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ABSTRACT 

The problem of  modelling and analysing the per- 
formance of software structures for d is t r ibuted 
computer systems is addressed. A modelling tech- 
nique is proposed which has many s t r i k ing  analo- 
gies with current techniques for evaluating hard- 
ware systems and yet focuses at tent ion on the sys- 
tem software. The analysis of such models w i l l  
draw heavi ly on the substantial work already done 
in the analysis of  hardware models. 

To i l l u s t r a t e  the modelling technique proposed, 
i t  is applied to an invest igat ion of the trade-offs 
associated with the conf igurat ion of c r i t i c a l  sec- 
t ions in a d is t r ibuted software system. Simple 
queueing techniques are used to model a number of 
a l te rna t i ve  conf igurat ions. The study throws some 
l i g h t  on the regions of  optimum decomposition, and 
the impact on performance of some of the important 
design var iables.  

I .  INTRODUCTION 
There seems to be no abatement in the rate at 

which the price/performance ra t io  of  computer sys- 
tem hardware continues to drop. Consequently, 
with powerful processing hardware being avai lab le 
at such low cost, d is t r ibuted systems are being 
increasingly seen as the wave of  the future. How- 
ever, i t  is also being recognized that the most 
s ign i f i can t  problem wlth the successful synthesis 
of such systems is the complexity of the system 
software needed to support and manage d is t r ibuted 
computations. This paper therefore addresses the 
problem of analysing and characterizing the per- 
formance aspects of software structures for dis- 
t r ibuted systems. A technique for the modelling 
of d is t r ibuted software systems is introduced and 
techniques for the analysis of such models are de- 
scribed. We also present a simple example of  the 
appl icat ion o f  such techniques. 

Section 2 of  the paper lays out the problem and 
raises some of  the many questions that arise in the 
design of  d is t r ibuted software systems. Section 3 
surveys some of the previous work done in the area. 
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Section 4 describes the modelling technique, the 
analysis techniques and draws the analogies between 
th is technique and the standard techniques used by 
computer system analysts. Section 5 presents a 
simple example i l l u s t r a t i n g  the appl icat ion of the 
technique to the character izat ion of  the performance 
of  one aspect of a d is t r ibuted software system.Section 
6 summarizes and offers suggestions for fur ther work. 

2. STATEMENT OF THE PROBLEM 
In this section we discuss the importance of  

analysing software system performance as d i s t i nc t  
from hardware system performance and raise some 
of  the questions that may arise during the design 
of software for d is t r ibuted computer systems. 
2.1 Terminology 

In the rest of  th is paper, we w i l l  use the f o l -  
lowing terminology. We w i l l  d ist inguish the hard~ 
ware conf iqurat ion of a computer system, v i z . ,  the 
complex of hardware resources - CPU's, channels, 
I /0 devices, etc. , f rom the software structure i . e . ,  
the operating system and appl icat ion processes that 
execute on i t .  We w i l l  use the term module to 
loosely refer  to a software uni t  whic a c ~ p l i s h e s  
a single log ica l  funct ion, eg., operat ing system 
routines such as schedulers, in te r rup t  handlers, etc. 
2.2 Need for Software System Performance Analysis 

Computer system performance measures commonly 
used today f a l l  under one of three categories: 
product iv i ty  (eg., throughput, CPU capacity),  re-.  
sponsiveness (eg:, response time, turnaround time) 
and u t i l i z a t i o n  (eg., CPU and I /0  channel u t i l i -  
zat ion) .  While some of these measures re la te  in 
obvious ways to the character is t ics of  the system 
hardware, the re la t ion  of most of these measures 
to the system software is not immediately perceiv- 
able. Moreover, in practice the design of software 
is usually done at a higher level of  abstract ion 
than the system hardware leve l .  Thus, for this 
design to be done in a coherent manner, i t  is es- 
sent ia l  that the performance aspects of  the system 
software be brought.to l i g h t  and be somewhat se- 
parated from hardware and overal l  system perform- 
ance considerations. This is a l l  the more essen- 
t i a l  i f  the same software structure is to be trans- 
ported to d i f f e ren t  hardware conf igurat ions. 
2.2.1 Modular Structure of Software Systems 

I t  is a commonly asserted opinion that tech- 
niques such as structured programm!ng and modular 
implementations are sound englneerlng methods for 
the construction of  large software systems. In 
order to choose between d i f fe ren t  modular imple- 
mentations, the performance character ist ics of such 
techniques need to be understood. For example, 
some multiprocessor configurat ions have experienced 
serious performance degradation due to processor 
contention at the single lock guarding a single 
large c r i t i c a l  section that manipulates a l l  the 



system's resources. Sp l i t t i ng  this c r i t i c a l  section 
into simpler ones and thus al lowing concurrent mani- 
pulat ion of  d i s jo in t  portions of the resource man- 
agement data base may y ie ld  a performance increase, 
but may also increase the overhead due to the neces- 
s i ty  of  deadlock-free management of these c r i t i c a l  
sections. S imi lar ly ,  performance and cost can be 
traded when deciding whether many processors should 
share a single copy of  a module as opposed to each 
executing a private copy. Analysis of the perform- 
ance character ist ics of the di f ference approaches 
w i l l  enable a sound engineering approach to resolv- 
ing such t rade-of fs .  

2.2.2 Hardware Organization Parameters and Imple- 
mentation Trade-offs 

While i t  is important to focus on the perform- 
ance aspects of the software structures, i t  is also 
important to understand how the underlying hardware 
organization w i l l  impact the performance of the 
software system being designed. For example, a 
heterogeneous architecture with processors of  d i f -  
ferent capacit ies, and maybe special capab i l i t i es ,  
may impose d i f fe ren t  performance constraints on the 
modular structure of the software system than a 
homogenous archi tecture. S imi la r ly ,  d i f fe ren t  meth- 
ods of processor interconnection, memory-sharing, 
I /0  port conf igurat ion, e tc . ,  may have s ign i f i can t -  
ly  d i f fe ren t  impacts on the software system struc- 
ture. These features need to be parameterized in 
the cost-performance models of  software systems. 

Even i f  we have succeeded in def in ing the "opti- 
mum" modular structure of  the software system given 
performance and cost constraints,  a number of issues 
related to the actual implementation have to be ad- 
dressed. The performance aspects of various fea- 
tures of  system programming languages, such as pro- 
cedure ca l l i ng  sequences, inter-process communica- 
t ion,  va l id i ty-checking,  protect ion, e tc . ,  need to 
be understood. Further, the cost-performance trade- 
of fs of providing hardware or firmware support for 
c r i t i c a l  sections of the operating system need to 
be investigated. 

3. PREVIOUS WORK 

A number of  multiprocessors have been designed 
and bu i l t ,  the more in terest ing ones being C.mmp [21], 
PRIME [3] ,  PLURIBUS [9] and a local network-cum- 
multiprocessor Cm* [19]. However, very l i t t l e  work 
hasbeen done in the invest igat ion of  the general 
pr inciples underlying the design of software sys- 
tems for these d is t r ibuted architectures. The two 
exceptions are the HYDRA operating system forC.mmp 
[20] and the STAROS operating system for the Cm* 
[ I I ] .  These studies dealt with the speci f icat ion 
and implementation of aspects such as process 
structur ing,  protect ion, message passing, task dis- 
patching and kernel structure. In the former sys- 
tem, reference is made to some analyt ica l  studies 
conducted to invest igate the impact of the number 
of c r i t i c a l  sections in the scheduler on system per- 
formance. Apart from th is ,  very l i t t l e  work has 
been done in analysing the performance aspects of  
design decisions regarding the system structure and 
the scheduling and coordinating pol ic ies embodied 
in the system. 

Some interest ing performance s ta t i s t i cs  related 
to the degradation due to lock contention, storage 
contention and interprocessor communication on the 
multiprocessor Michigan Terminal System (MTS) have 

been reported by Srodawa [18]. A s ta t is t ica l  study 
of the operating system of the UNIVAC llO8 multi- 
processor was done by Feeley [7]. We believe that 
the techniques proposed in this paper w i l l  make 
possible systematic studies of such systems. 

4. A TECHNIQUE FOR MODELLING SOFTWARE SYSTEMS 

In this section, we introduce the modelling 
technique and discuss methods of analysis of such 
models. We part icular ly stress the analogies be- 
tween these techniques and the well-known approaches 
to hardware system evaluation. We believe that the 
application of tested techniques to a new problem 
should result in a greater l ikelihood of success. 

4.1 Software System Models 

The approach that we propose is related to, and 
yet quite di f ferent from, the conventional approach 
to computer system performance evaluation. All the 
performance models thus far have viewed computer 
systems as configurations of stat ic hardware re- 
sources, such as CPU's, memories, I/O channels and 
devices, and user jobs or tasks as dynamic ent i t ies 
that flow through these configurations. Thus the 
system software is incorporated into these models 
at one of two levels: 

I .  the behavioural level: in the description of 
arr ival patterns and resource demands of the 
job, 

2. the algorithmic level:  in the description of 
the scheduling and arbi t rat ion algorithms 
associated with resource management. 

Since our purpose is to emphasize the software 
part of the system, we wi l l  take a diametrically 
opposite view. Our models wi l l  view a computer 
system as a configuration of stat ic software mod- 
ules, and the processors that execute the software 
as the dynamic ent i t ies that flow through this con- 
f iguration. Whereas in a hardware system model a 
job occupies a resource for the time needed by the 
resource to process the job, in a software system 
model the processor occupies a module for the time 
needed for i t  to execute the code in that module. 
Further, the path of a job in a hardware system 
model is determined by the sequence of resources 
that i t  needs to complete i ts  processing require- 
ments. The path of a processor in a software sys- 
tem model is determined by the sequence of modules 
that i t  executes. Performance measures of interest 
to the software designer such as the u t i l i za t ion  of 
various software modules can be obtained from the 
model using the analytic techniques described later. 

4.2 An Example of a Software System Model 

To i l l us t ra te  the concepts described above, con- 
sider the following sequence of events in a time- 
shared, single-CPU system with virtual memory. 

Time Event 

T l User U l incurs a page faul t .  

T 2 User U l is suspended and user U 2 
is given a quantum of time 
on the CPU. 

T 3 The CPU is interrupted by a command 
from the terminal of user U 3. 

T 4 The CPU resumes the interrupted 
processing of user U2's task. 



Now consider  a model o f  the sof tware system tha t  
incorporates  the module con f i gu ra t i on  o f  Figure I .  
The above sequence o f  events can be model led by the 
f o l l ow ing  sequence o f  ac t ions o f  the processor 
through th i s  model: 

I .  At T 1 the processor moves from USER to PFH, 
where is  executes fo r  T a - T 1 sec . ,  to pro- 
cess the page f a u l t  fo r  U I .  I t  then moves 
to FMS where i t  executes fo r  T b - T a sec . ,  
to i n i t i a t e  the page t r a n s f e r  from a u x i l i a r y  
memory. I t  thenmoves to TD, where i t  ex- 
ecutes fo r  T 2 - T b sec . ,  dec id ing which task 
from the READY queue is to receive the next 
CPU t ime s l i c e .  This task is U 2. 

2. At T 2 the processor moves to USER where i t  
executes U2's task fo r  T 3 - T 2 sec. 

3. At T~, i t  moves from USER to TIH, where i t  
recelves and parses the command from U3's 
termina l  fo r  T c - T 3 sec. This may lead to 
a dec is ion to schedule U 3 to j o i n  the READY 
queue, so the processor moves to JS to ac- 
complish th i s  schedul ing in T 4 - T c sec. 

4. At T 4 the processor moves to USER to resume 
the execut ion o f  U2's task.  

4.3 Power o f  the Model l ing Technique 

The power o f  a mode l l ing  technique is r e f l e c t e d  
in two aspects:  

I .  The ana lys is  power: is a measure o f  the tech- 
niques a v a i l a b l e  to analyse the model and 
reach s i g n i f i c a n t  conclusions about the sys- 
tem. 

2. The represen ta t ion  power: is r e f l e c t e d  in the 
number and d i v e r s i t y  o f  system features tha t  
can be conven ien t ly  represented in the model. 

4.3.1 Analys is Power 

The advantage o f  using the model l ing  technique 
descr ibed so fa r  is tha t  a number o f  standard tech- 
niques used in the ana lys is  o f  hardware system mo- 
dels can be brought to bear on the ana lys is  o f  such 
models. The s p e c i f i c  ana lys is  technique depends 
on the leve l  o f  d e t a i l  and accuracy requ i red  by the 
ana lys i s .  

For example, i f  the f low through the module net-  
work and the module processing t imes are de te r -  
m i n i s t i c a l l y  model led,  the ana lys is  may be con- 
ducted using t r ace -d r i ven  s imu la t i on .  I f  any o f  
the above model parameters is  descr ibed by a prob- 
a b i l i t y  d i s t r i b u t i o n ,  s tochas t i c  s imu la t i on  may be 
used as the ana lys is  technique.  I f  the above prob- 
a b i l i t y  d i s t r i b u t i o n s  are chosen from ce r ta i n  re-  
s t r i c t e d  c lasses,  the we l l -deve loped methods o f  
queuein 9 system ana lys is  may be used. The use o f  
queueing system ana lys is  imposes o ther  res t r i c t i ons .  
For example, past h i s t o r y  o f  customers and servers 
and synchron iza t ion  cannot be model led exac t l y  us- 
ing standard queueing ana l ys i s .  

4 .3.2 Representat ion Power 

A number o f  impor tant  features o f  sof tware s t ruc -  
tures fo r  d i s t r i b u t e d  computer systems can be in -  
corporated qu i te  s imply  and very n a t u r a l l y  i n to  
models o f  the kind proposed. We now give a few ex- 
amples, emphasizing throughout  the analogies w i th  
hardware system models. 

I .  Hardware system models usua l l y  model m u l t i -  
programming and t ime-shar ing  by having a 

f i xed  number o f  user jobs ,  equal to the de- 
gree o f  mult iprogramming or the number o f  
user te rmina ls  r e s p e c t i v e l y ,  f l ow ing  through 
a resource con f i gu ra t i on  model l ing  the sys- 
tem hardware. The model o f  a sof tware sys- 
tem fo r  a uniprocessor  is thus analogous to 
a hardware system model w i th  the degree o f  
mult iprogramming equal to one. S i m i l a r l y  
the model o f  the sof tware system fo r  a m u l t i -  
processor is  analogous to a hardware m u l t i -  
programmed system model w i th  the degree o f  
mul t iprogramming in the l a t t e r  corresponding 
to the number o f  processors in the former.  
The amazing degree o f  success in using closed 
queueing network techniques to model t ime-  
shar ing systems ( [ 1 6 ] ,  [14 ] )  and m u l t i p r o -  
gramming systems ( [ 1 4 ] ,  [ I 0 ] )  augurs wel l  
f o r  t h e i r  use in mode l l ing  sof tware systems 
too .  

2. In queueing models o f  hardware systems, the 
servers ,  i . e . ,  the hardware resources,  which 
are s t a t i c  e n t i t i e s ,  are charac te r i zed  by a 
serv ice d i s c i p l i n e  and a serv ice  r a te .  The 
l a t t e r  is r e l a ted  to the processing power o f  
the resources;  commonly used measures inc lude 
MIPS fo r  CPU's, Mbps fo r  channels,  e tc .  User 
jobs ,  which are dynamic e n t i t i e s ,  are char-  
ac te r i zed  by serv ice demand d i s t r i b u t i o n s .  
The combinat ion o f  job  serv ice  demand d i s t r i -  
but ions and resource serv ice  rates y i e l d s  re- 
source serv ice  t ime d i s t r i b u t i o n s .  In s o f t -  
ware system models on the o ther  hand, i t  
seems more natura l  to assoc ia te  the serv ice  
demand w i th  the s t a t i c  e n t i t y ,  i . e . ,  the 
sof tware module. This would be re l a ted  to 
the length  o f  the code along d i f f e r e n t  paths 
through the module and would thus d i r e c t l y  
measure the implementat ion e f f i c i e n c y  o f  t ha t  
module. The serv ice  ra te  would now be assoc- 
ia ted  w i th  the dynamic e n t i t i e s ,  i . e . ,  the 
processors.  

3. Recent advances in queueing theory a l l ow  the 
mode l l ing  o f  d i f f e r e n t  classes o f  customers 
w i th  d i f f e r e n t  serv ice  t ime d i s t r i b u t i o n s  
and d i f f e r e n t  f low paths through the model 
[ 2 ] .  This fea tu re  can be used to model two 
kinds o f  he te rogene i ty  in d i s t r i b u t e d  s o f t -  
ware systems: 

a) Heterogenei ty  due to the presence in the 
system of  processors o f  d i f f e r e n t  proces- 
s ing powers can be model led by a separate 
class o f  customers fo r  each type o f  pro- 
cessor,  w i th  d i f f e r e n t  serv ice  ra tes fo r  
the d i f f e r e n t  c lasses.  

b) Heterogenei ty  due to the ded ica t ion  o f  
ce r t a i n  processors to ce r t a i n  system func- 
t ions  can be model led by ass ign ing a un- 
ique c lass o f  customers fo r  each dedicated 
processor or  c lass o f  processors.  Each 
customer c lass is now r e s t r i c t e d  to cer -  
t a i n  f low paths through the con f i gu ra t i on  
o f  sof tware modules. 

4. Congestion occurs in a hardware system model 
when jobs contend fo r  the use o f  a s ing le  
hardware resource.  That resource is  then 
model led as a s ing le  server  w i th  a queue o f  
w a i t i n g  jobs .  The analogous s i t u a t i o n  in a 
sof tware system model is  when many processors 
t r y  to execute a c r i t i c a l  sec t ion  module t ha t  



5. 

implements mutua l ly  exc lus ive  access to some 
c r i t i c a l  resource.  That module can be modelled 
as a s ing le  server  w i th  a queue to hold w a i t -  
ing processors.  

5. A commonly used resource schedul ing d i s c i p l i n e  
in  mult iprogramming systems is the round-rob in  
d i s c i p l i n e .  This is model led a n a l y t i c a l l y  by 
the processor-shar ing d i s c i p l i n e  [12 ] ,  in 
which the serv ice rate of  the server  is shared 
by a l l  the jobs using the server .  The analo-  
gous s i t u a t i o n  in a sof tware system model is 
when a number o f  processors execute a s ing le  
copy o f  a module o f  r e - e n t r a n t  code. The ser-  
v ice degradat ion due to many processors ac- 
cessing the same physical regions o f  memory 
can be model led as a drop in the e f f e c t i v e  
serv ice  ra te  per processor due to module- 
shar ing.  

6. The extreme case o f  the p r o c e s s o r - s h a r i n g d i ~  
c i p l i n e  o f  resource schedul ing is when an e f -  
f e c t i v e l y  i n f i n i t e  number o f  servers is  a v a i l -  
able at  a serv ice s t a t i o n  to process as many 
jobs as are at  the s ta t i on  at  any t ime.  This 
is ca l led  the i n f i n i t e  server  d i s c i p l i n e  [ 2 ] .  
In sof tware systems, th i s  may be used to model 
module r e p l i c a t i o n  - the s i t u a t i o n  where each 
processor has i t s  own copy o f  a sof tware mod- 
u le and can execute i t  w i thou t  any i n t e r f e r -  
ence from any other  processors. 

AN APPLICATION OF THE MODELLING TECHNIQUE 

In th i s  sect ion we apply the techniques developed 
in sect ion 4 to i nves t i ga te  the t r ade -o f f s  involved 
in the con f i gu ra t i on  o f  c r i t i c a l  sect ions in a d i s -  
t r i b u t e d  opera t ing  system. We analyse the models 
developed by simple queueing techniques. We show 
tha t  the resu l t s  from even such a s i m p l i s t i c  model- 
l i n g  approach can provide some i n s i g h t  i n to  the 
above t r a d e - o f f s .  

5.1 The A l t e r n a t i v e  Conf igura t ions 

We consider the design o f  an opera t ing  system 
fo r  a homogeneous d i s t r i b u t e d  system cons is t i ng  o f  
n i d e n t i c a l  processors. The sof tware opera t ing  sys- 
tem is assumed to cons is t  o f  a number o f  modules 
among them being several c r i t i c a l  sec t ions .  Each 
c r i t i c a l  sec t ion ,  by d e f i n i t i o n ,  can be executed by 
only one processor at  a t ime.  

We compare two a l t e r n a t i v e  con f i gu ra t i ons  o f  the 
c r i t i c a l  sec t ions .  In the f i r s t  c o n f i g u r a t i o n ,  there 
is  a s ing le  lock tha t  a l lows only one processor at  
a t ime to obta in  exc lus ive  access to a l l  the c r i t i -  
cal sec t ions .  This scheme is simple to implement, 
but may su f fe r  from a performance degradat ion due 
to lack o f  concurrency in accessing the c r i t i c a l  
sec t ions .  In the second c o n f i g u r a t i o n ,  the c r i t i -  
cal sect ions are d iv ided  in to  l o g i c a l l y  re la ted  sub- 
sets w i th  a lock provided fo r  each subset.  Each 
subset may be accessed by on ly  one processor at  a 
t ime,  but d i f f e r e n t  subsets may be executed concur- 
r e n t l y  by d i f f e r e n t  processors.  However, a proces- 
sor may need to ob ta in  exc lus ive  cont ro l  o f  more 
than one subset to accomplish ce r ta in  func t ions .  
Thus, the a l l o c a t i o n  order  o f  usage o f l o c k s  by pro- 
cessors must be c a r e f u l l y  c o n t r o l l e d  to prevent 
deadlocks. Thus add i t i ona l  overhead is necess i ta ted 
in the form o f  a deadlock avoidance module tha t  is 
respons ib le  fo r  the g ran t ing  o f  a l l  locks to the 
processors.  

An example o f  the above t r a d e - o f f  may be found 

in the design of  the OS/VS2 opera t ing  system fo r  
the System 370. Release 1 o f  OS/VS2 [17] which was 
not designed to suppo r tmu l t i p rocess ing ,  h a s a s i n g l e  
lock fo r  a l l  the c r i t i c a l  sect ions o f  the system. 
Release 2 o f  OS/VS2, which supports mu l t i p rocess ing ,  
has about 13 separate locks w i t h a l o c k i n g h i e r a r c h y  
def ined to solve the deadlock problem discussed 
above [ I  ] .  

5.2 The Queueing ~1odels 

We assume tha t  there are m independent c r i t i c a l  
sect ion modules. Each o f  these may in fac t  cons is t  
o f  several r e l a ted  c r i t i c a l  sec t ions .  For s i m p l i -  
c i t y ,  we assume tha t  the execut ion t ime of  each of  
these modules is an exponen t i a l l y  d i s t r i b u t e d  ran- 
dom va r iab le  w i th  mean I / ~ .  The e n t i r e  sof tware 
system is  assumed to cons is t  o f  these m modules 
plus an a r b i t r a r y  number o f  o ther  n o n - c r i t i c a l  mod- 
ules w i th  a r b i t r a r y  c h a r a c t e r i s t i c s .  

In our model, a f t e r  spending some t ime in the 
n o n - c r i t i c a l  modules, a processor moves to the set  
o f  c r i t i c a l  sec t ion  modules. I t  executes,  on the 
average, c o f  these modules before re tu rn ing  to the 
n o n - c r i t i c a l  modules to begin another such cyc le .  
The d i s t r i b u t i o n  of  execut ion times of  the var ious 
modules and the rou t i ng  p r o b a b i l i t i e s  o f  processors 
moving between the var ious modules are assumed to 
be the same fo r  a l l  the n processors.  

5.2.1 Single Global Lock Scheme 

In the s ing le  g lobal  lock scheme, a l l  the m 
c r i t i c a l  sect ions can be represented by a s ing le  
Harkovian server  o f  ra te  ~ /c .  We assume tha t  the 
t ime spent in lock ing  is  n e g l i g i b l e  compared to the 
execut ion t ime in the c r i t i c a l  sec t ions .  This 
model is shown in Figure 2. 

5 .2.2 Mu l t i p l e  Lock Scheme 

In the m u l t i p l e  lock scheme we assume tha t  there 
is  one lock fo r  each o f  the m c r i t i c a l  sect ion 
modules. Fur ther ,  we assume tha t  the overhead in -  
troduced by the deadlock avoidance module is  a lso 
exponen t i a l l y  d i s t r i b u t e d  w i th  a mean o f  I /~ (m) .  
The r a t i o n a l e  fo r  making th i s  ra te  a func t ion  o f  m 
is tha t  the complex i ty  o f  the deadlock avoidance 
a lgo r i t hm can be expected to increase wi th  the num- 
ber o f  modules to be a l l o c a t e d .  The system can be 
model led by the queueing network shown in Figure 3. 
A f t e r  execut ion in the n o n - c r i t i c a l  modules, a pro- 
cessor moves to server  O, the deadlock avoidance 
module, before i t  can gain access to any o f  the 
c r i t i c a l  sec t ion  modules. I t  then moves to one o f  
the c r i t i c a l  sec t ion  modules at  random. A f te r  ex- 
ecut ion in tha t  module, w i th  p r o b a b i l i t y  q i t  ex- 
ecutes another c r i t i c a l  sect ion module, and w i th  
p r o b a b i l i t y  p= l -q ,  i t  re turns to the n o n - c r i t i c a l  
modules fo r  another such cyc le .  Thus the mean num- 
ber o f  c r i t i c a l  sec t ion  modules executed per cycle 
is c= I /p .  

Notice tha t  the above model is  only an approx i -  
mation in tha t  a f t e r  a processor has been a l l o ca ted  
i t s  requ i red  set  o f  c r i t i c a l  sect ion modules, i t  
executes each of  them s e q u e n t i a l l y ,  but does not 
lock o ther  processors out o f  i t s  a l l o ca ted  set .  
This is because mu l t i p l e - r esou rce  ho ld ing behaviour 
cannot be modelled by queueing techniques.  Thus, 
since the above model a l lows more concurrent  usage 
o f  modules than a c t u a l l y  poss ib le ,  i t  y i e l ds  an up- 
per bound on performance. The serv ice rates o f  the 
c r i t i c a l  sect ion modules could be a p p r o p r i a t e l y  re -  
duced to approx imate ly  compensate fo r  t h i s  increased 



concurrency. 

In the model of mul t ip le c r i t i c a l  sections used 
by McCredie [13] each processor executes a l l  the 
c r i t i c a l  sections in a s ta t i c  sequence. Our model 
is more powerful in that each processor may execute 
only a subset of the c r i t i c a l  sections and the se- 
quence may vary. 

5.2.3 Analysis of  the Models 

Since we are pr imar i ly  interested in the impact 
of  the c r i t i c a l  section modules on system perform- 
ance, we can apply Norton's theorem for queueing 
networks [6] to the two queueing models developed 
above. This is done by e f f ec t i ve l y  "short ing" out 
the non-cr i t i ca l  modules and studying the through- 
put of the resul tant  networks. Specif ic systems 
with speci f ic  configurations of non-cr i t i ca l  modules 
can then be studied by replacing the c r i t i c a l  sec- 
t ion modules by servers equivalent to the above 
networks. 

The single server model of  the global lock sys- 
tem can be solved using standardqueueingtechniques 
[12]. The mul t ip le lock model can be solved using 
the mean-value analysis technique developed by 
Reiser [15]. This technique avoids the computation 
of the normalization constant and the resu l tan t l oss  
of  numerical accuracy found in algorithms such as 
in Buzen [5].  

5.3 Discussion of  Results 

Using the models and analysis techniques de- 
scribed above, the throughput of  the mul t ip le lock 
scheme is compared to that of the single lock scheme 
with the fo l lowing choice for the service function 
of  the deadlock avoidance module: ~(m)=~/(m-l) ~, 
where m is a var iable parameter in the analysis. 

is a measure of the service rate of the deadlock 
avoidance module independent of the algor i thmic 
complexity, and is expressed re la t i ve  to ~=I. I t  
may thus measure the e f f i c iency  of  the module im- 
plementation, higher values indicat ing higher ef- 
f ic iency and vice versa. 

Figure 4 is a p lot  of  the throughput of the mul- 
t i p l e  lock scheme re la t i ve  to that of  the single 
lock scheme as a function of m for various values 
of  I and m, and a lO-processor system. I f  the over- 
head is high ( l = l ) ,  the mul t ip le  lock scheme does 
worse regardless of  the value of ~. I f  m:2, for  
l=lO or 20, the mul t ip le lock scheme does better by 
a factor of 2 to 2.5. The region of substantial 
performance improvement is rather narrow - m=2to4. 
This may be the case for a complex algorithm such 
as the banker's algorithm [8] .  For a l i near  dead- 
lock avoidance algorithm (m:l) ,  the mul t ip le  lock 
scheme does better by a factor of 2.5 to 3, and the 
decomposition choice is larger ,  - m=2 to I0. This 
would be the case i f  a simple algori thm, such as 
using a hierarchy of locks, is used. 

Figure 5 is a p lot  of  the same throughput in- 
crease for various values of n and m. I t  can be 
seen that the region o f  optimum decomposition is 
quite insensi t ive to the number of  processors and 
is much more dependent on m. The actual perform- 
ance i t s e l f  is sensi t ive to n only in the region of  
optimum decomposition. I t  should be noted that in 
a real system, the performance may be more sensi t ive 
to the non-cr i t i ca l  modules than the c r i t i c a l  sec- 
t ions.  Thus, analysing the model for a real system 
w i l l  involve taking the cross-section of the above 
curves at the design value of  m. This w i l l  charac- 

ter ize  the throughput of  the Norton's equivalent of 
the set of c r i t i c a l  sections as a function of the 
number of  processors current ly executing in them. 

The above analysis may be summarized as below: 

I .  The mul t ip le lock scheme may do at most 2 or 
3 times better than the single lock scheme. 

2. For the parameter ranges examined, the opt i -  
mum decomposition is m=3 to 6. 

3. The implementation e f f i c iency  of the~deadlock 
avoidance module plays a crucial  role in de- 
termining performance. 

6. CONCLUSION 

We have introduced a technique for the modelling 
of  complex software structures for d is t r ibuted sys- 
tems. Appl icat ion of such modelling and analysis 
techniques w i l l  y ie ld  a better understanding o f  the 
performance character is i t i cs  of  the various design 
a l ternat ives in the construction of  such systems. 
We have presented a simple example of thetechnique, 
which has yielded some insight  into the problem of  
c r i t i c a l  section conf igurat ion for maximizing 
throughput. 

A great deal of work needs to be done to estab- 
l i sh  the technique as a viable too l .  Analyt ical  
models such as the one in section 5 need to be bet- 
ter  cal ibrated and val idated. The impact of the 
underlying hardware conf igurat ion on the perform- 
ance of  such software systems needs to be under- 
stood. The performance issues of  software imple- 
mentation techniques need to be studied. We hope 
that th is study w i l l  fuel research in these areas. 
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CritiCaIserver Section 1 

Network of non-critical 

modules 

TD: Task Dispatcher - chooses next task to use CPU from the READY queue. 

USER: All user programs that use the CPU. 

PFH: Page Fault Handler - invoked when a user task incurs a page fault. 

FMS: File Management System routines. 

TIH: Terminal Interrupt Handler. 

JS: Job Scheduler - schedules a job for processing by placing i t  in 

the READY queue. 

Figure I. A Software System Model 
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Figure 2. Queueing Model of a Single Lock System Figure 3. Queueing Model of a Mult ip le Lock System 
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