
A Name Service for
Evolving, Heterogeneous Systems 1

Michael F. Schwartz, 2 John Zahorjan, and David Notldn

Department of Computer Science
University of Washington
Seattle, Washington 98195

Abstract

This paper describes a name service designed for long term use in a continually evolving heterogeneous system. There are two
confiicting goats for a name service in this environment: to ease the task of dealing with the distribution and heterogeneity by providing a
uniform service throughout the system that masks these characteristics as much as possible, and to keep software development and
maintenance costs manageable when faced with the frequent introduction of new system types. A single name service implemented across all
system types, which would be an appropriate choice given the first goal alone, is infeasible when the second goal is considered.

In attempting to satisfy these conflicting goals we have designed a software structure that allows the efficient integration of existing
heterogeneous implementations of the same generic service. In the specific case of the name service, this allows us to build a global service
that makes use of, rather than replaces, the name services of the component subsystems. This approach has a number of desirable properties.
For one, the system is scalable, since the processing load is naturally distributed among the subsystems. Second, applications existing in
newly introduced subsystems can continue to mn unaltered, while the modifications they make in their local name services are automatically
reflected in the global name service. This is an important attribute in environments where it is impossible or too expensive to modify all
existing application and system code. Finally, our design allows wide latitude in the degree to which an individual subsystem type is
incorporated; an amount of integration effort appropriate to the benefits received can be chosen individually for each subsystem type as it is
introduced.

A prototype implementation has been built as part of the Heterogeneous Computer Systems project at the University of Washington.
This service supports RPC binding and other applications in our heterogeneous environment. Measurements of the performance of this
prototype show that it is close to that of the underlying name services, due largely to the use of specialized caching techniques.

1. I n t r o d u c t i o n

A name service provides the convenience of a mntime map-
ping from string names to data. The most important current use of
such facilities is to determine address information, for example,
mapping a host name to an IP address. By performing this address
lookup at mntime, the name service provides a level of indirection
that is crucial to the efficient management of distributed systems.
Without it, changes to the network or system topology would
require the recompilation of applications with hardwired addresses,
and so would severely limit the size of distributed systems that
could be realized in practice.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 A C M 0 8 9 7 9 1 - 2 4 2 - X / 8 7 / 0 0 1 1 / 0 0 5 2 $ 1 . 5 0

These name to data mappings are usually encapsulated in a
logically centralized service (e.g., BIND [Terry et al. 1984] or
Clearinghouse [Oppen & Dalai 1983]) designed especially for this
purpose, because managing the data involves specific tradeoffs
between efficiency and sophistication of support, tradeoffs that typ-
ically make inappropriate other potential mechanisms for the name
to data mapping, such as distributed databases and shared file sys-
tems. The design described here is presented in terms of a logi-
cally centralized implementation. However, it is equally valid for
other approaches to naming, such as broadcast-based location pro-
tocols [Alines et al. 1985,Cheriton & Mann 1984,Welch &
Ousterhout 1986].

The goal of the service discussed in this paper is to provide a
name to data mapping facility for an evolving heterogeneous sys-
tem. We want our design to be scalable in the heterogeneous
dimension, meaning that it may be applied to environments con-
sisting of a large and increasing number of different system types

I This material is based upon work supported in part by
the National Science Foundation under Grants DCR-
8352098, DCR-8420945, and CCR-8611390, by an IBM
Faculty Development Award, by a GTE fellowship, by the
Xerox Corporation University Grants Program, and by the
Digital Equipment Corporation External Research Program.

2 Author's current address: Department of Computer Sci-
ence, University of Colorado, Boulder, Colorado 80309.

52

but only a few instances of many of these types. We are willing to

incur the mntime penalty of an extra level of indirection to achieve

this flexibility. In contrast to other efforts to provide a more stand-
ardized service on more controlled heterogeneous bases (such as

Project Athena [Balkovich, Lerman & Parmelee 1985] and the ITC

file system [Satyanareyanan et al. 1985]), the critical consideration

in our environment is the cost of integrating new system types into

our network service. Thus, solutions based on p o ~ n g services to

each system type are infeasible, and we must instead accommodate

the heterogeneous services that may already exist on each system

type.

In developing our name service for this environment we have

utilized a software atmcture that combines much of the benefit of

the standardization approach with the desired ease of new system

integration. This software structure appears to be applicable to

other application domains, such as filing and mailing. As applied

to naming, this software structure has three key characteristics.

• First, our network-wide name service makes use of, rather than

replaces, name services and associated data already existing in

the individual system components. We call this the direct

access approach, as distinguished from reresiatration-bused

approaches that require transfer of responsibility from existing

services to a new network-wide service. The major advantage

of the direct access approach is that it allows the underlying

subsystems to evolve independently of the global name ser-

vice, while still reflecting this evolutionary change to the

clients of the global name service. Clients that use their own

name service, rather than the global name service, are not

modified to accommodate this arrangement, but they do not
derive any of the benefits of this arrangement either.

• Second, we recognize that a key difficulty of heterogeneous

naming is the variety of data semantics and access protocols

involved in using the information. Based on this observation,

our system separates the management of the global name

space from the understanding of the semantics and access pro-

tocols of the data in a fashion that makes adding new naming

systems and applications as easy as possible.

• Third, because our approach introduces a level of indirection,

we use a specialized caching scheme based on locality of
reference to query class and name system type to provide

acceptable performance.

We have constructed a prototype name service having these

characteristics. The prototype is in use as part of the Heterogene-

ous Computer Systems (HCS) project at the University of Wash-
ington [Black et al. 1985,Black et al. 1987]. The goal of this pro-

ject is to provide for loose integration through network services,

meaning that a set of core services (filing, mail, and remote compu-

tation) are provided network-wide, but no attempt is made to mask

the heterogeneous aspects of the various systems since this hetero-

geneity was presumably the motivation for the systems' acquisi-
tion. These network services are easily extended to new system

types because they are built upon two underlying facilities expli-

citly designed to accommodate heterogeneity. The first, hetero-

geneous RPC [Bershad et aL 1987], is based on emulation: the

heterogeneous RPC (HRPC) mechanism looks to each existing
RPC mechanism exactly the same as a homogeneous peer. The
other facility, our name service, is based on the notion of direct

access, allowing network-wide manipulation of the existing hetero-

geneous name services through a homogeneous interface.

In the remainder of this paper we explain the software struc-

ture used to implement our name service and motivate the choices

made in its design. Section 2 describes the model of our name ser-

vice. Section 3 describes experience with a prototype implementa-

tion. Section 4 compares this work with several related efforts.

Section 5 offers some conclusions.

2. The HNS Model

In this section we describe in detail our design of the HCS

Name Service (HNS). In doing so, we indicate not only what deci-
sions we have made, but also why we made those particular

choices.

Direct Access Naming

The single characteristic that most distinguishes the HNS from

other name services is that of direct access, the direct use of exist-

ing name services in managing the data available through our glo-

bal service. We cannot afford to replace the existing name services

of the subsystems because that would requiv, either modifying

existing applications to use the new service or else the periodic

reregistration of data from the local name services to the global

standard. We rejected the former because of the sheer magnitude

of the programming work involved when there are many different

system types in the environment. The latter is inappropriate

because of problems with name conflicts and consistency of infor-

mation on the global and local levels, because the reregistration
cost is one that continues without end, because the degree of sys-

tem heterogeneity would be limited by the rate at which the global

name service could absorb the reregistrations, and because to be at

all scalable the considerable cede of this global service would have

to be implemented on many different system types to allow for dis-

tribution.

The HNS Name Space

The HNS name syntax is designed to avoid naming conflicts

and to support mapping from HNS to local name service names, as
is required for our direct access scheme. HNS names contain two

parts, a context and an individual name. Roughly, the context

identifies the local name service in which the data can be found

while the individual name determines the name of the object in that

local service. The individual name can be any string, but in the
simplest case is identical to the name of the entity in its local name
service. This correspondence between the local name and indivi-

dual name makes it relatively easy for a user to communicate the

global name of a local resource to a user on a remote system

because most of the global name is already familiar. On the other

hand, this scheme creates a global name space that does not con-

form to any simple syntax rules. This problem can be overcome by

enforcing more complex mappings that provide a uniform, global

syntax. However, we do not feel that this is necessary since most

often the user of the name of a remote resource has been given that

name by someone else (who is probably local to that resource), and

so the remote user need do no more than repeat the string to make

use of it.

53

The context portion of an HNS name maps onto all or part of

the name space managed by a single local name service. This has

two beneficial effects. First, since all names within a context must
be the responsibility of a single local name service, finding the data

associated with an HNS name is simplified. The alternative of

locating the appropriate local name server, either through some

multicast technique [Cheriton & Mann 1984] or some form of

search path, is either too inefficient in our environment, has the

flavor of relative name spaces (something we wished to avoid), or
requires excessive development cost to attain the needed level of

homogeneity. Second, by imposing the additional restriction that

the mapping from local names to the individual name portion of

HNS names be a function (i.e., produce a unique result), we

guarantee that no naming conflicts can ever be created in the I-INS

name space when combining previously separate systems. Any

scheme allowing a context to contain names from more than one

local name service either must allow the possibility of name

conflicts or must require that the local name services coordinate

during name creation. Our approach avoids both these unaccept-

able effects, instead allowing existing applications to use native

name service operations to create new names in the I-INS name
space, thus providing information to new applications written to

use the HNS.

Managing Heterogeneous Naming Semantics

To make the global name space useful, we want to relieve

individual applications from the chore of handling heterogeneity.

A client would like to present a name and obtain data without

regard to the specific underlying name service that happens to be

used in the name resolution. Clearly, there must be some code,

specific to the particular name service and query class (i.e., the

type of data to be returned), that can locate the data and convert

data formats. The major decision to be made is where this system
and application specific knowledge should reside. For instance,

code to handle the heterogeneity could be part of the client or part

of the HNS itself. Our general goals preclude the former, since
that approach requires the modification of large numbers of exist-

ing applications each time a new system type is introduced. The

potential for sharing, then, suggests putting this function in the

HNS rather than in individual applications. The problem with this

placement is that the continual introduction of new query classes

would require repeatedly changing the HNS, an unacceptably

expensive and unwieldy evolutionary process.

For these reasons, instead of placing the system and query

class specific code in the applications or in the HNS, we handle

naming semantics in remote procedures called Namin 8 Semantics
Managers (NSMs). Each NSM understands the semantics of nam-

ing for a particular query class and a particular name service. In

this way, adding a new system type simply requires building

NSMs for those queries to be supported and registering their

existence with the HNS. All NSMs for a particular query class

have identical client interfaces. Thus, when an application makes a

query, it can call whichever NSM handles that query class for the

specified context without having to know which name service will

ultimately provide the response. The HNS provides the glue for

this confederation by keeping track of the existence and location of

all name services, contexts, and NSMs. A simplified view is that

the HNS directly supports only the context/query class --~ NSM
mapping, while the NSMs do all the "real" work, work that cannot

be avoided no matter what software structure is employed. The

purpose of the I-INS is to improve the manageability of the NSM

code. The NSMs are neither I-INS nor application code per se.
Rather, they are code managed by the HNS and shared by the

applications.

Client Perspective

In its simplest form, a client calls the HNS using heterogene-

ous RPC (HRPC), passing the HNS name and query class. Based

on the context poRion of the name and the query class, the HNS

returns an HRPC Binding (a handle to a remote procedure) that

allows the client to call the appropriate NSM. The client then calls

the NSM using the query specific interface, which includes the ori-

ginal HNS name. The NSM translates the individual name portion

of that name to the corresponding local name, interrogates the local

name service using this name, and returns the results in a format

that is standard for that query class. This scenario is illustrated in

Figure 2.1.

Clearinghouse/ HNS BIND/
Ouerv Class Ouerv Class

Client Client Client

Figure2.1: HNS Query Processing

In this figure, the requested name exists in the Clearinghouse,

so the client is given a handle to call that NSM. A subsequent call

might be for a name in BIND, in which case the client would call

the BIND NSM. Since the interfaces provided by both NSMs are

identical, the client does not need to be aware of which name ser-

vice it is calling.

An alternate approach would be to have the HNS call the NSM

on behalf of the client. Since each query class requires its own

interface, this would require that the I-INS be recompiled each time
a query class is added. We could define generic interfaces for the

clients to call the I-INS and then the HNS to call the NSMs, but

doing so would require encoding transmitted data into self-

describing packages (as in Eden [Almes et al. 1985], for instance),

an approach not supported by our HRPC model.

Scalability

In terms of accommodating the sheer size of the system, say as

measured by the total number of names it contains, our design for
file FINS shares with most other name service designs the property

of being distributable. The basic distribution of the HNS occurs

naturally since each new system type introducing a new set of

names also includes a name service managing those names that we

can take advantage of directly. In terms of accommodating a large

number of heterogeneous system types, users of the HNS are con-
fronted with the unavoidable work of providing NSMs for each

54

query class and system type combination to be supported. The

users of the system can decide independently which particular

NSMs are worth the effort to construct, and so can match imple-
mentation effort to benefit.

S u m m a r y

The HNS differs significantly from other name services

because of the requirements of our heterogeneous environment.

The HNS must use data in existing name services because

reregistering names into the HNS is unmanageable in our continu-

ally evolving environment. However, to insulate clients from the

complexities of distribution and heterogeneity, the HNS provides a

single name space. This is difficult since the underlying name ser-

vices have differing syntax and semantics. We encapsulate these

differences by providing, for each query class and native name ser-

vice, an NSM that manages the syntactic and semantic details.

To perform an I-INS query, the client presents an HNS name

and query class. From the query class and the context portion of

the name, the HNS selects the NSM that can access the appropriate
name service for the client. The client then calls the designated

NSM, which queries the underlying name service and returns a

standardized form of the result. Since each NSM for a given query

class has an identical interface, the client can call the NSM that the

HNS designates without regard to the name service that NSM uses.

3 . E x p e r i e n c e

Envi ronment

The current HCS environment consists of a heterogeneous col-

lection of hardware (Suns, VAXen, Xerox D-machines, IBM RTS,
and Tektronix 4400-series machines), communication mechanisms

(Sun RPC, Courier RPC, TCP/IP message passing, and UDP/IP

message passing), and operating systems (XDE, Umx, 3 and

Uniflex). We have built a prototype heterogeneous RPC facility
[Bershad et al. 1987] on top of a subset of these systems, capable

of communicating with each of the other systems by emulating Sun

RPC, Courier RPC, and TCP or UDP message-based communica-

tion using a single RPC-style interface. We have also built a proto-

type I-INS and a set of key network services - filing, mail, and

remote computation - based upon HRPC and HNS.

The prototype HNS currently provides integrated naming with

two widely available underlying name services: BIND [Terry et al.

1984], which operates in conjunction with the UNIX component of

our prototype environment, and the Clearinghouse [Oppen & Dalai

1983], which operates in conjunction with the Xerox component.

We plan to introduce additional name services as they become
available to us.

Implementat ion

Although all data associated with individually nameable enti-
ties is kept in the underlying name services, the HNS maintains

additional recta-naming information needed for managing the glo-

bal name space. This information consists of the names and bind-

3 UNIX is a trademark of AT&T Bell Laboratories.

ing information for each name service and each NSM, the names of

all contexts, and the mappings from contexts to name services.

While the HNS is logically a single, centralized facility, its

implementation must be distributed and replicated for the usual

reasons of performance, availability, and scalability. Because the

implementation problems associated with these properties are for
the most part successfully addressed in previous name services, we

chose to ease our implementation effort by making use of an exist-

ing name service to store the meta-naming information. In particu-

lar, we use a version of BIND, modified to support both dynamic

updates and also data of unspecified type [Schwartz 1987]. The

I-INS itself is a collection of library routines that access this version
of BIND. 4 We have also built a collection of NSMs for our initial

set of applications.

The primary HNS function is the call to locate an NSM,

FindNS~. This call maps a context and query class to the informa-

tion, called an HRPC Binding, needed for making an HRPC call to

the NSM. F±ndNSM is implemented as the following sequence of
mappings:

1. Context ~ Name Service Name

2. Name Service Name, Query Class -~ NSM Name

3. NSM Name -~ HRPC Binding for the NSM

Mappings 1 and 2 are each BIND lookups. The NSM binding

information stored in the HNS contains, among other information,

the host name on which the NSM resides; hence, mapping 3

involves translating the host name to a network address. This in

itself is an HNS naming operation requiring a call to FindssM.

Thus, this mapping actually requires two more mappings (i.e.,

mappings 1 and 2, to find the NSM that can perform the host
address lookup). FuCther recursion is avoided by linking instances

of the NSMs that perform this mapping directly with the HNS, so
that their network addresses need not be found.

While we recognize that the lookups made by FindNSM could
be collapsed into fewer calls (e.g., by mapping the Context and

Query Class directly to the Binding for the NSM), we chose to

keep these mappings separate, because this allows more flexibility

and requires less redundant information. For example, if more than

one context is stored on the same name service, the binding infor-

mation for that name service need only be stored once. Further, we
realized that caching would greatly reduce the cost of these map-

pings, and so decided to adopt them for the flexibility they afford.

(The effects of caching on performance are described below.)

An HNS Application: HRPC Binding

HRPC binding, the process of connecting clients with servers,

was the first application of the HNS, because it presented the most

immediate need for the HCS project as a whole. It is also a good

test for the HNS because of the difficulties of binding in a hetero-

geneous environment. In particular, the information needed for

binding is stored in different places depending on system type.

Worse yet, each system type typically has its own binding proto-

4 Note that the version of BIND used to implement the
I-INS is separate from the conventional version of BIND. The
former serves only as a simple repository for the I-INS meta-
information, while the latter holds actual naming data.

55

col. Thus, binding presents a practical "stress test" for our design.

The HRPC design involves the careful specification of clean

interfaces between the five principal components of an RPC facil-

ity: the stubs, which are interposed between the client (also the

server) and the ran-time support; the binding protocol, which

allows a client to locate a particular server;, the data representation,
which determines how data values are marshalled; the transport
protocol, which determines how data is carried from one host to

another; and the control protocol, used intemaUy by the RPC facil-

ity to track the state of a call. An RPC client (or server) and its

associated stub can view each of the remaining four components as

a "black box". These black boxes can be "mixed and matched" to
emulate different communication protocols at call-time. The set of

protocols to be used is determined dynamically at bind-time - long

after the client (or server) has been written, the stub has been gen-

erated, and the two have been linked.

In homogeneous systems, the choice of RPC components is

fixed at implementation time; at run-time, the code simply begins

executing as a monolithic unit once the binding process is com-

plete. With HRPC, these components have been separated from

each other and made dynamically selectable, and hence binding

must perform the additional processing needed for component
selection. Also, insular clients/servers have established binding

protocols that they execute, and they expect their peers to execute

the corresponding parts of the protocol. While the binding process

is similar for most RPC systems, the actual mechanisms employed

for naming, server activation, and port determination vary consid-

erably. Hence, HR_PC binding must proceed in a manner that can

emulate the binding protocols for each of the systems being accom-

modated.

Using the HNS, the client's view of binding is fairly straight-
forward. The client presents a name and is returned a Binding to

an NSM that understands exactly how to do binding on the system
type from which the name came. The client then calls this NSM,

which returns an HRPC Binding to the server of interest. This

Binding is system-independent from the point of view of the client,

even though the means by which this information is gathered by

the NSM varies widely from system to system. A major advantage

of this mechanism is that adding a system with a different RPC

binding protocol only requires implementing a new binding NSM

and registering its presence with the HNS.

As an example of the use of the HNS, suppose a client of the

HRPC system issues the import call:

Import (ServiceName : "DesiredService", { * in * }

HostName : "BIND, fiJ i. cs. washington, edu", { * in *]

ResultBinding : DesiredBinding) { * out * }

Import nOW acts as a client of the HNS to obtain a binding to

"DesiredService" to retu~ to its caller. Import USeS the HostName

specified by the client to construct the HNS name context

("nRPCBinding-BIND") needed to look up the binding information in

the t-INS. A call with query class "aRPCBinding" is then made to

the HNS to obtain a Binding to the appropriate NSM:

FindNSM(BindingToHNS: HNSBinding,

QueryClass:"BRPCBinding",

HNSName:

{Context-"HRPCBinding-BIND",

Name - "fiJi. ca. washington, edu" } , { * in * }

NSMBinding : TheNSMBinding) { * out * }

The Import oode then uses the NSMBinding to call the NSM, pass-

ing R the HNSName:

BindingNSM(BindingToNSM: TheNSMBinding,

ServiceName:ServiceName,

{*used by HRPC*}

{*in*}

{*used by HRPC*}

{*in, from

Import call*}

{*in *}

{*out *}

HNSName:

{Context-"HRPCBinding-BIND",

Name-"fiJl.cs.washington.edu"},

ClientBinding: ResultBinding)

The NSM looks up the local name C ' f i j i .cs.washington.edu") in

the name service, and then determines the needed port number for

the ServiceName, using whatever binding protocol is appropriate

for that particular system. The completed Binding to the service is

then returned to the Import code, which returns the information to

the client.

The binding NSMs for both the BIND and Clearinghouse sub-
systems are about 230 lines each. About three weeks were spent

adding and modifying the code required to implement HNS-based

binding. The majority of this time consisted of implementing and

measuring alternative approaches.

Performance

Every HNS naming request requires two steps in addition to
the effort expended by the underlying name service: determining

which NSM should handle the query, and calling that NSM. These
two steps are the basic overhead of I-INS naming.

Our initial implementation of ZindNSM required elapsed times

of 460 msec. per call. This poor performance, which was expected,

was due to the cost of the many BIND lcokups needed to access
the meta-naming information. By installing a cache, we were able

to reduce this cost to 88 msec. The remote call to the NSM takes

22-38 msec., depending on the RPC system used. The remote call

is avoided when the needed information is cached.

In total, the basic overhead of I-INS naming is between 88 and

126 msec. By way of comparison, a BIND name to address lookup

takes 27 msee., and a Clearinghouse name to address lookup takes

156 msee. s

The above figures indicate the basic overhead inherent in

HNS-based naming. As an example of the costs of t-INS-based

naming in an application, we found that HRPC binding, including

overhead, requires between 104 and 547 msec., depending on

where the HNS and NSMs are located and how caching is done
(described below). To give these numbers some significance, it is

worthwhile to make comparisons with alternative binding mechan-

s Clearinghouse accesses are slow because each access is
authenticated, and virtually all data is retrieved from disk
[Oppen & Dalal 1983]. In contrast, BIND does no authentica-
tion and keeps all its information in primary memory.

56

isms. The interim HRPC binding mechanism, used prior to the

construction of the I-INS prototype, was based on information rere-

gistered in replicated local files. Binding using this scheme took
200 msec. We should also compare our I-INS-based binding tim-

ings with a scheme in which a name service holds all of the (rere-

gistered) data. We implemented such a scheme on top of the

Clearinghouse, and found that binding took 166 msec.

While it may be possible to improve the performance of such a

scheme (e.g., by using BIND instead of the Clearinghouse to store
the data), this comparison shows that the tuned HNS performance

is reasonably close to that of homogeneous name services.

Caching And Colocation

There are two ways to improve performance of the I-INS: one

can use caching to reduce the number of calls made by the I-INS
and NSMs to access their data, or one can link the I-INS and NSMs

with the client so that local procedure calls can be used between

them. Because the I-INS accesses its data from other servers

(BIND for the meta-naming information, and the underlying name

services for application data), even the HNS can be linked locally.

Similarly, the NSMs can be linked with any process.

The freedom to link the I-INS and NSMs with any process,

rather than embodying them in a pa~cular set of servers, provides

several possible designs for any particular HNS client. We call the

choice of where the HNS and NSMs are linked for each client the

colocation arrangement. This flexibility allows a tradeoffbetween

performance and ease of management. On one hand, locally linked

NSMs are harder to manage than remote NSMs, since adding a

new one or modifying an existing one requires relinking all

affected clients. 6 On the other hand, where the NSMs and t-INS are

linked affects performance, since local calls are cheaper than
remote ones.

The performance tradeoffs involved in the colocation arrange-

ment are actually more complicated than just described because of
caching. The reduction in call overhead realized by linking pro-

cedures locally is at odds with the fact that caching is more likely

to be effective in long-lived remote servers than in locally linked

copies. A natural question to ask is how big a cache hit improve-

ment in the remote location is required to compensate for the

increased calling cost. Letting C (') mean "cost of ' and using p to

represent the cache hit fraction with locally linked copies and q the

increase in the cache hit fraction obtained from remote location, we
have

C (remote location) = C (remote call) + (p +q)C (cache hit)

+ (1-p-q)C(cache miss)

C (local location) ffi C (local call) + (p)C (cache hit)

+ (1-p)C(cache miss)

Since C(local call) is effectively zero in the time scale of the
other terms, remote location is preferable whenever

C (remote call) (1)
q > C (cache miss) - C (cache hit)

We will make use of this relationship shortly, after presenting

measurements providing the cost measures needed to apply it.

As a first attempt to characterize these tradeoffs, we ran a

series of experiments to determine how the various colocation

arrangements and caching strategies affect performance. Although

these experiments focus on HRPC binding, the results should apply
to other applications as well. Our timings were made between two

MicroVAX-II's at light load, with the BIND server used by the

I-INS and the public BIND server each residing on lightly loaded

MicroVAX-II's. All machines were joined by an Ethemet.

Table 3.1 shows the measured performance for the case of

HRPC import of Sun RPC servers. The two dimensions of the

table are colocation arrangement and the results of cache lookups.

(In the experiment for row 2 a single process remote from the

client acted as the client's agent, making local calls to the HNS and

then to the NSM. This structure provides a mixture of colocation

efficiency and ease of NSM update, as the code to be modified with

changes to the NSM is well contained.)

Column A illustrates the effect of the colocation arrangement

for the case of no cache hits. (Since the overhead required to deter-

mine that a reference is a miss is about 0.1% of the total times in

column A, these times can also be interpreted as those required

when no caching is implemented.) Each row represents a different

choice of colocation. The configuration of row 1 requires no
remote calls among the client, HNS, and NSM, those of rows 2-4

each require one call, and that row 5 requires two calls. In all cases

the client resided on separate hosts from the HNS/NSMs whenever

they were not directly linked together. (Locating them on the same

host reduces the timings by about 20 msec. in applicable

configurations.) As can be seen in this column, the colocation of

the client, I-INS, and NSMs can have only a modest influence on

the total cost of an I-INS query. The reason for this is the large
fixed cost associated with the many remote accesses the I-INS must

perform to determine a handle for an NSM. Thus, reducing the

number of remote calls by one or two has only a marginal effect.
(Although colocation with the BIND service used by the HNS can

have a fairly large effect, this is not a generally applicable approach

and so is not considered further.)

6 In systems that support shared libraries (e.g., Multics
[Daley & Dennis 1967]) this is less of an issue because multi-
ple clients can be extended by updating a single shared li-
brary. However, to our knowledge no systems support shared
libraries across machine boundaries, and hence updating lo-
cally linked clients would still require updates to each
machine in turn. In contrast, since NSMs are called using
HRPC, registering an NSM with the HNS extends the func-
tionality of all machines at once.

57

Colocation A. Cache Miss B. I-INS Cache Hit , C. I-INS and NSM
Arrangement Cache Hit

i J J
1. [Client, HNS, NSMs] 460 180 104

i i i

2. [Client] [I-INS, NSMs] 517 235 137
I I I

3. [HNS] [Client, NSMs] 515 232 140
i i i

4. [NSMs] [Client, HNS] 509 225 147
i | i

5. [Client] [I-INS] [NSMs] 547 261 i 181

Table 3.1: Performance of H R P C Binding for Var ious Colocat ion Arrangements (msec.)
[] indicates colocation.

While it is possible to eliminate some of the indirection used
by the I-INS, and so reduce the number of remote calls, this would
also decrease the resilence of the I-INS to reconfigurations of the
distributed system. Instead, we improve the speed of each lookup
through caching. Both the HNS and the NSMs were modified to
cache the results of remote lookups. Column B of Table 3.1 shows

the performance observed when the HNS has a cache hit but the
NSM has a cache miss, while column C shows the performance
when both phases have hits. 7 It is clear from the table that caching
results in a significant performance improvement over the base
case. Further, most of this improvement is attributable to the I-INS.
This is not too surprising since the basic HNS scheme requires six
data mappings, each of which involves a remote call in the case of
a cache miss, while the NSM needs only a single remote call.

Based on the observation that the HNS cache is the most
important determinant of performance, we experimented with the
idea of preloading that cache. (We also considered preloading the
NSM caches, but that would be less effective). The motivation for
this is simple. In those cases where the HNS used by the client is a
local copy, the cost of the many remote lookups required on the
initial reference to various pieces of meta-naming information
might exceed the cost of preloading the relatively small amount of
information (currently about 2KB) required to guarantee HNS
cache hits. The actual preload cost was measured to be about 390
msee. s Since the cost of preloading plus a cache hit falls between
one and two cache miss times, preloading seems to be effective in
situations where two or more calls to the HNS for different
context/query classes will be made.

The major lesson to draw from the measurements of Table 3.1
is that the potential benefit of caching far exceeds that obtainable
solely by colocation. The reason for this is clear: at most two

remote calls can be eliminated by colocation while each cache hit
eliminates many.

7 Cached data is tagged with a time-to-live field for cache
invalidation. While this simplistic mechanism can cause
cache consistency problems, it would not make sense to use a
more sophisticated scheme because the source of our cached
data (BIND) also uses this mechanism for cache invalidation.
Given our assumption that data changes slowly over time, we
feel that this mechanism will suffice.

s The BIND zone transfer mechanism, used by BIND
secondary servers to request data transfers from primary
servers, was employed to preload the caches.

Finally, there is still the question of whether colocation of the
HNS or NSMs with the client is worthwhile. Beginning with the
base case of remote HNS and NSMs, consider the effect on perfor-
mance of making the HNS local. Using equation (1), and estimat-
ing C(remote call) as 33 msec., C(cache hit) as 261 msec., and
C (cache miss) as 547 msec., we calculate that the cache hit frac-
tion obtained when the HNS is remote must exceed that when it is
local by an additional 11% for the remote case to provide better
performance. Now consider also making the NSMs local. Apply-
ing equation (1), and estimating C(cache hit) as 147 msec. and
C (cache miss) as 225 msec., an additional 42% cache hit must be
experienced by the remote NSMs for them to be preferable to local
copies. Neither of these increments leads to a clear cut decision
about the most efficient location for the HNS or the NSMs.
Further work on the dynamic cache hit ratios achieved in practice
will be required to make this decision for any particular workload.
It is important to remember, however, that from a software mainte-
nance point of view there is a high price for colocation in terms of
the difficulty of maintaining the software in the face of changes to
the HNS and NSMs.

Although unrelated to the specific purposes of the t-INS, we
have had some interesting experience with the cache we imple-
mented. In the initial version, we kept data in its marshalled form,
and demarshalled it upon every access, expecting that marshalling
was a minor expense. To our surprise, the cost of marshalling was
very high: the time taken to perform BIND ioolmps depended
heavily on the number of BIND resource records returned. 9 As
shown in Table 3.2, by simply changing the cache to keep
demarshalled information, the times decreased dramatically.

This result is surprising, especially in light of the fact that the
HCS file system found that marshalling/demarshalling accounted
for only 1% of its call time [Black et al. 1987]. Upon further
investigation, we determined that the marshalling routines we used
for BIND were significantly more expensive than those used by the
HCS file system. This complexity was the price we paid for the
RPC-style structure we built for our BIND interface: rather than
use the standard BIND library routines (which include the code to
marshal, send/receive, and interpret BIND client-server messages),
we built an HRPC interface to BIND. This interface is built on top

9 BIND data is stored as a collection of resource records,
each of which can be up to 256 bytes of data. Separate
resource records are intended to store alternate data for one
name, e.g., multiple network addresses for gateway hosts.

58

Resource Cache miss Marshalled Demarshalled
Records cache hit cache hit

Per Name

1 20.23 11.11 0.83

6 32.34 26.17 1.22

Table 3.2: The Effect of Marshalling Costs
on Cache Access Speed (msec.)

of our Raw HRPC protocol suite [Bershad et al. 1987], which
allows HRPC clients to make calls to any message passing pro-
gram that conforms with the basic RPC paradigm of "make a

request and wait for a response". Instead of writing complicated
low-level marshalling routines to handle the BIND message for-
mat, we described this format using our interface description
language, and used the marshalling code generated by our stub

compiler.

The problem is that the generated marshalling routines,
although correct, incur a good deal of overhead in procedure calls,
indirect calls to marshalling routines, unnecessary dynamic
memory allocation, and unnecessary levels of marshalling. In par-
ticular, the standard BIND marshalling routines corresponding to
the cases measured in Table 3.2 take .65 msec. and 2.6 msec. for
one and six resource record lookups, respectively. While this
experience shows that our HRPC-based marshalling scheme is
quite a bit more expensive than necessary, it also shows that we
were able to retain the advantages of this scheme at reasonable per-
formance by making a simple change to our cache implementation.

4. Related Work

To recap, the goal of our design is to allow the integration of
existing name services to form a uniform, global facility. It is im-
portant in our environment that existing applications be allowed to
mn unaltered while at the same time reflecting the naming updates
made by them to the network-wide clients of our name service. In
this section we contrast our work with various earlier effoas in
both heterogeneity and naming.

Internet Mail Systems

Most early work in heterogeneous naming concerned internet
mail systems [Redell & White 1983], the most well-known exam-
ple being UNIx sendmail [Allman 1985]. Sendmail uses rewriting
roles to describe how to parse heterogeneous mail names.
Although sendmail has allowed the interconneetion of a large
variety of electronic mail networks, this technique has several
drawbacks. First, sendmail centralizes the understanding of mail
naming in a single component (which is replicated on each host);
the proliferation of interconnected networks [Quaaerman & Hos-
kins 1986] makes this approach difficult to manage. Second, send-
mail depends on being able to discern naming semantics based on
the syntactic structure of names. Doing so impedes name space
administration [Terry 1985,Terry 1986] and reflects the complex-
ity of heterogeneous naming to clients and users of sendmaii-based
mail agents.

CCITT has undertaken an effort to standardize mail naming
and protocols for a world-wide electronic mail network [CCITT
1984, Cunningham 1983]. While standardization would clearly be
very beneficial in the long term, it does not provide a solution in
the short term: as made evident by the ongoing transition to
Domain-style naming [Postel 1984], renaming on such a grand
scale is expensive and difficult. In addition, approaches based on
standardization require a large effort, which would not be effec-
tively amortized in our environment, since we have only a few
instances of many different system types.

DEC SRC Global Name Service

There has been recent work at the DEC Systems Research
Center concerned with constructing a replicated name service
intended to scale to the level of billions of names distributed
throughout the world [Lampson 1986]. The major contribution of
this work is a scheme for combining name services by allowing the
root to be extended arbitrarily (in contrast to systems such as the
Domain Internet naming scheme, which only grows downward
from a fixed root). The major difficulty encountered is dealing with
changed names: extending the root causes the absolute names of
some (or all) entities to change; such global renaming is made
feasible by the provision of mechanisms that smooth the transition.
One such mechanism involves leaving temporary forwarding links.
A second mechanism involves allowing applications to "change
roots", the idea being that only applications that actually need to
access names in the newly extended root need change their root to
the global root. A third mechanism involves keeping a list of
important names that were reachable from previous roots in the
"superroot". This scheme is intended for interim use only, as other-
wise the superroot processing and storage requirements would not
scale to the desired level.

Although this work, like the FINS, is concerned with combin-

ing name services, the focus and characteristics of the systems are

quite different. The DEC SRC system is primarily concerned with

scalability in the size dimension, where as the HNS work is more
concerned with scalability in the heterogeneity dimension. The
HNS assumes a single globally rooted context name space, concen-

trating on allowing the individual names to vary in syntax and

semantics. The DEC SRC system allows its name space to grow

upwards, concentrating on ways to allow this freedom without the

troubles typical of renaming and relative naming.

Decentralized Name Interpretation

Cheriton and Mann [Cberiton & Mann 1984,Cheriton &

Mann 1986] have developed a facility for global naming with no

central authority. The primary idea is that names are interpreted by

the services that provide named entities, rather than by a logically
centralized name service. The point of this method is that it saves
accessing a second party service, gaining efficiency and robustness.

The I-INS name space may also be classified as being decen-
trally interpreted. However, there are more differences than simi-
larities in our work. In V, the emphasis is on decentralized
interpretation as a new naming scheme, oriented towards increas-
ing efficiency and reliability in naming. In the HNS, the emphasis
is on accommodating multiple existing naming facilities. Direct
access naming is based, in part, on decentralized interpretation, but
decentralized interpretation does not necessarily imply direct

59

access.

Portal Based Naming

Lantz et al. designed and implemented a naming system based
on entities they call portals [Lantz, Edighoffer & Hitson 1985]. A
portal is an active entity associated with an action to be taken when
an entity is referenced. This introduces a level of indirection in
name interpretation, and supports monitoring, access control, and
"domain switching", i.e., stripping off part of the name and passing
the rest on to a new "domain" to continue its interpretation. This
latter aspect could help support integration of heterogeneous name
services.

While they bear some resemblance to NSMs, portals are
intended to support a broader variety of functions. NSMs are
intended primarily for dealing with heterogeneous naming seman-
tics, and we have focused on the issues relevant to this purpose. In
addition, there is no indication of how portals should be accessed
or managed. The HNS provides the support needed to manage
NSMs, separating the issues of understanding semantics from
name space administration.

Administrative Autonomy

Peterson defines a notion of heterogeneity concerning an inter-
net that consists of autonomous organizations [Peterson 1985].
The key problem is the lack of a single system-wide user creation
operation that assigns a high-level name to a user at creation time.
His main concern is allowing users to name each other without
forcing users to register explicitly with a name service. Like the
I-INS, his mechanism integrates autonomous name spaces. Unlike
the I-INS, Peterson's system provides a collection of tools that sup-
port a bottom-up construction of the naming network, continuously
combining name spaces, rather than joining all name spaces under
a single global root. Names thus seem to be relative to the current
root, and change if the current root changes. Peterson also allows a
less restrictive naming syntax than usual: names are sets, where
each element of the set is described by a regular expression.

Jasmine File System

Jasmine [Marzullo & Wiebe 1986] is a system consisting of
workstation tools and network services to help programmers
develop, release, and maintain large software systems. The
Jasmine file system integrates heterogeneous file systems by using
names that map, via syntactic transformations, to the names of files
in the underlying file systems. The file system presents a
Fetch/Store interface. To fetch or store a file, the system first con-
suits a database to determine the file location and file system type.
Based on the file system type, a call is made to a particular "plug-
in" procedure to handle the operation [Wiebe 1987]. These plug-in
procedures are similar to NSMs, in that they implement identical
interfaces to different underlying systems, and new ones can be
added by dynamically loading them.

There are several differences from our work. First, NSMs are
potentially remote procedures. Hence, the method of adding new
ones differs from Jasmine. It is easier to add I-INS applications
because NSM registration is done in one place, instead of on each
host. On the other hand, the Jasmine procedures are more efficient
than the most general I-INS case, since they are always local pro-
cedures, with a less expensive selection protocol. Second, the

I-INS is a more general mechanism, since it allows arbitrary nam-
ing interfaces; Jasmine did not need to be this general. Third,
Jasmine maintains location information for each file. This would
be inappropriate in the HNS because it would make the location
database comparable in size to the database of information to
which names map. This is not a problem in a file system, since
files are typically large relative to naming data.

Heterogeneous Databases

The database community has been working on integrating
heterogeneous systems for several years. The goal is to allow users
to read and manipulate data from several independently
created/administered databases, each of which has different data
formats, access protocols, and manipulation languages, The
methods used for accessing these databases vary from multilevel
translation (between query languages, data formats, etc.) [Temple-
ton et al. 1986] to meta-query languages that allow the user to
name various databases and define relationships between them, for
manipulation, privacy, and equivalence dependencies [Litwin &
Abdellatif 1986]. These schemes support joining of data in dif-
ferent database schemas, and broadcasting of user intentions over a
number of database schemas with varying naming rules for data
with similar meanings.

These projects differ from our work in several significant
ways. First, their goals are often different: Some systems want to
allow users to perceive "varying views of reality" [Litwin &
Abdellatif 1986], whereas the HNS is intended for allowing a more
coherent view of abstractly similar subsystems. Second, these
approaches are not typically factored in such a fashion to allow
easy introduction of new database types, whereas reducing the cost
of integration is the primary goal of our work. Third, the imple-
mentation techniques differ significantly: the database work often
involves language translation, whereas our scheme uses registered
agents to handle particular access protocols and data semantics.

5. C o n c l u s i o n s

We have described a new approach to providing a name ser-
vice for continually evolving systems that are composed of a
heterogeneous collection of subsystems, with the overall goal of
reducing the cost of integrating new system types into an existing
environment. Rather than implementing a new global standard,
our approach is based on integrating existing name spaces through
a structure that separates name space administration from

knowledge of the semantics of naming in each of the assimilated
subsystems. A major advantage of this approach is ease of integra-
tion: newly added system types can participate in the larger system
without modification, and systems that use the name service can
take advantage of the services provided by new systems without
modification.

Based on measurements of our prototype, we have shown that
a specialized caching scheme based on locality of reference of
query class and name system type can provide acceptable perfor-
mance, that caching of meta-naming information potentially saves
more time than the difference between local and remote calls, and
that the set of colocation alternatives represents a spectrum of
tradeoffs in performance for ease of management, from which pro-

6 0

grammers can choose what best suits each particular application.
We are continuing our effort towards improving the performance
of the HNS without decreasing its flexibility.

Another major contribution of our work is the soflware struc-
ture we have defined. Relieving clients from the complexities of
distribution and heterogeneity through the use of a global
intermediary service (e.g., the HNS) and a set of agents that access
existing services (e.g., the NSMs) is a generally applicable struc-
ture. We are pursuing this structure in the context of both an elec-
tronic mail system and also a heterogeneous file system that medi-
ates access to the set of local file systems present in the environ-
merit.

A c k n o w l e d g m e n t s

A major strength of our effort is that it arises within a larger
context - the Heterogeneous Computer Systems (HCS) project - in
which a number of investigators are working together on broad
solutions to the various problems that arise in accommodating
heterogeneity. HCS project pa~icipants in addition to the authors
include Brian Bershad, Andrew Black, Fran Brenner, Dennis
Ching, Sung Kwon Chung, Bjorn Freeman-Benson, Kimi Gosney,
Edward Lazowska, Henry Levy, John Maloney, Cliff Neuman,
Brian Pinkerton, Jan Sanislo, Mark Squillante, James Synge, and
Doug Wiebe.

Special thanks to Ed Lazowska for many careful readings and
helpful suggestions. Jan Sanislo deserves special mention for over-
seeing the implementation effort, and particularly for making
HRPC work as well as it does.

R e f e r e n c e s

[Allman 1985]
E. Allman. Sendmail - An Intemetwork Mail Router.
UNIX Programmer's Manual, 4.2BSD, 2C, Comput.
Sci. Division, EECS, UCB, Berkeley, CA, June 1985.

[Almes et al. 1985]
G. T. Almes, A. P. Black, E. D. Lazowska and J. D.
Noe. The Eden System: A Technical Review. IEEE
Trans. Software Eng., SE-11(I), pp. 43-59, Jan. 1985.

[Balkovich, Lerman & Parmelee 1985]
E. Balkovich, S. Lerman and R. P. Parmelee.
Computing in Higher Education: The Athena
Experience. Commun. ACM, 28(11), pp. 1214-1224,
Nov. 1985.

[Bershad et al. 1987]
B. N. Bershad, D. T. Ching, E. D. Lazowska, J.
Sanisio and M. Schwartz. A Remote Procedure Call
Facility for Interconnecting Heterogeneous Computer
Systems. IEEE Trans. Software Eng., SE-13(8), pp.
880-894, Aug. 1987.

[Black et al. 1985]
A. P. Black, E. D. Lazowska, H. M. Levy, D. Notkin,

J. Sanislo and J. Zahorjan. An Approach to
Accommodating Heterogeneity. Tech. Rep. 85-10-04,
Comput. Sci. Dep., Univ. Washington, Seattle, WA,
Oct. 1985.

[Black et al. 1987]
A. P. Black, E. D. Lazowska, H. M. Levy, D. Notkin,
J. Sanislo and J. Zahorjan. Interconnecting
Heterogeneous Computer Systems. Tech. Rep. 87-
01-02, Comput. SCi. Dep., Univ. Washington, Seattle,
WA, Jan. 1987. Submitted for publication.

[CCITI" 1984]
CCITI'. Recommendation X.400, Messase Handling
Systems: System Model - Service Elements. CCITT,
Study Group 5/VII, Oct. 1984.

[Cheriton & Mann 1984]
D. R. Cheriton and T. P. Mann. Uniform Access to
Distributed Name Interpretation in the V-System.
Proc. 4th Int. Conf. Distrib. Comput. Syst., pp. 290-
297, May 1984.

[Cheriton & Mann 1986]
D. R. Cheriton and T. P. Mann. A ~ n t r a l i z e d
Naming Facility. To appear, ACM Trans. Comput.
Syst., 1986. Available as Tech. Rep. CSL-TR-293,
Comput. Sci. Dep., Stanford Univ.

[Comer & Murtaugh 1986]
D. Comer and T. P. Murtaugh. The Tilde File Naming
Scheme. Proc. 6th Int. Conf. Distrib. Comput. Syst.,
pp. 509-514,May 1986.

[Cunningham 1983]
I. Cnnningham. Message-Handling Systems and
Protocols. Proc. IEEE, 71(12), pp. 1425-1430, Dec.
1983.

[Daley & Dennis 1967]
R. C. Daley and J. B. Dennis. Virtual Memory,
Processes and Sharing in MULTICS. Proc. 1st ACM
Symp. Operating Syst. Prin., pp. 306-312, Oct. 1967.

[Lampson 1986]
B. W. Lampson. Designing a Global Name Service.
Proc. 5th ACM Symp. Principles Distr. Comput., pp.
1-10, Aug. 1986.

[Lantz, Edighoffer & Hitson 1985]
K. Lantz, J. Edighoffer and B. Hitson. Towards a
Universal Directory Service. Proc. 4th ACM Syrup.
Principles Distr. Comput., pp. 250-260, Aug. 1985.
Reprinted in Operating Syst. Review 20(2).

[Litwin & Abdellatif 1986]
W. Litwin and A. Abdellatif. Multidatabase
Interoperability. IEEE Computer Magazine, 19(12),
pp. 10-18, Dec. 1986.

[Marzullo & Wiebe 1986]
K. MarzuUo and D. Wiebe. Jasmine: A Software

61

System Modelling Facility. Proc. ACM
SIGSOFTISIGPLAN Software Engineering Symp. on
Practical Software Development Environments, pp.
121-130, Palo Alto, CA, Dec. 9-11, 1986. Appears as
SIGPLAN Notices 12(1), Jan. 1987.

[Mockapetris 1983]

P. Mockapetris. Domain Names - Concepts and
Facilities. RFC 882, USC Information Sei. Institute,
Nov. 1983.

[NotiOn et al. 1987]
D. Notkin, N. Hutchinson, J. Sanislo and M. Schwartz.
Heterogeneous Computing Environments: Report on
the ACM SIGOPS Workshop on Accommodating
Heterogeneity. Commun. ACM, 30(2), pp. 132-140,
Feb. 1987.

[Oppen & Dalai 1983]
D. C. Oppen and Y. K. DalaL The Clearinghouse: A
Decentralized Agent for Locating Named Objects in a
Distributed Environment. ACM Trans. 0.Oice
Information Syst., 1(3), pp. 230-253, July 1983.

[Peterson 1985]
L. L. Petersou. Naming Users in a Heterogeneous
Intemet: Framework for a New Approach. Tech. Rep.
85-28, Dep. Comput. Sei., Univ. Arizona, Tucson, AZ,
Nov. 1985.

[Postel 1984]
J. Postel. Domain Name System Implementation
Schedule - Revised. RFC 921, USC Information Sci.
Institute, Oct. 1984.

[Quarterman & Hoskins 1986]
J. S. Qua~erman and J. C. Hoskins. Notable
Computer Networks. Coramun. ACM, 23(10), pp.
932-971, Oct. 1986.

[Redell & White 1983]
D. D. Redell and J. E. White. Interconnecting
Electronic Mail Systems. IEEE Computer Magazine,
16(9), pp. 55-63, Sep. 1983.

[Satyanarayanan et al. 1985]
M. Satyanarayanan, J. H. Howard, D. A. Nichols, R.
N. Sidebotham, A. Z. Spector and M. J. West. The
ITC Distributed File System: Principles and Design.
Proc. lOth ACM Syrup. Operating Syst. Prin., pp. 35-
50, Dec. 1985.

[Schwartz 1987]
M. F. Schwartz. Naming in Large, Heterogeneous
Systems. Ph.D. Diss., Tech. Rep. 87-08-01, Comput.
Sci. Dep., Univ. Washington, Seattle, WA, Aug. 1987.

[Sheltzer, Lindell & Popek 1986]
A. B. Sheltzer, R. Lindell and G. J. Popek. Name
Service Locality and Cache Design in a Distributed
Operating System. Proc. 6th Int. Conf. Distrib.
Comput. Syst., pp. 515-522, May 1986.

[Shoch 1978]
J. F. Shoch. Inter-Network Naming, Addressing, and
Routing. Proc. 17th IEEE Comput. Society Int. Conf.,
pp. 72-79, Sep. 1978.

[Sun Microsystems 1985a]
Sun Microsystems. Remote Procedure Call
Programming Guide. Sun Microsystems, Inc.,
Mountain View, CA, Jan. 1985.

[Sun Microsystems 198Yo]
Sun Microsystems. Remote Procedure Call Protocol
Specification. Sun Microsystems, Inc., Mountain
View, CA, Jan. 1985.

[Templeton et al. 1986]
M. Templeton, D. BriU, A. Chen, S. Dao and E. Lund.
Mermaid - Experiences with Network Operation.
Proc. 2nd IEEE Int. Conf. Data Eng., pp. 292-300,
Feb. 1986.

[Terry 1985] D. B. Terry. Distributed Name Servers: Naming and
Caching in Large Distributed Computing
Environments. Ph.D. Diss., Tech. Rep. UCB/CSD
85/228, Comput. Sei. Division, EECS, UCB,
Berkeley, CA, 1985.

[Terry 1986] D. B. Terry. Structure-Free Name Management for
Evolving Distributed Environments. Proc. 6th Int.
Conf. Distrib. Comput. Syst., pp. 502-508, May 1986.

[Terry et al.]
D. B. Terry, M. Painter, D. Riggle and S. Zhou. The
Berkeley Intemet Name Domain Server. Proc.
USENIX Association Summer 1984 Conf., pp. 23-31.

[Welch & Ousterhout 1986]
B. Welch and J. Ousterhout. Prefix Tables: A Simple
Mechanism for Locating Files in a Distributed System.
Proc. 6th Int. Conf. Distrib. Comput. Syst., pp. 184-
189, May 1986.

[Wiebe 1987]
D. Wiebe. Personal Communication. Comput. Sci.
Dep., Univ. Washington, Seattle, WA, Jan. 1987.

62

