MODELLING AND ANALYSIS OF
DISTRIBUTED SOFTWARE SYSTEMS

B. Kumar
Timothy A. Gonsalves

Computer Systems Laboratory
Stanford University
Stanford, California 94305

ABSTRACT

The problem of modelling and analysing the per-
formance of software structures for distributed
computer systems is addressed. A modelling tech-
nique is proposed which has many striking analo-
gies with current techniques for evaluating hard-
ware systems and yet focuses attention on the sys-
tem software. The analysis of such models will
draw heavily on the substantial work already done
in the analysis of hardware models.

To i1lustrate the modelling technique proposed,
it is applied to an investigation of the trade-offs
associated with the configuration of critical sec-
tions in a distributed software system. Simple
queueing techniques are used to model a number of
alternative configurations. The study throws some
light on the regions of optimum decomposition, and
the impact on performance of some of the important
design variables.

1. INTRODUCTION

_There seems to be no abatement in the rate at
which the price/performance ratio of computer sys-
tem hardware continues to drop. Consequently,
with powerful processing hardware being avai{ab1e
at such low cost, distributed systems are being
increasingly seen as the wave of the future. How-
ever, it is also_being recognized that_ the most
significant problem with the successful synthesis
of such systems is the complexity of the system
software needed to support and manage distributed
computations. This paper therefore addresses the
problem of analysing and characterizing the per-
formance aspects of software structures for dis-
tributed systems. A technique for the modelling
of distributed software systems is introduced and
technigues for the analysis of such models are de-
scribed. We also Eresent a simple example of the
application of such techniques.

Section 2 of the paper lays out the problem and
raises some of the many questions that arise in the
design of distributed software systems. Section 3
surveys some of the previous work done in the area.

Support for this work was provided by the Joint
Services Electronics Program grant DAAG-29-79~C-0047.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0002 $00.75

Section 4 describes the modelling technique, the
analysis techniques and draws the analogies between
this technique and the standard techniques used by
computer system analysts. Section 5 presents a
simﬁ]e example illustrating the application of the
technique to the characterization of the performance
of one aspect of a distributed software system.Section

6 summarizes and offers suggestions for further work.
2. STATEMENT OF THE PROBLEM

In this section we discuss the importance of
ana]ysing software system performance as distinct
from hardware system performance and raise some
of the questions that may arise during the design
of software for distributed computer systems.

2.1 Terminology

In the rest of this paper, we will use the fol-
lowing terminology. We will distinguish the hard-
ware configuration of a computer system, viz., the
complex of hardware resources - CPU's, channels,
I/0 devices,etc., from the software structure i.e.,
the operating system and application processes that
execute on it. We will use the term module to
1oose1¥ refer to a software unit whichaccomplishes
a single logical function, eg., operating system
routines such as schedulers, interrupt handlers, etc.

2.2 Need for Software System Performance Analysis

Computer s¥stem performance measures commonly
used today fall under one of three categories:
productivity 2eg., throughput, CPU capacity), re-
sponsiveness {eg,, response time, turnaround time)
and utilization {(eg., CPU and 1/0 channel utili-
zation). While some of these measures relate in
obvious ways to the characteristics of the system
hardware, the relation of most of these measures
to the system software is not immediately perceiv-
able. Moreover, in practice the designof software
is usually done at a higher level of abstraction
than the system hardware level. Thus, for this
design to be done in a coherent manner, it is es-
sential that the Eerformance aspects of the system
software be brought to light and be somewhat se-
parated from hardware and overall system perform-
ance considerations. This is all the more essen-
tial if the same software structure is to be trans-
ported to different hardware configurations.

2.2.1 Modular Structure of Software Systems

It is a commonly asserted opinion that tech-
niques such as structured programming and modular
implementations are sound engineering methods for
the construction of large software systems. In
order to choose between different modular imple-
mentations, the performance characteristics of such
techniques need to be understood. For example,
some multiprocessor configurations have experienced
serious performance degradation due to processor
contention at the singTe lock guarding a single
large critical section that manipulates ail the

system's resources. Splitting thiscritical section
into simpler ones and thus allowing concurrent mani-
pulation of disjoint portions of the resource man-
agement data base may yield a performance increase,
but may also increase the overhead due to the neces-
sity of deadlock-free management of these critical
sections. Similarly, performance and cost can be
traded when deciding whether many processors should
share a single copy of a module as opposed to each
executing a private copy. Analysis of the perform-
ance characteristics of the difference approaches
will enable a sound engineering approach to resolv-
ing such trade-offs.

2.2.2 Hardware Organization Parameters and Imple-
mentation Trade-offs

While it is important to focus on the perform-
ance aspects of the software structures, it isalso
important to understand how the underlying hardware
organization will impact the performance of the
software system being designed. For example, a
heterogeneous architecture with processors of dif-
ferent capacities, and maybe special capabilities,
may impose different performance constraints on the
modular structure of the software system than a
homogenous architecture. Similarly, different meth-
ods of processor interconnection, memory-sharing,
1/0 port configuration, etc., may have significant-
ly different impacts on the software system struc-
ture. These features need to be parameterized in
the cost-performance models of software systems.

Even if we have succeeded in defining the “"opti-
mum" modular structure of the software systemgiven
performance and cost constraints, a number of issues
related to the actual implementation have to be ad-
dressed. The performance aspects of various fea-
tures of system programming languages, such as pro-
cedure calling sequences, inter-process communica-
tion, validity-checking, protection, etc., need to
be understood. Further, the cost-performance trade-
offs of providing hardware or firmware support for
critical sections of the operating system need to
be investigated.

3. PREVIOUS WORK

A number of multiprecessors have been designed
and built, the more interestingones being C.mmp [21],
PRIME [3], PLURIBUS [9] and a local network-cum-
multiprocessor Cm* [19]. However, very little work
has been done in the investigation of the general
principles underlying the design of software sys-
tems for these distributed architectures. The two
exceptions are the HYDRA operating system for C.mmp
[20] and the STAROS operating system for the Cm*
[11]. These studies dealt with the specification
and implementation of aspects such as process
structuring, protection, message passing, task dis-
patching and kernel structure. In the former sys-
tem, reference is made to some analytical studies
conducted to investigate the impact of the number
of critical sections in the scheduler on systemper-
formance. Apart from this, very Tittle work has
been done in analysing the performance aspects of
design decisions regarding the system structure and
the scheduling and coordinating policies embodied
in the system.

Some interesting performance statistics related
to the degradation due to lock contention, storage
contention and interprocessor communication on the
multiprocessor Michigan Terminal System (MTS) have

been reported by Srodawa [18]. A statistical study
of the operating system of the UNIVAC 1108 multi-
processor was done by Feeley [7]. We believe that
the techniques proposed in this paper will make
possible systematic studies of such systems.

4. A TECHNIQUE FOR MODELLING SOFTWARE SYSTEMS

In this section, we introduce the modelling
technique and discuss methods of analysis of such
models. We particularly stress the analogies be-
tween these techniques and the well-known approaches
to hardware system evaluation. We believe that the
application of tested techniques to a new problem
should result in a greater likelihood of success.

4.1 Software System Models

The approach that we propose is related to, and
yet quite different from, the conventional approach
to computer system performance evaluation. Al1l the
performance models thus far have viewed computer
systems as configurations of static hardware re-
sources, such as CPU's, memories, 1/0 channels and
devices, and user jobs or tasks as dynamic entities
that flow through these configurations. Thus the
system software is incorporated into these models
at one of two levels:

1. the behavioural level: in the description of
arrival patterns and resource demands of the
Jjob,

2. the algorithmic level: in the description of
the scheduling and arbitration algorithms
associated with resource management.

Since our purpose is to emphasize the software
part of the system, we will take a diametrically
opposite view. Our models will view a computer
system as a configuration of static software mod-
ules, and the processors that execute the software
as the dynamic entities that flow through this con-
figuration. Whereas in a hardware system model a
job occupies a resource for the time needed by the
resource to process the job, in a software system
model the processor occupies a module for the time
needed for it to execute the code in that module.
Further, the path of a job in a hardware system
model is determined by the sequence of resources
that it needs to complete its processing require-
ments. The path of a processor in a software sys-
tem model is determined by the sequence of modules
that it executes. Performance measures of interest
to the software designer such as the utilizationof
various software modules can be obtained from the
model using the analytic techniques described later.

4.2 An Example of a Software System Model

To illustrate the concepts described above, con-
sider the following sequence of events in a time-
shared, single-CPU system with virtual memory.

Time Event

T User Uy incurs a page fault.

T, User Uy is suspended and user U2
is given a quantum of time
on the CPU.

T3 The CPU is interrupted by a command

from the terminal of user Uj.

Ta The CPU resumes the interrupted
processing of user Up's task.

Now consider a model of the software system that
incorporates the module configuration of Figure 1.
The above sequence of events can be modelled by the
following sequence of actions of the processor
through this model:

1. At T the processor moves from USER to PFH,
where is executes for Ty - Ty sec., to pro-
cess the page fault for Uy. It then moves
to FMS where it executes for Ty - T, sec.,
to initiate the page transfer from auxiliary
memory. It then moves to TD, where it ex-
ecutes for Ty - Ty sec., deciding which task
from the READY queue is to receive the next
CPU time slice. This task is Ua.

2. At T, the processor moves to USER where it
executes Up's task for T3 - Ty sec.

3. At T3, it moves from USER to TIH, where it
receives and parses the command from U3's
terminal for T; - T3 sec. This may lead to
a decision to schedule Uz to join the READY
queue, so the processor moves to JS to ac-
complish this scheduling in T4 - T, sec.

4. At T4 the processor moves to USER to resume
the execution of Up's task.

4.3 Power of the Modelling Technique

The power of a modelling technique is reflected
in two aspects:

1. The analysis power: is a measure of the tech-
niques available to analyse the model and
reach significant conclusions about the sys-
tem.

2. The representation power: is reflected in the
number and diversity of system features that
can be conveniently represented in the model.

4.3.1 Analysis Power

The advantage of using the modelling technique
described so far is that a number of standard tech-
niques used in the analysis of hardware system mo-
dels can be brought to bear on the analysisof such
models. The specific analysis technique depends
on the level of detail and accuracy required by the
analysis.

For example, if the flow through the module net-
work and the module processing times are deter-
ministically modelled, the analysis may be con-
ducted using trace-driven simulation. If any of
the above model parameters is described by a prob-
ability distribution, stochastic simulation may be
used as the analysis technique. If the above prob-
ability distributions are chosen from certain re-
stricted classes, the well-developed methods of
queueing system analysis may be used. The use of
queueing system analysis imposes other restrictions.
For example, past history of customers and servers
and synchronization cannot be modelled exactly us-
ing standard queueing analysis.

4.3.2 Representation Power

A number of important features of software struc-
tures for distributed computer systems can be in-
corporated quite simply and very naturally into
models of the kind proposed. We now give a fewex-
amples, emphasizing throughout the analogies with
hardware system models.

1. Hardware system models usually model multi-
programming and time-sharing by having a

fixed number of user jobs, equal to the de-
gree of multiprogramming or the number of
user terminals respectively, flowing through
a resource configuration modelling the sys-
tem hardware. The model of a software sys-
tem for a uniprocessor is thus analogous to
a hardware system model with the degree of
multiprogramming equal to one. Similarly
the model of the software system for amulti-
processor is analogous to a hardware multi-
programmed system model with the degree of
multiprogramming in the latter corresponding
to the number of processors in the former.
The amazing degree of success in usingclosed
queueing network techniques to model time-
sharing systems ([16], [14]) and multipro-
gramming systems ([14], [10]) augurs well
for their use in modelling software systems
too.

. In queueing models of hardware systems, the

servers, i.e., the hardware resources, which
are static entities, are characterized by a
service discipline and a service rate. The
latter is related to the processing power of
the resources; commonly used measures include
MIPS for CPU's, Mbps for channels, etc. User
jobs, which are dynamic entities, are char-
acterized by service demand distributions.
The combination of job service demand distri-
butions and resource service rates yields re-
source service time distributions. In soft-
ware system models on the other hand, it
seems more natural to associate the service
demand with the static entity, i.e., the
software module. This would be related to
the length of the code along different paths
through the module and would thus directly
measure the implementation efficiencyof that
module. The service rate would now be assoc-
iated with the dynamic entities, i.e., the
processors.

. Recent advances in queueing theory allow the

modelling of different classes of customers
with different service time distributions
and different flow paths through the model
[2]. This feature can be used to model two
kinds of heterogeneity in distributed soft-
ware systems:

a) Heterogeneity due to the presence in the
system of processors of different proces-
sing powers can be modelled by a separate
class of customers for each type of pro-
cessor, with different service rates for
the different classes.

b) Heterogeneity due to the dedication of
certain processors to certain system func-
tions can be modelled by assigning a un-
ique class of customers for each dedicated
processor or class of processors. Each
customer class is now restricted to cer-
tain flow paths through the configuration
of software modules.

. Congestion occurs in a hardware system model

when jobs contend for the use of a single
hardware resource. That resource is then
modelled as a single server with a queue of
waiting jobs. The analogous situation in a
software system model is when many processors
try to execute a critical sectionmodule that

implements mutually exclusive access to some
critical resource. Thatmodule can be modelled
as a single server with a queue to hold waijt-
ing processors.

5. A commonly used resource schedulingdiscipline
in multiprogramming systems is the round-robin
discipline. This is modeliedanalytically by
the processor-sharing discipline [12], in
which the service rate of the server is shared
by all the jobs using the server. The analo-
gous situation in a software system model is
when a number of processors execute a single
copy of a module of re-entrant code. Theser-
vice degradation due to many processors ac-
cessing the same physical regions of memory
can be modelled as a drop in the effective
service rate per processor due to module-

sharing.

6. The extreme case of the processor-sharingdis
cipline of resource scheduling is when an ef-
fectively infinite number of servers isavail-
able at a service station to process as many
jobs as are at the station at any time. This
is called the infinite server discipline [2].
In software systems, this may be used to model
module replication - the situation where each
processor has its own copy of a software mod-
ule and can execute it without any interfer-
ence from any other processors.

5. AN APPLICATION OF THE MODELLING TECHNIQUE

In this section we apply the techniques developed
in section 4 to investigate the trade-offs involved
in the configuration of critical sections in a dis-
tributed operating system. We analyse the models
developed by simple queueing techniques. We show
that the results from even such a simplistic model-
1ing approach can provide some insight into the
above trade-offs.

5.1 The Alternative Configurations

We consider the design of an operating system
for a homogeneous distributed system consisting of
n identical processors. The software operatingsys-
tem is assumed to consist of a number of modules
among them being several critical sections. Each
critical section, by definition, can be executed by
only one processor at a time.

We compare two alternative configurations of the
critical sections. In the first configuration, there
is a single Tock that allows only one processor at
a time to obtain exclusive access to all the criti-
cal sections. This scheme is simple to implement,
but may suffer from a performance degradation due
to lack of concurrency in accessing the critical
sections. In the second configuration, the criti-
cal sections are divided into logically related sub-
sets with a Tock provided for each subset. Each
subset may be accessed by only one processor at a
time, but different subsets may be executed concur-
rently by different processors. However, a proces-
sor may need to obtain exclusive control of more
than one subset to accomplish certain functions.
Thus, the allocation order of usage of Tocks by pro-
cessors must be carefully controlled to prevent
deadlocks. Thus additional overhead is necessitated
in the form of a deadlock avoidance module that is
responsible for the granting of all locks to the
processors.

An example of the above trade-off may be found

in the design of the 0S/VS2 operating system for
the System 370. Release 1 of 0S/VS2 [17] which was
not designed to supportmultiprocessing, has asingle
lock for all the critical sections of the system.
Release 2 of 0S/VS2, which supports multiprocessing,
has about 13 separate Tocks witha locking hierarchy
defined to solve the deadlock problem discussed
above [1].

5.2 The Queueing Models

We assume that there are m independent critical
section modules. Each of these may in fact consist
of several related critical sections. For simpli-
city, we assume that the execution time of each of
these modules is an exponentially distributed ran-
dom variable with mean 1/u. The entire software
system is assumed to consist of these m modules
plus an arbitrary number of other non-critical mod-
ules with arbitrary characteristics.

In our model, after spending some time in the
non-critical modules, a processor moves to the set
of critical section modules. It executes, on the
average, ¢ of these modules before returning to the
non-critical modules to begin another such cycle.
The distribution of execution times of the various
modules and the routing probabilities of processors
moving between the various modules are assumed to
be the same for all the n processors.

5.2.1 Single Global Lock Scheme

In the single global lock scheme, all the m
critical sections can be represented by a single
Markovian server of rate p/c. We assume that the
time spent in locking is negligible compared to the
execution time in the critical sections. This
model is shown in Figure 2.

5.2.2 Multiple Lock Scheme

In the multiple Tock scheme we assume that there
is one lock for each of the m critical section
modules. Further, we assume that the overhead in-
troduced by the deadlock avoidance module is also
exponentially distributed with a mean of 1/x(m).
The rationale for making this rate a function of m
is that the complexity of the deadlock avoidance
algorithm can be expected to increase with the num-
ber of modules to be allocated. The system can be
modelled by the queueing network shown in Figure 3.
After execution in the non-critical modules, a pro-
cessor moves to server 0, the deadlock avoidance
module, before it can gain access to any of the
critical section modules. It then moves to one of
the critical section modules at random. After ex-
ecution in that module, with probability q it ex-
ecutes another critical section module, and with
probability p=1-q, it returns to the non-critical
modules for another such cycle. Thus the mean num-
ber of critical section modules executed per cycle
is ¢=1/p.

Notice that the above model is only an approxi-
mation in that after a processor has been allocated
its required set of critical section modules, it
executes each of them sequentially, but does not
lock other processors out of its allocated set.
This is because multiple-resource holding behaviour
cannot be modelled by queueing techniques. Thus,
since the above model allows more concurrent usage
of modules than actually possible, it yields an up-
per bound on performance. The service rates of the
critical section modules could be appropriately re-
duced to approximately compensate for this increased

concurrency.

In the model of multiple critical sections used
by McCredie [13] each processor executes all the
critical sections in a static sequence. Our model
is more powerful in that each processor may execute
only a subset of the critical sections and the se-
quence may vary.

5.2.3 Analysis of the Models

Since we are primarily interested in the impact
of the critical section modules oh system perform-
ance, we can apply Norton's theorem for queueing
networks [6] to the two queueing models developed
above. This is done by effectively "shorting" out
the non-critical modules and studying the through-
put of the resultant networks. Specific systems
with specific configurations of non-critical modules
can then be studied by replacing the critical sec-
tion modules by servers equivalent to the above
networks.

The single server model of the global lock sys-
tem can be solved using standard queueing techniques
[12]. The multiple lock model can be solved using
the mean-value analysis technique developed by
Reiser [15]. This technique avoids the computation
of the normalization constant and the resultant loss
of numerical accuracy found in algorithms such as
in Buzen [5].

5.3 Discussion of Results

Using the models and analysis techniques de-
scribed above, the throughput of the multiple lock
scheme is compared to that of the single Tock scheme
with the following choice for the service function
of the deadlock avoidance module: A{m)=r/{m-1)%,
where o is a variable parameter in the analysis.

A is a measure of the service rate of the deadlock
avoidance module independent of the algorithmic
complexity, and is expressed relative to p=1. It
may thus measure the efficiency of the module im-
plementation, higher values indicating higher ef-
ficiency and vice versa.

Figure 4 is a plot of the throughput of themul-
tiple lock scheme relative to that of the single
lock scheme as a function of m for various values
of X and o, and a 10-processor system. If theover-
head is high (A=1), the multiple lock scheme does
worse regardliess of the value of a. If 0=2, for
A=10 or 20, the multiple lock scheme does better by
a factor of 2 to 2.5. The region of substantial
performance improvement is rather narrow - m=2 to 4.
This may be the case for a complex algorithm such
as the banker's algorithm [8]. For a linear dead-
Tock avoidance algorithm (o=1), the multipie lock
scheme does better.by a factor of 2.5 to 3, and the
decomposition choice is larger, -~ m=2 to 10. This
would be the case if a simple algorithm, such as
using a hierarchy of locks, is used.

Figure 5 is a plot of the same throughput in-
crease for various values of n and a. It can be
seen that the region of optimum decomposition is
quite insensitive to the number of processors and
is much more dependent on «. The actual perform-
ance itself is sensitive to n only in the region of
optimum decomposition. It should be noted that in
a real system, the performance may be more sensitive
to the non-critical modules than the critical sec-
tions. Thus, analysing the model for a real system
will involve taking the cross-section of the above
curves at the design value of m. This will charac-

terize the throughput of the Norton's equivalentof
the set of critical sections as a function of the
number of processors currently executing in them.

The above analysis may be summarized as below:

1. The multiple lock scheme may do at most 2 or
3 times better than the single Tock scheme.

2. For the parameter ranges examined, the opti-
mum decomposition is m=3 to 6.

3. The implementation efficiency of the :deadlock
avoidance module plays a crucial role in de-
termining performance.

6. CONCLUSION

We have introduced a technique for the modelling
of complex software structures for distributed sys-
tems. Application of such modelling and analysis
techniques will yield a better understanding of the
performance characterisitics of the various design
alternatives in the construction of such systems.
We have presented a simple example of the technique,
which has yielded some insight into the problem of
critical section configuration for maximizing
throughput.

A great deal of work needs to be done to estab-
1ish the technique as a viable tool. Analytical
models such as the one in section 5 need to be bet-
ter calibrated and validated. The impact of the
underlying hardware configuration on the perform-
ance of such software systems needs to be under-
stood. The performance issues of software imple-
mentation techniques need to be studied. We hope
that this study will fuel research in these areas.

REFERENCES

1. Arnold, J.S., Casey, D.P., and McKinstry, R.H.
Design of tightly-coupled multiprocessing pro-
gramming. IBM Sys. J. 13, 1 (1974), 60-87.

2. Baskett, F., Chandy, K.M., Muntz, R.R., and
Palacios, F. Open, closed, and mixed networks of
queues with different classes of customers.

J. acM 22, 2 (Apr. 1975), 248-260.

3. Baskin, H.B., Borgerson, B., and Roberts, R.
PRIME - a modular architecture for terminal-
oriented systems. Proc. AFIPS 1972 SJCC, Vol.40,
AFIPS Press, Montvale, N.J., pp. 431-437.

4., Buzen, J.P. Queueing network models of multipro-
gramming. Ph.D. thesis, Division of Engineering
and Applied Sciences, Harvard University, 1971.

5. Buzen, J.P. Computational algorithms for closed
queueing networks with exponential servers.
comm. -acm 16, 9 (Sep. 1973), 527-531.

6. Chandy, K.M., Hefzog, U. and Woo, L. Parametric
analysis of queueing networks. IBM J. of R. and
Dp. 19, 1 (Jan. 1975), 36-42.

7. Feeley, J.M. A computer performance monitor and
Markov analysis for multiprocessor system evalu-
ation. In Statistical Computer Performance Eval-
vation, W. Freiberger, Ed., Academic Press, New
York, 1972.

8. Habermann, N. Introduction to Operating System
pesign. Science Research Associates, Inc., 1976.

9. Heart, F.E., Ornstein, S.M., Crowther, W.R., and
Barker, W.B. A new minicomputer/multiprocessor
for the ARPA network. Proc. AFIPS 1973 NCC, Vol.

10.

11.

12.

14.

15.

16.

17.

18.

20.

21

42, AFIPS Press, Montvale, N.J., pp. 529-537.

Hughes, P.H., and Moe, G. A structural ap-
proach to computer performance analysis. Proc.
AFIPS 1973 NCC, Vol. 42, AFIPS Press, Montvale,
N.J., pp. 109-120.

Jones, A., Chansler Jr., R.J., Durham, I.,
Feiler, P., and Schwans, K. Software manage-
ment of Cm* - a distributed multiprocessor.
Proc. AFIPS 1977 NCC, Vol. 46, AFIPS Press,
Montvale, N.J., pp. 657-663.

Kleinrock, L. Queueing Systems, Vol. 1 and 2.
Wiley-Interscience, 1975.

. McCredie, J. Analytic models as aids inmulti-

processor design. Dept. of Computer Science,
Carnegie-Mellon U., Pittsburgh, Pa., 1972.

Moore, C.G. Network models for large-scale
time-sharing systems. Tech. Rpt. 71-1, Dept.
of Industrial Engineering, University of
Michigan, 1971.

Reiser, M. Mean value analysis of queueing net-
works, a new look at an old problem. Res. Rep.
RC 7228, IBM Thomas J. Watson Res. Ctr.,
Yorktown Heights, N.Y., 1978.

Scherr, A.L. An analysis of time-shared com-
puter systems. MIT Press, 1967.

Scherr, A.L. The design of 0S/VS2 Release 2.
Proc. AFIPS 1973 NCC, Vol. 42, AFIPS Press,
Montvale, N.J., pp. 387-394.

Srodawa, R.J. Positive experiences with a
multiprocessing system. comptg. Surveys 10,
1 (Mar. 1978), pp. 73-82.

. Swan, R.J., Fuller, S.H., and Siewiorek, D.P.

Cm* - a modular multi-microprocessor. Proc.
AFIPS 1977 NCC, Vol. 46, AFIPS Press, Montvale,
N.J., pp. 657-663.

Wulf, W.A. HYDRA: the kernel of a multiproces-
sor operating system. comm. acM 17, 6 {June
1974), pp. 337-345.

. Wulf, W.A., and Bell, C.G. C.mmp - A multi-

miniprocessor. Proc. AFIPS 1972 FJCC, Vol. 41
part II, AFIPS Press, Montvale, N.J., pp. 765-
777.

p/c

-——»Tﬂ

Critical Section

Server

Network of non-critical

modules

Figure 2. Queueing Model of a Single Lock System

T0:
USER:
PFH:
FMS:
TIH:
Js:

N =) s S R Y
TIH J5

Task Dispatcher - chooses next task to use CPU from the READY queue.
A1 user prograis that use the CPU.

Page Fault Handler - invoked when a user task incurs a page fault.
File Management System routines.

Terminal Interrupt Handler.

Job Scheduler - schedules a job for processing by placing it in

the READY queue.

Figure 1. A Software Systcm Model
Critical Section
Servers
=g
A(m) "
_—F .
0
>l
Overhead .
Server m
m
1/m M
u
1-p
P

Network of non-critical

modules

Figure 3. Queueing Model of a Multiple Lock System

T(MULTIPLE) /T(SINGLE)

FIG. 4

MULTIPLE LOCKS VS.! SINGLE LOCK

i T T T T
n =10

processors

10 | 20
NO. OF CRITICAL SECTIONS M

.5 MULTIPLE LOCKS VS SINGLE LOCK
N T T T T T T T T i
A =10
- n = no. of processors 7
3 —
2 i n =20
- n=10
: n=5
1 L
L
O] il Il L { —1 1 ! 1
8 5 10

NO. OF CRITICAL SECTIONS M

