show later. 

Resource Allocation MDdel. The three distri- 
butions we have just presented may in themselves 
be used in the context of a sinple resource al- 
location model. Figure 6 illustrates a simple 

STAGE 2 

STAGE I F a "l 
I I 

I 
I . . . . . .  ',' 

, ,' 

BLOCKED l 

CP--COMPUTATIONAL PROCESSOR 
VM--VIRTUAL MEMORY 

IO--INPUT-OUTPUT PROCESSOR 

Figure 6 Resource Network Mmdel 

cvclic neh~ork of three servers corresponding to 
the three process-machine resources we have been 
considering. In the active state, represented 
by stage i, the process is being executed by the 
ccx~putational processor. Whenever the process 
issues a virtual memory or input-output processor 
request, it enters one of two blocked states, 
represented by stages 2a and 2b of the network. 
Stage 2a represents the process state "blocked 
on virtual memory" while stage 2b represents the 
process state "blocked on input-output". In 
most of the current network models to be found in 
the literature stage 2a also includes the 
occurrence of process stoppage caused by informs- 
tion segments being missing from executable 
memory. These interruptions of process activity, 
although related to the se~nantics of process ex- 
ecution, are dependent on the policies which de- 
fine how virtual memory components are loaded 
into main memory by the memory management algo- 
rithms within the system. In our model, the 
interruptions caused by segments~missin~from 
main memory are not classified as virtual memory 
requests, since the segment already has been 
allocated in virtual memory. Any extension of 
the state "blocked on memory" to include requests 
for segment transfers between levels of the 
memory hierarchy necessitates some asstmptions or 
empirical data regarding the characteristics of 
information referencing patterns at the symbolic 
level (8). 

In the resource allocation model of Figure 6, 
the distribution of contour transition intervals 
(Figure 3b) models the processor service time 
associated with transitions between stages 1 and 
2a, while the distribution of input-output re- 
quests (Figure 4) measures the effect of 
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transitions between stages 1 and 2b. The distri- 
bution of process active intervals (Figure 5) is 
the superposition of these two effects. Analysis 
of the model in Figure 6 could be carried out in 
a queueing theoretic framework once the distribu- 
tions for service at stages 2a and 2b were deter- 
mined. Network analysis such as (9) could then 
be used to study the effects of varying service 
time rates on each of the three resources to iso- 
late potential "bottlenecks" which would cause 
significant performance degradation in real 
systes~. 

Resource Model of a Stack-Based Machine. 
The results given above have all been related to 
the behavior of a contour model machine, where 
all virtual memory allocations are made on demand. 
In stack-based machines such as the Burroughs 
B5500/B6700 series, contour data segments are 
placed in the stack, which is a single data seg- 
ment allocated only once at the t/me of pr~ess 
initiation. In such machines, therefore, the 
only requests for virtual memory occur on entering 
those blocks having array or file declarations. 
The distribution of intervals between these data 
segment requests is given in Figure 7. The first 
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Figure 7 Data Segment Allocation 
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characteristic noticed in conparing this dis- 
tribution with the analogous distribution 
(Figure 3b) for the contour-based machine is 
the extreme difference in the sanple sizes, 
with 238 virtual memory requests in the stack- 
based machine as cc,~?ared with 57788 in the 
contour-based machine. A second striking 
difference between these two distributions is 
that the median interval be~geen requests in the 
stack-'based machine is 18 ms, while in the 
contour-based machine it is only 0.36 ms. 
This illustrates a possible inefficiency which 
must be dealt with before a contour-based machine 
can become a practical base for implementation. 
This observation must be t~/pered by noting that 
a n~ber of new block-structured languages, 
such as Oregano (i0) and Algol-68 (ii), cannot 
be implemented on a p~irely stack-based machine. 

To make further comparison of the stack- 
based and contour-based machines, we can determine 
the distribution of intervals between all re- 
source requests in the stack-based machine: 
these are delimited by input-output requests and 
entry/exit to blocks containing arrays/files. 
We find that in this distribution the input- 
output request events almost totally dominate 
since they represent about 97% of the sample; 
thus the distribution appears almost identical to 
that given ih Figure 4 and is not presented here. 
The mean of this distribution is 50.4 ms and its 
median is 0.16 ms. 

Block Execution Time Characteristics. In 
the next series of distributions we examine some 
characteristics of the execution time for individ- 
ual program blocks. By the execution time of a 
block we mean the total process time acc~nulated 
within a given block epoch between block entry 
and exit, excluding all process intervals during 
which control resides at a different dynamic 
level. The lifetime of a block, defined as the 
elapsed total process time between block entry 
and exit, is equal to its execution time only if 
the block contains no nested inner blocks and no 
calls on procedures. 

In Figure 8a we give the distribution of the 
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average block execution time for all program 
blocks. The median of 0.94 ms is surprisingly 
small. The considerably larger mean of 1 
second is essentially due to several blocks in 
the sample which had an execution time of several 
seconds. An interesting contrast is found in 
the distribution of execution times for all block 
activations, given in Figure 8b. Here the median 
of 0.65 ms is about 2/3 of the median for the 
distribution of average block execution time, 
while the mean of 18 ms is two orders of magni- 
tude s~aller. This illustrates that in the 
dynamics of pro~ss execution, most block 
execution times will be quite short. The 90th 
percentile of the dynamic distribution is less 
than 2 ms. 

The sample of block execution times can be 
viewed in another interesting way. Dividing 
each sample block execution time by the total 
processor time consigned by the entire program of 
which it is part yields a "nozmalized" block 
execution time. A distribution of such values 
should not only be essentially independent of 
the timing characteristics of the ccmputational 
processor, but more i~ortantly, should provide 
some insight into the way in which real Algol 
programs make use of sub-program structure. 
The results of normalizing the data of Figures 
8a and 8b in this way are given in Figures 9a 
and 9b, respectively. The results are rather 
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surprising: the median of the distribution given 
in Figure 9a (average) is 0.0006; the median 
of the distribution of Figure 9b (dynamic) is 
0.00007. Putting this another way, we see that 
if all the events of Figure 9b had been generated 
by a single program, then the ctmnulative time 
taken up by 50% of its block executions would 
account for much less than 3% of the total pro- 
cess time. This again illustrates that the time 
required to activate a block or procedure may be 
a significant factor in total process execution 
time in a real system. 

There are other observations which can be 
made about the block execution times. The 
first is that the mean block execution time on 
an equivalent 10 ~nz computational processor 
will be less t/~an 2 ms. This is considerably 
shorter t/nan the time required to transfer a 
segment or page frc~ conventional rotating mass 
storage. On a paged virtual storage syste~n, a 
large, highly modular program may produce a 
high rate of page faults if the object code 
modules and data structures are not properly 
packed into the (linear) page space. The vx)rk 
of Hatfield and Gerald (12) has given sc~e indi- 
cation of t~he i~ortance of this effect on the 
performance of current virtual systems. 

A second method of analyzing block execution 
times is based on normalizing each sample value 
by its associated block lifetin~. This distribu- 
tion is given in Figure 10a for the average ratio 
for each block; the distribution of all normal- 
ized block execution times is given in Figure 10b. 
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Here we see a striking phenomenon--in the dynamic 
distribution, about 80% of the block activations 
(consisting almost entirely of procedure blocks) 
are due to blocks which did not cause entry to a 
nested block and did not make any procedure calls. 
This figure ~Duld be considerably greater than 
80% if the standard functions of Algol-60 had 
been incln~ed as procedure activations. This 
fact strongly suggests that mechani~s for im- 
plementing procedure calls should incorporate a 
special, highly efficient mode for calling 
"simple" procedures. 

The sample values of block lifetimes, used 
above, are interesting in ther~selves. These 
lifetir~es are in fact the s&~e as the lifetimes 
of the contour data segments, which have been 
presented elsewhere (1,2). Briefly, the median 
lifetime for all instances of block activation is 
i. 0 ms. The 90th percentile of the dynamic 
distribution of lifetimes is 3 ms (as compared 
with 2 ms for block execution time) and is only 
40 ms at the 99th percentile level. Again, we 
can see the crucial importance of the frequently- 
called, short-lived procedure block in the 
dyna~cs of program behavior. 

5. Discussion 

In this paper we have examined several 
characteristics of how Algol-60 processes make 
use of conputational and input-output resources. 
The empirical distributions were presented in 
the context of a formal model for describing how 
a process requests and makes use of these re- 
sources, and we point out here that these distri- 
butions can be related to real systems in 
several ways. For exanple, the distribution of 
process active intervals in Figure 5, which 
gives the distribution of intervals for the type 
C symbols in the resource model, represent a 
sanple of processor burst times for a real system 
where virtual me~nory allocation and unbuffered 
input-output are performed by separate processors. 
Similarly, the distribution of input-output re- 
quest intervals (Figure 4) corresponds to the 
distribution of processor burst times on a real, 
non-virtual mEmDry, system in which all input- 
output processing (formatting, blocking, 
buffering, etc. ) is performed bv a separate 
processor. 

The enpirical performance data presented 
here portrays aspects of program behavior at 
the symbolic level, rather than in more primitive 
machine-oriented terms. The data reflects the 
performance of Algol programs, whereas many 
conte~orary measurements describe the behavioral 
characteristics of the machine code generated 
by the ccmplex of cc~pilers, loaders, and other 
software which serves to implement a high level 
language machine on contemporary hardware. Our 
results therefore can be construed as grist for 
the mill of those dreamers who advocate that 
machines should be designed so as to be suitable 
instr~nents for the tasks specified by programmers, 
in that this research is an attempt to specify 
some of the characteristics of these tasks. 
Knuth (13) has made a somewhat similar arg~nent in 
a study of Fortran program characteristics, where 
the enphasis was placed on the incidence of 
different statement types and their ccmplexity. 

We believe that these results, together with 
those reported earlier on virtual memory alloca- 
tion (1,2), serve as useful data for comparative 
design studies of cc~puter systems. The inpli- 
cations of the results are relatively obvious 
for the design of a machine which directly 
executes Algol-60, but there are equally important, 
and perhaps more practical, inferences to be 
drawn for the design of more conventional hard- 
ware systems and their software. To give just 
one exampleA the results on block lifetimes and 
contour transition intervals illustrate the im- 
portance of having a lo~-overhead parameter- 
passing mechanism for procedure calls. Moreover, 
the extremely large number of calls made on 
"simple" procedures (which make no procedure 
calls themselves), indicates that significant per- 
formance improvement of a processor can be 
achieved by the provision of a special, simple, 
procedure-calling mechanism for such cases. 

In short, the results could be useful in 
design studies for any system which is to support 
high level languages. The model and the tech- 
niques which have been used here are of a general 
nature, but the results only represent a relative- 
ly ~nall sample of Algol-60 programs. Equivalent 
data from Fortran, and particularly Cobol, 
programs might have sc~ewhat different character- 
istics. Further work of this type on large 
samples of programs written in other languages 
could prove to be of significant value to design- 
ers of ccmputer systems. 
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