
MODELLING AND ANALYSIS OF
DISTRIBUTED SOFTWARE SYSTEMS

B. Kumar
Timothy A. Gonsalves

Computer Systems Laboratory
Stanford Universi ty

Stanford, Cal i forn ia 94305

ABSTRACT

The problem of modelling and analysing the per-
formance of software structures for d is t r ibuted
computer systems is addressed. A modelling tech-
nique is proposed which has many s t r i k ing analo-
gies with current techniques for evaluating hard-
ware systems and yet focuses at tent ion on the sys-
tem software. The analysis of such models w i l l
draw heavi ly on the substantial work already done
in the analysis of hardware models.

To i l l u s t r a t e the modelling technique proposed,
i t is applied to an invest igat ion of the trade-offs
associated with the conf igurat ion of c r i t i c a l sec-
t ions in a d is t r ibuted software system. Simple
queueing techniques are used to model a number of
a l te rna t i ve conf igurat ions. The study throws some
l i g h t on the regions of optimum decomposition, and
the impact on performance of some of the important
design var iables.

I . INTRODUCTION
There seems to be no abatement in the rate at

which the price/performance ra t io of computer sys-
tem hardware continues to drop. Consequently,
with powerful processing hardware being avai lab le
at such low cost, d is t r ibuted systems are being
increasingly seen as the wave of the future. How-
ever, i t is also being recognized that the most
s ign i f i can t problem wlth the successful synthesis
of such systems is the complexity of the system
software needed to support and manage d is t r ibuted
computations. This paper therefore addresses the
problem of analysing and characterizing the per-
formance aspects of software structures for dis-
t r ibuted systems. A technique for the modelling
of d is t r ibuted software systems is introduced and
techniques for the analysis of such models are de-
scribed. We also present a simple example of the
appl icat ion o f such techniques.

Section 2 of the paper lays out the problem and
raises some of the many questions that arise in the
design of d is t r ibuted software systems. Section 3
surveys some of the previous work done in the area.

Support for this work was provided by the Joint
Services Electronics Program grant DAAG-29-79-C-O047.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0002 $00.75

Section 4 describes the modelling technique, the
analysis techniques and draws the analogies between
th is technique and the standard techniques used by
computer system analysts. Section 5 presents a
simple example i l l u s t r a t i n g the appl icat ion of the
technique to the character izat ion of the performance
of one aspect of a d is t r ibuted software system.Section
6 summarizes and offers suggestions for fur ther work.

2. STATEMENT OF THE PROBLEM
In this section we discuss the importance of

analysing software system performance as d i s t i nc t
from hardware system performance and raise some
of the questions that may arise during the design
of software for d is t r ibuted computer systems.
2.1 Terminology

In the rest of th is paper, we w i l l use the f o l -
lowing terminology. We w i l l d ist inguish the hard~
ware conf iqurat ion of a computer system, v i z . , the
complex of hardware resources - CPU's, channels,
I /0 devices, etc. , f rom the software structure i . e . ,
the operating system and appl icat ion processes that
execute on i t . We w i l l use the term module to
loosely refer to a software uni t whic a c ~ p l i s h e s
a single log ica l funct ion, eg., operat ing system
routines such as schedulers, in te r rup t handlers, etc.
2.2 Need for Software System Performance Analysis

Computer system performance measures commonly
used today f a l l under one of three categories:
product iv i ty (eg., throughput, CPU capacity), re-.
sponsiveness (eg:, response time, turnaround time)
and u t i l i z a t i o n (eg., CPU and I /0 channel u t i l i -
zat ion) . While some of these measures re la te in
obvious ways to the character is t ics of the system
hardware, the re la t ion of most of these measures
to the system software is not immediately perceiv-
able. Moreover, in practice the design of software
is usually done at a higher level of abstract ion
than the system hardware leve l . Thus, for this
design to be done in a coherent manner, i t is es-
sent ia l that the performance aspects of the system
software be brought.to l i g h t and be somewhat se-
parated from hardware and overal l system perform-
ance considerations. This is a l l the more essen-
t i a l i f the same software structure is to be trans-
ported to d i f f e ren t hardware conf igurat ions.
2.2.1 Modular Structure of Software Systems

I t is a commonly asserted opinion that tech-
niques such as structured programm!ng and modular
implementations are sound englneerlng methods for
the construction of large software systems. In
order to choose between d i f fe ren t modular imple-
mentations, the performance character ist ics of such
techniques need to be understood. For example,
some multiprocessor configurat ions have experienced
serious performance degradation due to processor
contention at the single lock guarding a single
large c r i t i c a l section that manipulates a l l the

system's resources. Sp l i t t i ng this c r i t i c a l section
into simpler ones and thus al lowing concurrent mani-
pulat ion of d i s jo in t portions of the resource man-
agement data base may y ie ld a performance increase,
but may also increase the overhead due to the neces-
s i ty of deadlock-free management of these c r i t i c a l
sections. S imi lar ly , performance and cost can be
traded when deciding whether many processors should
share a single copy of a module as opposed to each
executing a private copy. Analysis of the perform-
ance character ist ics of the di f ference approaches
w i l l enable a sound engineering approach to resolv-
ing such t rade-of fs .

2.2.2 Hardware Organization Parameters and Imple-
mentation Trade-offs

While i t is important to focus on the perform-
ance aspects of the software structures, i t is also
important to understand how the underlying hardware
organization w i l l impact the performance of the
software system being designed. For example, a
heterogeneous architecture with processors of d i f -
ferent capacit ies, and maybe special capab i l i t i es ,
may impose d i f fe ren t performance constraints on the
modular structure of the software system than a
homogenous archi tecture. S imi la r ly , d i f fe ren t meth-
ods of processor interconnection, memory-sharing,
I /0 port conf igurat ion, e tc . , may have s ign i f i can t -
ly d i f fe ren t impacts on the software system struc-
ture. These features need to be parameterized in
the cost-performance models of software systems.

Even i f we have succeeded in def in ing the "opti-
mum" modular structure of the software system given
performance and cost constraints, a number of issues
related to the actual implementation have to be ad-
dressed. The performance aspects of various fea-
tures of system programming languages, such as pro-
cedure ca l l i ng sequences, inter-process communica-
t ion, va l id i ty-checking, protect ion, e tc . , need to
be understood. Further, the cost-performance trade-
of fs of providing hardware or firmware support for
c r i t i c a l sections of the operating system need to
be investigated.

3. PREVIOUS WORK

A number of multiprocessors have been designed
and bu i l t , the more in terest ing ones being C.mmp [21],
PRIME [3] , PLURIBUS [9] and a local network-cum-
multiprocessor Cm* [19]. However, very l i t t l e work
hasbeen done in the invest igat ion of the general
pr inciples underlying the design of software sys-
tems for these d is t r ibuted architectures. The two
exceptions are the HYDRA operating system forC.mmp
[20] and the STAROS operating system for the Cm*
[I I] . These studies dealt with the speci f icat ion
and implementation of aspects such as process
structur ing, protect ion, message passing, task dis-
patching and kernel structure. In the former sys-
tem, reference is made to some analyt ica l studies
conducted to invest igate the impact of the number
of c r i t i c a l sections in the scheduler on system per-
formance. Apart from th is , very l i t t l e work has
been done in analysing the performance aspects of
design decisions regarding the system structure and
the scheduling and coordinating pol ic ies embodied
in the system.

Some interest ing performance s ta t i s t i cs related
to the degradation due to lock contention, storage
contention and interprocessor communication on the
multiprocessor Michigan Terminal System (MTS) have

been reported by Srodawa [18]. A s ta t is t ica l study
of the operating system of the UNIVAC llO8 multi-
processor was done by Feeley [7]. We believe that
the techniques proposed in this paper w i l l make
possible systematic studies of such systems.

4. A TECHNIQUE FOR MODELLING SOFTWARE SYSTEMS

In this section, we introduce the modelling
technique and discuss methods of analysis of such
models. We part icular ly stress the analogies be-
tween these techniques and the well-known approaches
to hardware system evaluation. We believe that the
application of tested techniques to a new problem
should result in a greater l ikelihood of success.

4.1 Software System Models

The approach that we propose is related to, and
yet quite di f ferent from, the conventional approach
to computer system performance evaluation. All the
performance models thus far have viewed computer
systems as configurations of stat ic hardware re-
sources, such as CPU's, memories, I/O channels and
devices, and user jobs or tasks as dynamic ent i t ies
that flow through these configurations. Thus the
system software is incorporated into these models
at one of two levels:

I . the behavioural level: in the description of
arr ival patterns and resource demands of the
job,

2. the algorithmic level: in the description of
the scheduling and arbi t rat ion algorithms
associated with resource management.

Since our purpose is to emphasize the software
part of the system, we wi l l take a diametrically
opposite view. Our models wi l l view a computer
system as a configuration of stat ic software mod-
ules, and the processors that execute the software
as the dynamic ent i t ies that flow through this con-
f iguration. Whereas in a hardware system model a
job occupies a resource for the time needed by the
resource to process the job, in a software system
model the processor occupies a module for the time
needed for i t to execute the code in that module.
Further, the path of a job in a hardware system
model is determined by the sequence of resources
that i t needs to complete i ts processing require-
ments. The path of a processor in a software sys-
tem model is determined by the sequence of modules
that i t executes. Performance measures of interest
to the software designer such as the u t i l i za t ion of
various software modules can be obtained from the
model using the analytic techniques described later.

4.2 An Example of a Software System Model

To i l l us t ra te the concepts described above, con-
sider the following sequence of events in a time-
shared, single-CPU system with virtual memory.

Time Event

T l User U l incurs a page faul t .

T 2 User U l is suspended and user U 2
is given a quantum of time
on the CPU.

T 3 The CPU is interrupted by a command
from the terminal of user U 3.

T 4 The CPU resumes the interrupted
processing of user U2's task.

Now consider a model o f the sof tware system tha t
incorporates the module con f i gu ra t i on o f Figure I .
The above sequence o f events can be model led by the
f o l l ow ing sequence o f ac t ions o f the processor
through th i s model:

I . At T 1 the processor moves from USER to PFH,
where is executes fo r T a - T 1 sec . , to pro-
cess the page f a u l t fo r U I . I t then moves
to FMS where i t executes fo r T b - T a sec . ,
to i n i t i a t e the page t r a n s f e r from a u x i l i a r y
memory. I t thenmoves to TD, where i t ex-
ecutes fo r T 2 - T b sec . , dec id ing which task
from the READY queue is to receive the next
CPU t ime s l i c e . This task is U 2.

2. At T 2 the processor moves to USER where i t
executes U2's task fo r T 3 - T 2 sec.

3. At T~, i t moves from USER to TIH, where i t
recelves and parses the command from U3's
termina l fo r T c - T 3 sec. This may lead to
a dec is ion to schedule U 3 to j o i n the READY
queue, so the processor moves to JS to ac-
complish th i s schedul ing in T 4 - T c sec.

4. At T 4 the processor moves to USER to resume
the execut ion o f U2's task.

4.3 Power o f the Model l ing Technique

The power o f a mode l l ing technique is r e f l e c t e d
in two aspects:

I . The ana lys is power: is a measure o f the tech-
niques a v a i l a b l e to analyse the model and
reach s i g n i f i c a n t conclusions about the sys-
tem.

2. The represen ta t ion power: is r e f l e c t e d in the
number and d i v e r s i t y o f system features tha t
can be conven ien t ly represented in the model.

4.3.1 Analys is Power

The advantage o f using the model l ing technique
descr ibed so fa r is tha t a number o f standard tech-
niques used in the ana lys is o f hardware system mo-
dels can be brought to bear on the ana lys is o f such
models. The s p e c i f i c ana lys is technique depends
on the leve l o f d e t a i l and accuracy requ i red by the
ana lys i s .

For example, i f the f low through the module net-
work and the module processing t imes are de te r -
m i n i s t i c a l l y model led, the ana lys is may be con-
ducted using t r ace -d r i ven s imu la t i on . I f any o f
the above model parameters is descr ibed by a prob-
a b i l i t y d i s t r i b u t i o n , s tochas t i c s imu la t i on may be
used as the ana lys is technique. I f the above prob-
a b i l i t y d i s t r i b u t i o n s are chosen from ce r ta i n re-
s t r i c t e d c lasses, the we l l -deve loped methods o f
queuein 9 system ana lys is may be used. The use o f
queueing system ana lys is imposes o ther res t r i c t i ons .
For example, past h i s t o r y o f customers and servers
and synchron iza t ion cannot be model led exac t l y us-
ing standard queueing ana l ys i s .

4 .3.2 Representat ion Power

A number o f impor tant features o f sof tware s t ruc -
tures fo r d i s t r i b u t e d computer systems can be in -
corporated qu i te s imply and very n a t u r a l l y i n to
models o f the kind proposed. We now give a few ex-
amples, emphasizing throughout the analogies w i th
hardware system models.

I . Hardware system models usua l l y model m u l t i -
programming and t ime-shar ing by having a

f i xed number o f user jobs , equal to the de-
gree o f mult iprogramming or the number o f
user te rmina ls r e s p e c t i v e l y , f l ow ing through
a resource con f i gu ra t i on model l ing the sys-
tem hardware. The model o f a sof tware sys-
tem fo r a uniprocessor is thus analogous to
a hardware system model w i th the degree o f
mult iprogramming equal to one. S i m i l a r l y
the model o f the sof tware system fo r a m u l t i -
processor is analogous to a hardware m u l t i -
programmed system model w i th the degree o f
mul t iprogramming in the l a t t e r corresponding
to the number o f processors in the former.
The amazing degree o f success in using closed
queueing network techniques to model t ime-
shar ing systems ([1 6] , [14]) and m u l t i p r o -
gramming systems ([1 4] , [I 0]) augurs wel l
f o r t h e i r use in mode l l ing sof tware systems
too .

2. In queueing models o f hardware systems, the
servers , i . e . , the hardware resources, which
are s t a t i c e n t i t i e s , are charac te r i zed by a
serv ice d i s c i p l i n e and a serv ice r a te . The
l a t t e r is r e l a ted to the processing power o f
the resources; commonly used measures inc lude
MIPS fo r CPU's, Mbps fo r channels, e tc . User
jobs , which are dynamic e n t i t i e s , are char-
ac te r i zed by serv ice demand d i s t r i b u t i o n s .
The combinat ion o f job serv ice demand d i s t r i -
but ions and resource serv ice rates y i e l d s re-
source serv ice t ime d i s t r i b u t i o n s . In s o f t -
ware system models on the o ther hand, i t
seems more natura l to assoc ia te the serv ice
demand w i th the s t a t i c e n t i t y , i . e . , the
sof tware module. This would be re l a ted to
the length o f the code along d i f f e r e n t paths
through the module and would thus d i r e c t l y
measure the implementat ion e f f i c i e n c y o f t ha t
module. The serv ice ra te would now be assoc-
ia ted w i th the dynamic e n t i t i e s , i . e . , the
processors.

3. Recent advances in queueing theory a l l ow the
mode l l ing o f d i f f e r e n t classes o f customers
w i th d i f f e r e n t serv ice t ime d i s t r i b u t i o n s
and d i f f e r e n t f low paths through the model
[2] . This fea tu re can be used to model two
kinds o f he te rogene i ty in d i s t r i b u t e d s o f t -
ware systems:

a) Heterogenei ty due to the presence in the
system of processors o f d i f f e r e n t proces-
s ing powers can be model led by a separate
class o f customers fo r each type o f pro-
cessor, w i th d i f f e r e n t serv ice ra tes fo r
the d i f f e r e n t c lasses.

b) Heterogenei ty due to the ded ica t ion o f
ce r t a i n processors to ce r t a i n system func-
t ions can be model led by ass ign ing a un-
ique c lass o f customers fo r each dedicated
processor or c lass o f processors. Each
customer c lass is now r e s t r i c t e d to cer -
t a i n f low paths through the con f i gu ra t i on
o f sof tware modules.

4. Congestion occurs in a hardware system model
when jobs contend fo r the use o f a s ing le
hardware resource. That resource is then
model led as a s ing le server w i th a queue o f
w a i t i n g jobs . The analogous s i t u a t i o n in a
sof tware system model is when many processors
t r y to execute a c r i t i c a l sec t ion module t ha t

5.

implements mutua l ly exc lus ive access to some
c r i t i c a l resource. That module can be modelled
as a s ing le server w i th a queue to hold w a i t -
ing processors.

5. A commonly used resource schedul ing d i s c i p l i n e
in mult iprogramming systems is the round-rob in
d i s c i p l i n e . This is model led a n a l y t i c a l l y by
the processor-shar ing d i s c i p l i n e [12] , in
which the serv ice rate of the server is shared
by a l l the jobs using the server . The analo-
gous s i t u a t i o n in a sof tware system model is
when a number o f processors execute a s ing le
copy o f a module o f r e - e n t r a n t code. The ser-
v ice degradat ion due to many processors ac-
cessing the same physical regions o f memory
can be model led as a drop in the e f f e c t i v e
serv ice ra te per processor due to module-
shar ing.

6. The extreme case o f the p r o c e s s o r - s h a r i n g d i ~
c i p l i n e o f resource schedul ing is when an e f -
f e c t i v e l y i n f i n i t e number o f servers is a v a i l -
able at a serv ice s t a t i o n to process as many
jobs as are at the s ta t i on at any t ime. This
is ca l led the i n f i n i t e server d i s c i p l i n e [2] .
In sof tware systems, th i s may be used to model
module r e p l i c a t i o n - the s i t u a t i o n where each
processor has i t s own copy o f a sof tware mod-
u le and can execute i t w i thou t any i n t e r f e r -
ence from any other processors.

AN APPLICATION OF THE MODELLING TECHNIQUE

In th i s sect ion we apply the techniques developed
in sect ion 4 to i nves t i ga te the t r ade -o f f s involved
in the con f i gu ra t i on o f c r i t i c a l sect ions in a d i s -
t r i b u t e d opera t ing system. We analyse the models
developed by simple queueing techniques. We show
tha t the resu l t s from even such a s i m p l i s t i c model-
l i n g approach can provide some i n s i g h t i n to the
above t r a d e - o f f s .

5.1 The A l t e r n a t i v e Conf igura t ions

We consider the design o f an opera t ing system
fo r a homogeneous d i s t r i b u t e d system cons is t i ng o f
n i d e n t i c a l processors. The sof tware opera t ing sys-
tem is assumed to cons is t o f a number o f modules
among them being several c r i t i c a l sec t ions . Each
c r i t i c a l sec t ion , by d e f i n i t i o n , can be executed by
only one processor at a t ime.

We compare two a l t e r n a t i v e con f i gu ra t i ons o f the
c r i t i c a l sec t ions . In the f i r s t c o n f i g u r a t i o n , there
is a s ing le lock tha t a l lows only one processor at
a t ime to obta in exc lus ive access to a l l the c r i t i -
cal sec t ions . This scheme is simple to implement,
but may su f fe r from a performance degradat ion due
to lack o f concurrency in accessing the c r i t i c a l
sec t ions . In the second c o n f i g u r a t i o n , the c r i t i -
cal sect ions are d iv ided in to l o g i c a l l y re la ted sub-
sets w i th a lock provided fo r each subset. Each
subset may be accessed by on ly one processor at a
t ime, but d i f f e r e n t subsets may be executed concur-
r e n t l y by d i f f e r e n t processors. However, a proces-
sor may need to ob ta in exc lus ive cont ro l o f more
than one subset to accomplish ce r ta in func t ions .
Thus, the a l l o c a t i o n order o f usage o f l o c k s by pro-
cessors must be c a r e f u l l y c o n t r o l l e d to prevent
deadlocks. Thus add i t i ona l overhead is necess i ta ted
in the form o f a deadlock avoidance module tha t is
respons ib le fo r the g ran t ing o f a l l locks to the
processors.

An example o f the above t r a d e - o f f may be found

in the design of the OS/VS2 opera t ing system fo r
the System 370. Release 1 o f OS/VS2 [17] which was
not designed to suppo r tmu l t i p rocess ing , h a s a s i n g l e
lock fo r a l l the c r i t i c a l sect ions o f the system.
Release 2 o f OS/VS2, which supports mu l t i p rocess ing ,
has about 13 separate locks w i t h a l o c k i n g h i e r a r c h y
def ined to solve the deadlock problem discussed
above [I] .

5.2 The Queueing ~1odels

We assume tha t there are m independent c r i t i c a l
sect ion modules. Each o f these may in fac t cons is t
o f several r e l a ted c r i t i c a l sec t ions . For s i m p l i -
c i t y , we assume tha t the execut ion t ime of each of
these modules is an exponen t i a l l y d i s t r i b u t e d ran-
dom va r iab le w i th mean I / ~ . The e n t i r e sof tware
system is assumed to cons is t o f these m modules
plus an a r b i t r a r y number o f o ther n o n - c r i t i c a l mod-
ules w i th a r b i t r a r y c h a r a c t e r i s t i c s .

In our model, a f t e r spending some t ime in the
n o n - c r i t i c a l modules, a processor moves to the set
o f c r i t i c a l sec t ion modules. I t executes, on the
average, c o f these modules before re tu rn ing to the
n o n - c r i t i c a l modules to begin another such cyc le .
The d i s t r i b u t i o n of execut ion times of the var ious
modules and the rou t i ng p r o b a b i l i t i e s o f processors
moving between the var ious modules are assumed to
be the same fo r a l l the n processors.

5.2.1 Single Global Lock Scheme

In the s ing le g lobal lock scheme, a l l the m
c r i t i c a l sect ions can be represented by a s ing le
Harkovian server o f ra te ~ /c . We assume tha t the
t ime spent in lock ing is n e g l i g i b l e compared to the
execut ion t ime in the c r i t i c a l sec t ions . This
model is shown in Figure 2.

5 .2.2 Mu l t i p l e Lock Scheme

In the m u l t i p l e lock scheme we assume tha t there
is one lock fo r each o f the m c r i t i c a l sect ion
modules. Fur ther , we assume tha t the overhead in -
troduced by the deadlock avoidance module is a lso
exponen t i a l l y d i s t r i b u t e d w i th a mean o f I /~ (m) .
The r a t i o n a l e fo r making th i s ra te a func t ion o f m
is tha t the complex i ty o f the deadlock avoidance
a lgo r i t hm can be expected to increase wi th the num-
ber o f modules to be a l l o c a t e d . The system can be
model led by the queueing network shown in Figure 3.
A f t e r execut ion in the n o n - c r i t i c a l modules, a pro-
cessor moves to server O, the deadlock avoidance
module, before i t can gain access to any o f the
c r i t i c a l sec t ion modules. I t then moves to one o f
the c r i t i c a l sec t ion modules at random. A f te r ex-
ecut ion in tha t module, w i th p r o b a b i l i t y q i t ex-
ecutes another c r i t i c a l sect ion module, and w i th
p r o b a b i l i t y p= l -q , i t re turns to the n o n - c r i t i c a l
modules fo r another such cyc le . Thus the mean num-
ber o f c r i t i c a l sec t ion modules executed per cycle
is c= I /p .

Notice tha t the above model is only an approx i -
mation in tha t a f t e r a processor has been a l l o ca ted
i t s requ i red set o f c r i t i c a l sect ion modules, i t
executes each of them s e q u e n t i a l l y , but does not
lock o ther processors out o f i t s a l l o ca ted set .
This is because mu l t i p l e - r esou rce ho ld ing behaviour
cannot be modelled by queueing techniques. Thus,
since the above model a l lows more concurrent usage
o f modules than a c t u a l l y poss ib le , i t y i e l ds an up-
per bound on performance. The serv ice rates o f the
c r i t i c a l sect ion modules could be a p p r o p r i a t e l y re -
duced to approx imate ly compensate fo r t h i s increased

concurrency.

In the model of mul t ip le c r i t i c a l sections used
by McCredie [13] each processor executes a l l the
c r i t i c a l sections in a s ta t i c sequence. Our model
is more powerful in that each processor may execute
only a subset of the c r i t i c a l sections and the se-
quence may vary.

5.2.3 Analysis of the Models

Since we are pr imar i ly interested in the impact
of the c r i t i c a l section modules on system perform-
ance, we can apply Norton's theorem for queueing
networks [6] to the two queueing models developed
above. This is done by e f f ec t i ve l y "short ing" out
the non-cr i t i ca l modules and studying the through-
put of the resul tant networks. Specif ic systems
with speci f ic configurations of non-cr i t i ca l modules
can then be studied by replacing the c r i t i c a l sec-
t ion modules by servers equivalent to the above
networks.

The single server model of the global lock sys-
tem can be solved using standardqueueingtechniques
[12]. The mul t ip le lock model can be solved using
the mean-value analysis technique developed by
Reiser [15]. This technique avoids the computation
of the normalization constant and the resu l tan t l oss
of numerical accuracy found in algorithms such as
in Buzen [5].

5.3 Discussion of Results

Using the models and analysis techniques de-
scribed above, the throughput of the mul t ip le lock
scheme is compared to that of the single lock scheme
with the fo l lowing choice for the service function
of the deadlock avoidance module: ~(m)=~/(m-l) ~,
where m is a var iable parameter in the analysis.

is a measure of the service rate of the deadlock
avoidance module independent of the algor i thmic
complexity, and is expressed re la t i ve to ~=I. I t
may thus measure the e f f i c iency of the module im-
plementation, higher values indicat ing higher ef-
f ic iency and vice versa.

Figure 4 is a p lot of the throughput of the mul-
t i p l e lock scheme re la t i ve to that of the single
lock scheme as a function of m for various values
of I and m, and a lO-processor system. I f the over-
head is high (l = l) , the mul t ip le lock scheme does
worse regardless of the value of ~. I f m:2, for
l=lO or 20, the mul t ip le lock scheme does better by
a factor of 2 to 2.5. The region of substantial
performance improvement is rather narrow - m=2to4.
This may be the case for a complex algorithm such
as the banker's algorithm [8] . For a l i near dead-
lock avoidance algorithm (m:l) , the mul t ip le lock
scheme does better by a factor of 2.5 to 3, and the
decomposition choice is larger , - m=2 to I0. This
would be the case i f a simple algori thm, such as
using a hierarchy of locks, is used.

Figure 5 is a p lot of the same throughput in-
crease for various values of n and m. I t can be
seen that the region o f optimum decomposition is
quite insensi t ive to the number of processors and
is much more dependent on m. The actual perform-
ance i t s e l f is sensi t ive to n only in the region of
optimum decomposition. I t should be noted that in
a real system, the performance may be more sensi t ive
to the non-cr i t i ca l modules than the c r i t i c a l sec-
t ions. Thus, analysing the model for a real system
w i l l involve taking the cross-section of the above
curves at the design value of m. This w i l l charac-

ter ize the throughput of the Norton's equivalent of
the set of c r i t i c a l sections as a function of the
number of processors current ly executing in them.

The above analysis may be summarized as below:

I . The mul t ip le lock scheme may do at most 2 or
3 times better than the single lock scheme.

2. For the parameter ranges examined, the opt i -
mum decomposition is m=3 to 6.

3. The implementation e f f i c iency of the~deadlock
avoidance module plays a crucial role in de-
termining performance.

6. CONCLUSION

We have introduced a technique for the modelling
of complex software structures for d is t r ibuted sys-
tems. Appl icat ion of such modelling and analysis
techniques w i l l y ie ld a better understanding o f the
performance character is i t i cs of the various design
a l ternat ives in the construction of such systems.
We have presented a simple example of thetechnique,
which has yielded some insight into the problem of
c r i t i c a l section conf igurat ion for maximizing
throughput.

A great deal of work needs to be done to estab-
l i sh the technique as a viable too l . Analyt ical
models such as the one in section 5 need to be bet-
ter cal ibrated and val idated. The impact of the
underlying hardware conf igurat ion on the perform-
ance of such software systems needs to be under-
stood. The performance issues of software imple-
mentation techniques need to be studied. We hope
that th is study w i l l fuel research in these areas.

REFERENCES

I . Arnold, J.S., Casey, D.P., and McKinstry, R.H.
Design of t ight ly-coupled multiprocessing pro-
gramming. IBM Sys . J . 13, 1 (1974), 60-87.

2. Baskett, F., Chandy, K.M., ~luntz, R.R., and
Palacios, F. Open, closed, and mixed networks of
queues with d i f f e ren t classes of customers.
J . ACM 22, 2 (Apr. 1975), 248-260.

3. Baskin, H.B., Borgerson, B., and Roberts, R.
PRI~iE - a modular archi tecture for terminal-
oriented systems. Proc. AFIPS 1972 SJCC, Vol.40,
AFIPS Press, Montvale, N.J., pp. 431-437.

4. Buzen, J.P. Queueing network models of mult ipro-
gramming. Ph.D. thesis, Division of Engineering
and Applied Sciences, Harvard Universi ty, 1971.

5. Buzen, J.P. Computational algorithms for closed
queueing networks with exponential servers.
comm. ~CM 16, 9 (Sep. 1973), 527-531.

6. Chandy, K.M., Her zog, U. and Woo, L. Parametric
analysis of queueing networks. IBM J . o f R. and
D. 19, 1 (Jan. 1975), 36-42.

7. Feeley, J.M. A computer performance monitor and
Markov analysis for multiprocessor system evalu-
at ion. In Statistical Computer Performance Eval-
uation, W. Freiberger, Ed., Academic Press, New
York, 1972.

8. Habermann, N. Introduction to Operating System
Design. Science Research Associates, Inc. , 1976.

9. Heart, F.E., Ornstein, S.M., Crowther, W.R.,and
Barker, W.B. A new minicomputer/multiprocessor
for the ARPA network. Proc. AFIPS 1973 NCC, VoI.

42, AFIPS Press, Montvale, N.J~, pp. 529-537.

lO. Hughes, P.H., and Moe, G. A structural ap-
proach to computer performance analysis. Proc.
AFIPS 1973 NCC, Vol. 42, AFIPS Press,Montvale,
N.J., pp. IOY-120.

I I . Jones, A., Chansler Jr. , R.J., Durham, I. ,
Feiler, P., and Schwans, K. Software manage-
ment of Cm* - a distributed multiprocessor.
Proc. AFIPS 1977 NCC, Vol. 46, AFIPS Press,
Montvale, N.J., pp. 657-663.

12. Kleinrock, L. Queueing Systems, Vol. 1 and 2.
Wiley- Interscience, 1975.

13. McCredie, J. Analytic models as aids inmulti-
processor design. Dept. of Computer Science,
Carnegie-Mellon U., Pittsburgh, Pa., 1972.

14. Moore, C.G. Network models for large-scale
time-sharing systems. Tech. Rpt. 71-1, Dept.
of Industrial Engineering, University of
Michigan, 1971.

15. Reiser, M. Mean value analysis of queueingnet-
works, a new look at an old problem. Res. Rep.
RC 7228, IBM Thomas J. Watson Res. Ctr.,
Yorktown Heights, N.Y., 1978.

16. Scherr, A.L. An analysis of time-shared com-
puter systems. MIT Press, 1967.

17. Scherr, A.L. The design of OS/VS2 Release 2.
Proc. AFIPS 1973 NCC, Vol. 42, AFIPS Press,
Montvale, N.J., pp. 387-394.

18. Srodawa, R.J. Positive experiences with a
m u l t i p r o c e s s i n g sys tem, comptg, surveys i 0 ,
1 (Mar. 1978), pp. 73-82.

19. Swan, R.J., Ful ler , S.H., and Siewiorek, D.P.
Cm* - a modular multi-microprocessor. Proc.
AFIPS 1977 NCC, Vol. 46, AFIPS Press, Montvale,
N.J., pp. 657-663.

20. Wulf, W.A. HYDRA: the kernel of a multiproces-
sor operating system, comm. ACM 17, 6 (June
1974), pp. 337-345.

21. Wulf, W.A., and Bel l , C.G.C.mmp - A mul t i -
miniprocessor. Proc. AFIPS 1972 FJCC, Vol. 41
part I I , AFIPS Press, Montvale, N.J., ppo 765-
777.

~/c

CritiCaIserver Section 1

Network of non-critical

modules

TD: Task Dispatcher - chooses next task to use CPU from the READY queue.

USER: All user programs that use the CPU.

PFH: Page Fault Handler - invoked when a user task incurs a page fault.

FMS: File Management System routines.

TIH: Terminal Interrupt Handler.

JS: Job Scheduler - schedules a job for processing by placing i t in

the READY queue.

Figure I. A Software System Model

llm

~(m)

Cr i t ica l Section

Servers

I - P ~

Network of non-cr i t ica l

modules

Figure 2. Queueing Model of a Single Lock System Figure 3. Queueing Model of a Mult ip le Lock System

f ~

F---~

U]

FIG. 4 MULTi~'L,., LOCKS VS SINGLE LOCK

n = l O
processors

k : 2 0 , c ~ = l
g

2b

I

! k =

0 L _ _ - ~
0

NO.

= lO,
= l

k = 2 0 ,
¢ = 2

~, = I0 ,
o~=2

io

OF CRITICAL SECTIONS M

I

7
-t

1
I

]

20

f . - . ~

h~

r

r~

F---~

s~G.s bIULTtPLE LOCKS VS.i. SINGLE LOCK

r t
i I I ~ I I I

n = no. of processors

i

'!i
1

[_ ° L = 2

O [r I I I r I

0 5 10

NO OF CRITICAL S~CTION~ M

