
Proceedings of Sixth ACM Symposium on Operating Systems Principles (November 1977) 109-116.

AUTOMATIC AND GENERAL SOLUTION TO THE ADAPTATION

OF PROGRAMS IN A PAGING ENVIRONMENT

J.Y. BABONNEAU, M.S. ACHARD, G. MORISSET and M.B. MOUNAJJED

Institut de Recherche d'Informatique et d'Automatique, 78, Rocquencourt, France

Abstract

The efficiency of replacement algorithms in

paged virtual-storage systems depends on the loca-

lity of memory references. The restructuring of

the blocks which compose the program may improve

this locality. [HATFIELD and GERALD 71] [MASUDA

SHIOTA NOGUCHI and OHKI 74] [FERRARI 76].

In confining this restructuring to the link-

editing operation, a general and completely auto-

matic solution has been implemented, in the form

of a self-adaptative system, on the SIRIS 8 opera-

ting system. A reduction of 40 to 70% in the page

fault rate has been obtained.

I. Problem Specification

A multiprogranmling environment requires a

well organized allocation of computer resources

among users. This allocation requires, at the

level of main storage management, hardware paging

or segmentation mechanisms. Performances of such

virtual memory systems is strongly influenced by

the locality of the programs running on them. In

order to improve their efficiency, it is neces-

sary to find a solution to enhance this locality.

The awareness of some manufacturers (in

France : Compagnie Internationale pour l'Infor-

matique-Honeywell Bull : CII-HB) and the resear-

ches carried out in this field (Comeau, Hatfield

and Gerald, Ferrari, Masuda, Shiota, Noguchi and

Ohki) prove the importance attached to removing

this problem. As early as 1971Hatfield and Gerald

reported that an improvement in the number of page

exceptions can be obtained of the order of two-to-

one to ten-to-one, improvement much more important

than that is realized by replacement algorithms.

Enhancing locality of heavily-used programs can

considerably improve performances of the systems.

It would appear, however, that no general solution

has yet been implemented on a system for the fol-

lowing reasons :

- the effort needed to obtain information on

program behavior,

- the impractibility of expecting a program-

mer to provide the effort for the adaptation,

- the profusion of programming languages.

A program can always be considered as being

composed of information "blocks". For example :

- procedures in high level languages,

- sections in assembly languages,

- data blocks : for example vectors and

matrices.

To adapt a program requires a restructuring based

on an optimal placement of these blocks in the

virtual space determined by :

- examination of the program structure before

execution,

- dynamic measurements.

Most of the restructurings are based upon measure-

ments obtained after one or several executions.

This research shows, as we have verified, the sta-

bility of program behavior with respect to the

input-data and has enabled them to achieve a re-

duction of 30-40% of the size of the working-set.

While Ferrari is interested mainly in the construc-

tion of a restructuring graph representing the

program behavior, Masuda et al. studied essential-

ly clustering algorithms, which fix a new section-

placement* from dynamic measurements. The solution

A section is the image of a group of contiguous co-

de or data, characterized by its size and protec-

tion requirements.

109

proposed in other papers involves action at the

compiling level.

The method that we have implemented occurs at

link-edit time and is characterized by :

- wide applicability, due to its independance

from the programming language used,

- high degree of automation attained, relea-

sing the programmer from the burden of adaptation,

- efficiency, as demonstrated by the results

of tests carried out on the CII-HB operating sys-

tem.

Such an environment permits the application of

these investigations to a large and varied number

of programs.

II. Adaptation tool : the "RELIEUR".

All translation processors transform a source

program into an object module described in an in-

termediate language : the binary object language.

The necessity for such a language is closely lin-

ked with the fact that any program may be made up

of several modules written in different languages.

The "RELIEUR", whose primary function is link-edi-

ting, assembles the object modules constituting a

program to form the load module of the program to

be executed. It thus occupies a privileged position

in the translation chain, since it has a global

knowledge of all object modules and has the res-

ponsibility for storage allocation of program

blocks in the virtual address space. Moreover, the

object modules are all in the same language, ma-

king the "RELIEUR" independent of the source lan-

guages used.

At this level these blocks are referred to

as sections whose mean size is of the order of

I/3 to I/2 page. They are very different from one

to another : few big sections and many small ones.

The placement decision is essentially that of

deciding where to locate these sections in the

linear virtual address space, with particular

attention to the location of page boundaries. The

section placement is founded upon two kinds of mea-

surements deduced from the program :

- during link-editing, the "RELIEU~' displays

the inter-sectional links and stores these informa-

tions into a static matrix,

- at execution time, the inter-sectional refe-

rences are accumulated in a dynamic matrix.

The static matrix is useful in the study of

the other aspects of program structure : with re-

gards to the constitution of a program library, the

transitive closure of this matrix allows in a sin-

gle access, the retrieval of all library elements

necessary and sufficient to the program. But it is

the dynamic matrix which provides an image of the

program behavior and thus confers to the "RELIEUR"

its fundamental role in the restructuring process.

III. Mechanisms of adaptation to the physical

environment.

A mechanism has been implemented to provide

two new functions for the "RELIEUR" :

- visualization of program behavior,

- adaptation to the physical memory (paginated

or segmented).

The different adaptation stages are represented

with the help of a triangle, referred to as self-

adaptation triangle (figure I). The "RELIEUR" cons-

titutes the triangle's entry-point. Exchange of in-

formation between these three processors is assured

through the load module of the studied program. It

is in this module, created by the "RELIEUR", that

all information relative to the restructuring is

filed, in particular the static matrix during the

first link-editing and the dynamic matrix after

execution.

Let us consider all possible ways of traver-

sing this triangle :

- during the first link-edit the "RELIEUR",

having created the static matrix, could ask the

analysis module for a study of the structure (con-

nection I-3) which will then be taken into account

for the section placement of the program,

- later the program behavior is examined du-

ring one or several executions by the measurement

module (2) which constructs the dynamic matrix.

- once these measurements are available, the

analysis module (3) deduces a new section placement

schema,

- the "RELIEUR" restructures the program by

creating a new load module, making use of this new

schema.

A great deal of flexibility has been introdu-

ced in this design. This process could be repeated

any number of times while surveying the restructu-

red or the initial program with other sets of data.

II0

During a second survey, the dynamic matrix could be

reinitialized to zero or used to store the accumu-

lated references. A second restructuring would then

be possible and the whole process repeated if re-

quired.

SELF-ADAPTATION TRIANGLE OF

] PROGRAMS TO PHYSICAL ENVIRONMENT
1 ,RO~RAM(.) ~
[TO BE ADAPTED |

t I I
PROGRAM
ADAPTED

~APTAT!ON

/ VmAS,J~IXNT
MODULE J - - - - ' MODULE

<<J

No assumption is made about :

- program's nature (scientific, management..)

- problem-oriented language

Figure I .

We provide a number of flexible tools whose

mechanism will be described below :

1) Measurement module

The analysis of program behavior and the

restructuring is made in terms of sections ; there-

fore the intersectional references should be noted

during execution. An attempt to access a page ab-

sent from the main storage memory provokes a trap

exhibiting an address-pair (adl, ad2) :

- ad I is the statement address provoking the

trap,

- ad 2 is the address of the word referenced.

Having a knowledge of the section placements we

can then transform the address-pair (adl, ad2)

into a section-pair (l,J) which will be represented

by a section-to-section matrix, referred to as the

dynamic matrix.

This method of measurements is quite rapid

since it makes use of the machine's interrupt-

system, but it cannot reveal all intersectional

references since only these provoking a trap are

traced. However, in reducing memory space, we ob-

tain more and more references, so one can approxi-

mate the page reference string, i.e. program beha-

vior [Batson 76]. The matrix so obtained tends to-

wards the nearness matrix as defined by Hatfield

and Gerald. Nevertheless, in all our experiments,

it was not necessary to go below a memory space in-

ferior to I/4 of the size of the program. The great

interest of this measurement system is its low cost

and the ease with which it can be used. A program

of one minute (C.P.U.) needs on the average only

30 more seconds for obtaining the dynamic matrix.

The principal difference between our work and that

of Ferrari [Ferrari 74] is that Ferrari is interes-

ted mainly in restructuring algorithms which compu-

te the labels of the restructuring graph from the

dynamic behavior. Our measurement system yields a

better stability in the efficiency of restructuring

than that of Ferrari, owing to the accumulation of

information in the dynamic matrix obtained in dif-

ferent cycles.

Moreover, it is possible to distinguish code

from data to compare the relative influence of each

set on program behavior.

The analysis module then makes use of these

measurements.

2) Analysis module.

This module performs three functions :

a) visualization of matrices and automatic

curve tracing which enable a user to evaluate his

program's behavior.

b) Segmentation based on the static or dy-

namic matrix. The segments form a partition of a

program's sections such that :

- all sections belonging to the same segment

are strongly connected with one another,

- segments are weakly connected with each

other.

A cluster analysis algorithm realizes this parti-

tioning [Diday 71].

c) Segment placement in a physical paged

memory.

Two kinds of placement algorithms have been develo-

ped.

Those of the first kind are simple and very fast

and aim at forming a nucleus while avoiding all

overlaps of sections with page boundaries. First,

111

the sections are classified in a list in decreasing

order of their density :

• (rij + rji)

J
density(i)

size(i)

where r..'s are the elements of the matrix. ij
Then we place in a page the sections in this order

except those which cause an overlap until the page

is filled or the list is completely examined. The

next page is then filled in the same way with a new

list composed of the remaining sections classified

in the same order. And so on, until the list is

empty. This placement algorithm leads to a set of

heavily used pages (the nucleus) and to another set

of less used or unused pages while losing very lit-

tle space at the end of each page. In this article

we present the results obtained with this algorithm.

It shows that simple and fast algorithms can be ef-

ficient for restructuring.

The algorithms of the second type are more

complex algorithms based on a hierarchical classi-

fication and have also been implemented. Such algo-

rithms have been used by Masuda et al. [74]. At

each step the two nearest elements are grouped ac-

cording to a similarity measure, if the size of the

result is inferior to that of a page. This measure

is the ratio of the internal connections (between

the two elements) on the external connections (of

the two elements with all other elements). In the

next step, the two previously grouped elements be-

come a single element. We found, as Hatfield and

Gerald did, that it is better to keep however some

overlaps in an attempt to reduce fragmentation cau-

sed by elements not filling pages. The results ob-

tained by these hierarchical classification algo-

rithms will not be discussed here, but we can ho-

wever state that simple algorithms lead sometimes

to better results than that of sophisticated ones.

IV. Presentation of results.

The principal results presented here have been

obtained under the experimental system ESOPE

[B~tourn~ et al. 1970] and with the CI0 version of

the paging operating systems SIRIS 8 of CII-HB.

I) Comparison of static and dynamic matrices

(figures 2 & 3).

One notes from these figures that :

- the elements of the dynamic matrix (weight

of the connections between sections) are very dif-

ferent from one to another,

- the dynamic matrix is considerably more

sparse than the static matrix.

These differences reveal clearly the impossibility

of program behavior forecasting based on a static

analysis.

The results of several executions of the same pro-

gram have been accumulated in a dynamic matrix wi-

thout causing any noticeable variations to appear.

This indicates the stability of program behavior

with respect to input-data.

2) Relative influence of code and data.

This study has been carried through with

the experimental system ESOPE and has led to the

construction of the table representing the gain of

page exceptions (P.E.) as a function of the percen-

tage of code pages (P.C.P.) and the percentage of

data pages (P.D.P.) allocated in the main memory

(figure 4).

The gain G is defined by : G = (N-N')/N

where N and N' are the number of page exceptions

before and after restructuring, respectively.

It can be seen on this figure that in A, where re-

structuring concerns data, there is ~ 9% gain while

in C, where the restructuring affects the code,

there is a gain of 88%~ ; in the same constraints of

physical space for code and data (close to B) the

number of page exceptions is greater than in A and

C and the gain approximatively of 45%.

These results have awakened the interest of

the CII-HB manufacturer and encouraged us to vali-

date our restructuring through an efficiency veri-

fication on the operating system SIRIS 8-CI0 (pa-

ging version) using a wide range of programs.

3) Efficiency of restructuring.

The results represented in figures 5, 6

describe the adaptation to a paging environment of

the system's text-editor and of a translator i.e.

the "RELIEUR" itself.

The x-axis represents the ratio R/V where R

corresponds to the physical space allocated to the

processor during the execution and V the virtual

space required. The y-axis represents the efficien-

cy E of the paging performance, calculated by the

I12

0 I0 20 30 40 50 60 70 80 0 I0 20 30 40 50 60 70 80
I I I I I I I I I I I I I I ! I

I0

20

30

40

50

60

70

80

I ~ e t

l •I ~ II •

• O O I I

I I I I O ~ • I

I ~ ! g o I *

I

• • M O O • "l~'l • • '~" I I I I ~ • g O

O l • l ~

• ~ I

i |

0 .

IO

~-0

30

4 0 -

5 0 _

6 0 -

7C

8C

I I

i l i O

@ I I I

OO'I I I t~I ,O ~ 8 • •

I

l i

I + *

I I I I I l i

'LI 'tc I I

I

Inter-sectional static matrix

i O < weight S 3

* 3 < weight ~ 10
• weight > 10

Figure 2

Inter-sectional dynamic matrix

l 0 < frequency < 100

* lO0 ~ frequency < 1000
• frequency e 1000

Figure 3

Gain

A
PCP = 100Z

9%
PDP = 25%

PCP = 20%
50%

PDP = 25%

PCP = 20%
,PDP = 100% 88%

Gain =
PE before - PE after

PE before

Figure 4

I13

E

1.2t/after a restructuring
llbased on the /~l----~..~

I ~ dynamic- -EEl i~$S-.~ [before
I.I i-\matrlx / ~i restructuring

0 9 GSS=8%

/ f r trocturing
0.8 ~/x/~---\based on the static matrix

I I I Rill_ v
60 70 E 80 90 I00 %

max

1.3

1.2

I.I

i.O

0.9

0.8

Paging efficiency curves for text-editor
(V=27 pages)

Fisure 5

after
re s truc t ur i n ~

o-f i ~

I Wv
I I I I I I I

40 50 60 E 70 80 90 I00 %
max

Paging efficiency curves for the RELIEUR

(V=67 pages)

Figure 6

~IRIS 8 system.

E is given by :

V × TR= v

E (R)

Rx T R

Where : - R and V are the variables defined above,

- TR= V corresponds to the total execution

time of the program with no paging (R=V),

- T R corresponds to the total execution ti-

me with paging (C.P.U. time + Input/Out-

put waiting time) when the system alloca-

tes R pages to the program (R<V).

When the restructuring is based on the dynamic ma-

trix, figures 5 and 6 show, in particular at points

of maximal efficiency E (zone of optimal use)
max

simultaneously :

- an efficiency improvement (E.I),

- a gain in storage space (G.S.S.).

We observe, as Ferrari did, that restructuring ba-

sed on the static matrix leads to a deterioration

when using the same algorithm that was used with

the dynamic matrix.

We detail on figure 7 the different gains obtained

after restructuring the "RELIEUR" in function of

the ratio R/V.

GT : Gain of total number of page exceptions.

GO : Gain of number of pages modified and written

upon disk (PAGE-OUT).

GI : Gain of number of page exceptions causing a

page to be effectively loaded (PAGE-IN). For

the SIRIS 8 system the cost of "page-in"

transfers is greater than that of "page-out".

At the point E as previously defined and
max

corresponding to that of figure 6, we observe

that the gain is maximum for the "page-in"

transfers.

In collaboration with CII-HB, the measurements

were obtained under the following conditions :

- only 60% of the editor and 80% of the "RE-

LIEUR" were in the static zone, so were controlled,

while the rest was in the dynamic zone : under this

system a program always contains a static part in

which the placement of sections is determined at

link-editing and can be restructured.

Sometimes a part of memory space can be allocated

dynamically during execution (for instance Input-

Output buffers) and cannot be restructured, and

114

this space comprises the dynamic zone . We hope to

attain still greater improvement for entirely con-

trollable programs.

- only nucleus-constituting algorithms were

used. New measurements are being carried out using

segmentation algorithms.

The results obtained show that :

- the phenomenon of "thrashing" is delayed in

the zone where the ratio R/V is small. The impro-

vement in the total number of page exceptions is

70% to 80%. In the optimal paging conditions of a

program's use, the average improvement is :

- for the total number of page exceptions

25 to 45%,

- for page-out transfers : 30 to 40%,

- for page-in transfers : 60 to 70%,

- the cost of restructuring which corresponds

to two circuits in the triangle followed by the

final link editing is equivalent, for the results

we have presented, to the cost of five link-editing.

This is negligible in comparison with the gains rea-

lized and the frequency of use of the processors.

~G

60

50

40

30

2C

I0

70

P~EL!EUR (V = 67 pages)

Emax ~/V

I I I I ~ I ~.:

_~0 38 46 54 62 70 78 %

CONCLUSION

The problem of program adaptation to a paging

environment arises from the superposition of a lo-

gical structure onto a physical medium. The latter

is submitted to constraints of memory management

which have no connection with the logical structu-

re of programs. The importance of restructuring

research as a solution for program adaptation comes

from the great influence of such adaptations on

system efficiency.

The solution we have proposed is characterized

by its complete transparency at the user level. It

is automatic and independent of the program and the

source language used. Moreover we point out :

- its applicability to a non-limited number

of programs in a computing system,

- its negligible cost when judged in terms of

the processors' frequency of use.

Its efficiency confirms the validity of this solu-

tion.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge many stimu-

lating discussions and advice with Professor J.

ARSAC of University of Paris VI. Also appreciated

were the encouragement of Professor E. GELENBE of

the University of Paris-Nord and the assistance of

the following members of the CII-HB System Center :

J.L. ROULE, P. COUPAYE and M. HAMARD.

The authors are grateful to Professor D.

FERRARI for the interest he shared in this re-

search.

They also wish to express their gratitude to

Professor A. BATSON for his extremely penetrating

comments and constructive suggestions, which have

greatly contributed to the improvement of the

paper.

Different gains for the P~ELIEUR

Figure 7

I15

REFERENCES

I. M.S. ACHARD. "Segmentation automatique des pro-

grammes ind~pendamment des langages de program-

marion". Thesis, University of Paris VI. 1975.

2. A. BATSON. "Program behavior at the symbolic

level". Computer november 1976.

3. C. BETOURNE, J. BOULENGER, J. FERRIE, C. KAISER,

J. KOTT) S. KRAKOWIAK, J. MOSSIERE, "Process

management and resource sharing in the multiac-

cess system ESOPE". C.A.C.M. December 1970. (13,

12 pages 727-733).

4. L.W. COMEAU. "A study of the effect of user

program optimization in a paging system" A.C.M.

Symposium on operating systems principles.1967.

5. E. DIDAY. "Une nouvelle m~thode en classifica -

tion automatique et reconnaissance des formes :

la m~thode des nudes dynamiques". Revue de sta-

tistique appliqu~e. Vol XIX n ° 2 1971.

6. D. FERRARI. "A tool for automatic program re-

structuring", conference de i'A.C.M. Atlanta

Georgia. August 1973.

7. D. FERRARI. "Improving program locality by

strategy oriented restructuring". Information

processing 1974. North Holland publishing

company.

8. D.J. HATFIELD. "Experiments with page size,

program access pattern and virtual memory per-

formance". I.B.M. Journal of research and de-

velopment : 16,1 pages 58-66. 1972.

9. D. FERRARI. "Improving locality by critical

working sets". C.A.C.M. 17(11). 1974 pages

614-620.

I0. D. FERRARI. "The improvment of program beha-

vior", Computer. 1976.

II. D.J. HATFIELD and J. GERALD. "Program restruc-

turing for virtual memory". I.B.M. System

Journal I0 n ° 3, pages 168-190. 1971.

12. T. MASUDA, H. SHIOTA, K. NOGUCHI and T. OHKI.

"Optimization by cluster analysis". I.F.I.P. 1974.

13. G. MORISSET. "Adaptation automatique des pro-

grammes au milieu paging". Thesis, University

of Paris VI. 1975.

116

