
A Real-time Upcall Facility for Protocol Processing with QoS Guarantees

R. Gopalakdman Guru M. Pardkar

gopal@dworkin. wustl. edu guru @jot-a. wustl. edu

Department of Computer Science

Washington University, St. Louis, M() 63130

1. Introduction. There is a growing need to provide guar-

antees for protocol processing within the host operating system to

support multimedia applications that have quality of service (QoS)

requirements. The QoS parameters for a multimedia stream trans-

late to protocol processing requirements that can be expressed in

terms of a time period T, and the number of protocol data units

(PDUS) BP in a batch to be processed per period[l]. This report is

an extended abstract of the work in [4] that details the design and

implementation of a real-time upcall (RTU) facility to support pro-

tocol implementations that require periodic processing with guar-

antees. RTUS are an alternative to real-time periodic threads and

have advantages such as low implementation complexity, portabil-

ity, and efficiency. The RTU mechanism is an enhancement to the

upcall mechanism that has been used to structure layered protocol

code. RTUS are invoked periodically in real-time in a user process

and implement PDU processing code[2]. The RTU mechanism can

be easily extended to protocols implemented in the kernel. The

RTU facility uses a scheduling policy called rate monotonic with

delaved ure-emution (RMDP)[3]. Other types of media and bulk

data processing with QoS can also benefit from the RTU facility

since it falls into the periodic processing model[1]. We describe

the RTU implementation below.

z. RTU Implementation. An RTU is created by a pro-

cess as part of connection setup and has attributes that include a

procedure (or handler) in the user program, values of T and Bp, and

a data structure called a protocol control block (PCB). The RTU

facility is layered on top of the UNIX scheduler as shown in the fig-

ure, The UNIX scheduler itself is unchanged-the RMDP policy over-

rides the decision of the UNIX scheduler based on the status of the

RTU run crueue.

4
I

(v

i m’ .QRTUDELIVERY

!-+ RESTORATION

m

RTU TABLE RUN QUEUE RMDP POLICY

q [

m ‘ 1 O’y

PROC TABLE F’ROC QUEUE UNIX POLIC

The RMDP policy gets contro~ whenever an RTU becomes runnable

Permission to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the capyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
andlor a fee.

SIGOPS ’95 12/95 CO, USA

in the clock interrupt. It then switches in the correct process, and

upcalls the RTU handler with its PCB as argument. The PCB serves

to isolate RTUS in the same process and encapsulates the long

term state of the protocol session. When the handler returns

either due to a yield request or on completion, the kernel restores

the system state so that normal processing can resume. A system

call is provided to allow a process to synchronously wait for RTU

invocations. We briefly outline the RMDP scheme in Section 3.

3. The RMDP Scheme. RMDP exploits the iterative

nature of protocol processing to increase scheduling efficiency.

The key component of the RMDP scheme is the use of a shared

memory data structure between each RTU and the kernel sched-

uler. When a higher priority RTU becomes runnable, the sched-

uler does not pre-empt the running handler. Instead it sets the

yield_request flag in the shared data structure. The running han-

dler checks this flag after completing each iteration and returns if

it is set. If at this time the handler has not processed all of its BP

PDUS, the remaining number (stored in shared memory) get pro-

cessed when the RTU is resumed. To account for the pre-emption

delay, we have modified the existing schedulability test for the

RM policy that assumes instantaneous pre-emption.

The obvious advantage of RMDP is that the number of context

switches are reduced because at least one iteration is completed

every time a handler is invoked. It also avoids the need to pre-

serve the activation record and register context of a handler

across pre-emptions. Another advantage due to the non-preemp-

tive nature of RMDP scheduling is that shared variables need not

be locked before access. This saves on system calls to manipulate

locks and reduces handler code complexity.

& Experimental Results. The first imp~ementation of

the RTU facility was on a 25 Mhz Spare-2 platform. We were able

to port it to a 100 Mhz Pentium platform in a matter of a few

days. Our experimental results show that RMDP reduces the num-

ber of context switches by 35% giving a 10% increase in useful

utilization when the total RTU utilization is 7070.

5.
[1]

[2]

[3]

[4]

References
Gopalakrishnan, R., Parulkar, G.M., “A Framework for QoS

Guarantees for Multimedia Applications within an Endsys-

tem,” Swiss German Computer Science Society Conf., 1995.

Gopalakriskman, R., Parulkar, G. M.. “Application Level Pro-

tocol Implementations to Provide QoS Guarantees at End-

systems,” Proc. of the Ninth IEEE Workshop on Computer

Communications, Duck Key, 1994.

Gopaiakrishnan, R., Partdkar. G. M., “RMDP-A Real-time

CPU scheduling AIgorithm to Provide QoS Guarantees for

Protocol Processing,” IEEE Real-time Technology and

Applications Symposium, (Poster), May 1995.

Gopalakrishnan, R., Partdkar, G. M., “Real time Upcalls.”

Tech. Rep. WUCS-95-06, Washington LJniv. Mar 95.

01995 ACM 0-89791 .71!5-419510012...$3.50

231

