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Abstract 

This paper describes a name service designed for long term use in a continually evolving heterogeneous system. There are two 
confiicting goats for a name service in this environment: to ease the task of dealing with the distribution and heterogeneity by providing a 
uniform service throughout the system that masks these characteristics as much as possible, and to keep software development and 
maintenance costs manageable when faced with the frequent introduction of  new system types. A single name service implemented across all 
system types, which would be an appropriate choice given the first goal alone, is infeasible when the second goal is considered. 

In attempting to satisfy these conflicting goals we have designed a software structure that allows the efficient integration of  existing 
heterogeneous implementations of the same generic service. In the specific case of the name service, this allows us to build a global service 
that makes use of, rather than replaces, the name services of the component subsystems. This approach has a number of  desirable properties. 
For one, the system is scalable, since the processing load is naturally distributed among the subsystems. Second, applications existing in 
newly introduced subsystems can continue to mn unaltered, while the modifications they make in their local name services are automatically 
reflected in the global name service. This is an important attribute in environments where it is impossible or too expensive to modify all 
existing application and system code. Finally, our design allows wide latitude in the degree to which an individual subsystem type is 
incorporated; an amount of integration effort appropriate to the benefits received can be chosen individually for each subsystem type as it is 
introduced. 

A prototype implementation has been built as part of  the Heterogeneous Computer Systems project at the University of Washington. 
This service supports RPC binding and other applications in our heterogeneous environment. Measurements of  the performance of  this 
prototype show that it is close to that of the underlying name services, due largely to the use of specialized caching techniques. 

1. I n t r o d u c t i o n  

A name service provides the convenience of a mntime map- 
ping from string names to data. The most important current use of 
such facilities is to determine address information, for example, 
mapping a host name to an IP address. By performing this address 
lookup at mntime, the name service provides a level of indirection 
that is crucial to the efficient management of distributed systems. 
Without it, changes to the network or system topology would 
require the recompilation of applications with hardwired addresses, 
and so would severely limit the size of distributed systems that 
could be realized in practice. 
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These name to data mappings are usually encapsulated in a 
logically centralized service (e.g., BIND [Terry et al. 1984] or 
Clearinghouse [Oppen & Dalai 1983]) designed especially for this 
purpose, because managing the data involves specific tradeoffs 
between efficiency and sophistication of support, tradeoffs that typ- 
ically make inappropriate other potential mechanisms for the name 
to data mapping, such as distributed databases and shared file sys- 
tems. The design described here is presented in terms of a logi- 
cally centralized implementation. However, it is equally valid for 
other approaches to naming, such as broadcast-based location pro- 
tocols [Alines et al. 1985,Cheriton & Mann 1984,Welch & 
Ousterhout 1986]. 

The goal of the service discussed in this paper is to provide a 
name to data mapping facility for an evolving heterogeneous sys- 
tem. We want our design to be scalable in the heterogeneous 
dimension, meaning that it may be applied to environments con- 
sisting of  a large and increasing number of different system types 
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but only a few instances of many of  these types. We are willing to 

incur the mntime penalty of  an extra level of  indirection to achieve 

this flexibility. In contrast to other efforts to provide a more stand- 
ardized service on more controlled heterogeneous bases (such as 

Project Athena [Balkovich, Lerman & Parmelee 1985] and the ITC 

file system [Satyanareyanan et al. 1985]), the critical consideration 

in our environment is the cost of  integrating new system types into 

our network service. Thus, solutions based on p o ~ n g  services to 

each system type are infeasible, and we must instead accommodate 

the heterogeneous services that may already exist on each system 

type. 

In developing our name service for this environment we have 

utilized a software atmcture that combines much of  the benefit of 

the standardization approach with the desired ease of new system 

integration. This software structure appears to be applicable to 

other application domains, such as filing and mailing. As applied 

to naming, this software structure has three key characteristics. 

• First, our network-wide name service makes use of, rather than 

replaces, name services and associated data already existing in 

the individual system components. We call this the direct 

access approach, as distinguished from reresiatration-bused 

approaches that require transfer of  responsibility from existing 

services to a new network-wide service. The major advantage 

of the direct access approach is that it allows the underlying 

subsystems to evolve independently of  the global name ser- 

vice, while still reflecting this evolutionary change to the 

clients of  the global name service. Clients that use their own 

name service, rather than the global name service, are not 

modified to accommodate this arrangement, but they do not 
derive any of  the benefits of  this arrangement either. 

• Second, we recognize that a key difficulty of  heterogeneous 

naming is the variety of  data semantics and access protocols 

involved in using the information. Based on this observation, 

our system separates the management of  the global name 

space from the understanding of the semantics and access pro- 

tocols of  the data in a fashion that makes adding new naming 

systems and applications as easy as possible. 

• Third, because our approach introduces a level of  indirection, 

we use a specialized caching scheme based on locality of 
reference to query class and name system type to provide 

acceptable performance. 

We have constructed a prototype name service having these 

characteristics. The prototype is in use as part of the Heterogene- 

ous Computer Systems (HCS) project at the University of  Wash- 
ington [Black et al. 1985,Black et al. 1987]. The goal of  this pro- 

ject is to provide for loose integration through network services, 

meaning that a set of  core services (filing, mail, and remote compu- 

tation) are provided network-wide, but no attempt is made to mask 

the heterogeneous aspects of  the various systems since this hetero- 

geneity was presumably the motivation for the systems' acquisi- 
tion. These network services are easily extended to new system 

types because they are built upon two underlying facilities expli- 

citly designed to accommodate heterogeneity. The first, hetero- 

geneous RPC [Bershad et aL 1987], is based on emulation: the 

heterogeneous RPC (HRPC) mechanism looks to each existing 
RPC mechanism exactly the same as a homogeneous peer. The 
other facility, our name service, is based on the notion of direct 

access, allowing network-wide manipulation of the existing hetero- 

geneous name services through a homogeneous interface. 

In the remainder of  this paper we explain the software struc- 

ture used to implement our name service and motivate the choices 

made in its design. Section 2 describes the model of our name ser- 

vice. Section 3 describes experience with a prototype implementa- 

tion. Section 4 compares this work with several related efforts. 

Section 5 offers some conclusions. 

2. The HNS Model 

In this section we describe in detail our design of the HCS 

Name Service (HNS). In doing so, we indicate not only what deci- 
sions we have made, but also why we made those particular 

choices. 

Direct Access Naming 

The single characteristic that most distinguishes the HNS from 

other name services is that of  direct access, the direct use of exist- 

ing name services in managing the data available through our glo- 

bal service. We cannot afford to replace the existing name services 

of  the subsystems because that would requiv, either modifying 

existing applications to use the new service or else the periodic 

reregistration of data from the local name services to the global 

standard. We rejected the former because of the sheer magnitude 

of the programming work involved when there are many different 

system types in the environment. The latter is inappropriate 

because of problems with name conflicts and consistency of infor- 

mation on the global and local levels, because the reregistration 
cost is one that continues without end, because the degree of sys- 

tem heterogeneity would be limited by the rate at which the global 

name service could absorb the reregistrations, and because to be at 

all scalable the considerable cede of this global service would have 

to be implemented on many different system types to allow for dis- 

tribution. 

The  HNS Name Space 

The HNS name syntax is designed to avoid naming conflicts 

and to support mapping from HNS to local name service names, as 
is required for our direct access scheme. HNS names contain two 

parts, a context and an individual name. Roughly, the context 

identifies the local name service in which the data can be found 

while the individual name determines the name of the object in that 

local service. The individual name can be any string, but in the 
simplest case is identical to the name of the entity in its local name 
service. This correspondence between the local name and indivi- 

dual name makes it relatively easy for a user to communicate the 

global name of a local resource to a user on a remote system 

because most of  the global name is already familiar. On the other 

hand, this scheme creates a global name space that does not con- 

form to any simple syntax rules. This problem can be overcome by 

enforcing more complex mappings that provide a uniform, global 

syntax. However, we do not feel that this is necessary since most 

often the user of  the name of  a remote resource has been given that 

name by someone else (who is probably local to that resource), and 

so the remote user need do no more than repeat the string to make 

use of it. 
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The context portion of  an HNS name maps onto all or part of 

the name space managed by a single local name service. This has 

two beneficial effects. First, since all names within a context must 
be the responsibility of  a single local name service, finding the data 

associated with an HNS name is simplified. The alternative of 

locating the appropriate local name server, either through some 

multicast technique [Cheriton & Mann 1984] or some form of 

search path, is either too inefficient in our environment, has the 

flavor of  relative name spaces (something we wished to avoid), or 
requires excessive development cost to attain the needed level of 

homogeneity. Second, by imposing the additional restriction that 

the mapping from local names to the individual name portion of 

HNS names be a function (i.e., produce a unique result), we 

guarantee that no naming conflicts can ever be created in the I-INS 

name space when combining previously separate systems. Any 

scheme allowing a context to contain names from more than one 

local name service either must  allow the possibility of name 

conflicts or must require that the local name services coordinate 

during name creation. Our approach avoids both these unaccept- 

able effects, instead allowing existing applications to use native 

name service operations to create new names in the I-INS name 
space, thus providing information to new applications written to 

use the HNS. 

Managing  Heterogeneous Naming Semantics  

To make the global name space useful, we want to relieve 

individual applications from the chore of  handling heterogeneity. 

A client would like to present a name and obtain data without 

regard to the specific underlying name service that happens to be 

used in the name resolution. Clearly, there must be some code, 

specific to the particular name service and query class (i.e., the 

type of data to be returned), that can locate the data and convert 

data formats. The major decision to be made is where this system 
and application specific knowledge should reside. For instance, 

code to handle the heterogeneity could be part of  the client or part 

of the HNS itself. Our general goals preclude the former, since 
that approach requires the modification of large numbers of exist- 

ing applications each time a new system type is introduced. The 

potential for sharing, then, suggests putting this function in the 

HNS rather than in individual applications. The problem with this 

placement is that the continual introduction of new query classes 

would require repeatedly changing the HNS, an unacceptably 

expensive and unwieldy evolutionary process. 

For these reasons, instead of  placing the system and query 

class specific code in the applications or in the HNS, we handle 

naming semantics in remote procedures called Namin 8 Semantics 
Managers (NSMs). Each NSM understands the semantics of nam- 

ing for a particular query class and a particular name service. In 

this way, adding a new system type simply requires building 

NSMs for those queries to be supported and registering their 

existence with the HNS. All NSMs for a particular query class 

have identical client interfaces. Thus, when an application makes a 

query, it can call whichever NSM handles that query class for the 

specified context without having to know which name service will 

ultimately provide the response. The HNS provides the glue for 

this confederation by keeping track of the existence and location of 

all name services, contexts, and NSMs. A simplified view is that 

the HNS directly supports only the context/query class --~ NSM 
mapping, while the NSMs do all the "real" work, work that cannot 

be avoided no matter what software structure is employed. The 

purpose of the I-INS is to improve the manageability of the NSM 

code. The NSMs are neither I-INS nor application code per se. 
Rather, they are code managed by the HNS and shared by the 

applications. 

Client Perspective 

In its simplest form, a client calls the HNS using heterogene- 

ous RPC (HRPC), passing the HNS name and query class. Based 

on the context poRion of the name and the query class, the HNS 

returns an HRPC Binding (a handle to a remote procedure) that 

allows the client to call the appropriate NSM. The client then calls 

the NSM using the query specific interface, which includes the ori- 

ginal HNS name. The NSM translates the individual name portion 

of that name to the corresponding local name, interrogates the local 

name service using this name, and returns the results in a format 

that is standard for that query class. This scenario is illustrated in 

Figure 2.1. 

Clearinghouse/ HNS BIND/ 
Ouerv Class Ouerv Class 

Client Client Client 

Figure2.1:  HNS Query  Processing 

In this figure, the requested name exists in the Clearinghouse, 

so the client is given a handle to call that NSM. A subsequent call 

might be for a name in BIND, in which case the client would call 

the BIND NSM. Since the interfaces provided by both NSMs are 

identical, the client does not need to be aware of which name ser- 

vice it is calling. 

An alternate approach would be to have the HNS call the NSM 

on behalf of  the client. Since each query class requires its own 

interface, this would require that the I-INS be recompiled each time 
a query class is added. We could define generic interfaces for the 

clients to call the I-INS and then the HNS to call the NSMs, but 

doing so would require encoding transmitted data into self- 

describing packages (as in Eden [Almes et al. 1985], for instance), 

an approach not supported by our HRPC model. 

Scalability 

In terms of accommodating the sheer size of  the system, say as 

measured by the total number of  names it contains, our design for 
file FINS shares with most other name service designs the property 

of  being distributable. The basic distribution of the HNS occurs 

naturally since each new system type introducing a new set of 

names also includes a name service managing those names that we 

can take advantage of directly. In terms of accommodating a large 

number of  heterogeneous system types, users of  the HNS are con- 
fronted with the unavoidable work of providing NSMs for each 
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query class and system type combination to be supported. The 

users of  the system can decide independently which particular 

NSMs are worth the effort to construct, and so can match imple- 
mentation effort to benefit. 

S u m m a r y  

The HNS differs significantly from other name services 

because of the requirements of  our heterogeneous environment. 

The HNS must  use data in existing name services because 

reregistering names into the HNS is unmanageable in our continu- 

ally evolving environment. However, to insulate clients from the 

complexities of  distribution and heterogeneity, the HNS provides a 

single name space. This is difficult since the underlying name ser- 

vices have differing syntax and semantics. We encapsulate these 

differences by providing, for each query class and native name ser- 

vice, an NSM that manages the syntactic and semantic details. 

To perform an I-INS query, the client presents an HNS name 

and query class. From the query class and the context portion of 

the name, the HNS selects the NSM that can access the appropriate 
name service for the client. The client then calls the designated 

NSM, which queries the underlying name service and returns a 

standardized form of the result. Since each NSM for a given query 

class has an identical interface, the client can call the NSM that the 

HNS designates without regard to the name service that NSM uses. 

3 .  E x p e r i e n c e  

Envi ronment  

The current HCS environment consists of  a heterogeneous col- 

lection of hardware (Suns, VAXen, Xerox D-machines, IBM RTS, 
and Tektronix 4400-series machines), communication mechanisms 

(Sun RPC, Courier RPC, TCP/IP message passing, and UDP/IP 

message passing), and operating systems (XDE, Umx,  3 and 

Uniflex). We have built a prototype heterogeneous RPC facility 
[Bershad et al. 1987] on top of a subset of these systems, capable 

of  communicating with each of  the other systems by emulating Sun 

RPC, Courier RPC, and TCP or UDP message-based communica- 

tion using a single RPC-style interface. We have also built a proto- 

type I-INS and a set of  key network services - filing, mail, and 

remote computation - based upon HRPC and HNS. 

The prototype HNS currently provides integrated naming with 

two widely available underlying name services: BIND [Terry et al. 

1984], which operates in conjunction with the UNIX component of 

our prototype environment, and the Clearinghouse [Oppen & Dalai 

1983], which operates in conjunction with the Xerox component. 

We plan to introduce additional name services as they become 
available to us. 

Implementat ion 

Although all data associated with individually nameable enti- 
ties is kept in the underlying name services, the HNS maintains 

additional recta-naming information needed for managing the glo- 

bal name space. This information consists of  the names and bind- 

3 UNIX is a trademark of  AT&T Bell Laboratories. 

ing information for each name service and each NSM, the names of 

all contexts, and the mappings from contexts to name services. 

While the HNS is logically a single, centralized facility, its 

implementation must be distributed and replicated for the usual 

reasons of  performance, availability, and scalability. Because the 

implementation problems associated with these properties are for 
the most part successfully addressed in previous name services, we 

chose to ease our implementation effort by making use of an exist- 

ing name service to store the meta-naming information. In particu- 

lar, we use a version of BIND, modified to support both dynamic 

updates and also data of  unspecified type [Schwartz 1987]. The 

I-INS itself is a collection of library routines that access this version 
of BIND. 4 We have also built a collection of NSMs for our initial 

set of  applications. 

The primary HNS function is the call to locate an NSM, 

FindNS~. This call maps a context and query class to the informa- 

tion, called an HRPC Binding, needed for making an HRPC call to 

the NSM. F±ndNSM is implemented as the following sequence of 
mappings: 

1. Context ~ Name Service Name 

2. Name Service Name, Query Class -~  NSM Name 

3. NSM Name -~ HRPC Binding for the NSM 

Mappings 1 and 2 are each BIND lookups. The NSM binding 

information stored in the HNS contains, among other information, 

the host name on which the NSM resides; hence, mapping 3 

involves translating the host name to a network address. This in 

itself is an HNS naming operation requiring a call to FindssM. 

Thus, this mapping actually requires two more mappings (i.e., 

mappings 1 and 2, to find the NSM that can perform the host 
address lookup). FuCther recursion is avoided by linking instances 

of  the NSMs that perform this mapping directly with the HNS, so 
that their network addresses need not be found. 

While we recognize that the lookups made by FindNSM could 
be collapsed into fewer calls (e.g., by mapping the Context and 

Query Class directly to the Binding for the NSM), we chose to 

keep these mappings separate, because this allows more flexibility 

and requires less redundant information. For example, if more than 

one context is stored on the same name service, the binding infor- 

mation for that name service need only be stored once. Further, we 
realized that caching would greatly reduce the cost of  these map- 

pings, and so decided to adopt them for the flexibility they afford. 

(The effects of  caching on performance are described below.) 

An HNS Application: HRPC Binding 

HRPC binding, the process of  connecting clients with servers, 

was the first application of the HNS, because it presented the most 

immediate need for the HCS project as a whole. It is also a good 

test for the HNS because of the difficulties of  binding in a hetero- 

geneous environment. In particular, the information needed for 

binding is stored in different places depending on system type. 

Worse yet, each system type typically has its own binding proto- 

4 Note that the version of BIND used to implement the 
I-INS is separate from the conventional version of BIND. The 
former serves only as a simple repository for the I-INS meta- 
information, while the latter holds actual naming data. 
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col. Thus, binding presents a practical "stress test" for our design. 

The HRPC design involves the careful specification of  clean 

interfaces between the five principal components of  an RPC facil- 

ity: the stubs, which are interposed between the client (also the 

server) and the ran-time support; the binding protocol, which 

allows a client to locate a particular server;, the data representation, 
which determines how data values are marshalled; the transport 
protocol, which determines how data is carried from one host to 

another; and the control protocol, used intemaUy by the RPC facil- 

ity to track the state of  a call. An RPC client (or server) and its 

associated stub can view each of the remaining four components as 

a "black box". These black boxes can be "mixed and matched" to 
emulate different communication protocols at call-time. The set of 

protocols to be used is determined dynamically at bind-time - long 

after the client (or server) has been written, the stub has been gen- 

erated, and the two have been linked. 

In homogeneous systems, the choice of RPC components is 

fixed at implementation time; at run-time, the code simply begins 

executing as a monolithic unit once the binding process is com- 

plete. With HRPC, these components have been separated from 

each other and made dynamically selectable, and hence binding 

must perform the additional processing needed for component 
selection. Also, insular clients/servers have established binding 

protocols that they execute, and they expect their peers to execute 

the corresponding parts of the protocol. While the binding process 

is similar for most RPC systems, the actual mechanisms employed 

for naming, server activation, and port determination vary consid- 

erably. Hence, HR_PC binding must  proceed in a manner that can 

emulate the binding protocols for each of the systems being accom- 

modated. 

Using the HNS, the client's view of binding is fairly straight- 
forward. The client presents a name and is returned a Binding to 

an NSM that understands exactly how to do binding on the system 
type from which the name came. The client then calls this NSM, 

which returns an HRPC Binding to the server of  interest. This 

Binding is system-independent from the point of  view of the client, 

even though the means by which this information is gathered by 

the NSM varies widely from system to system. A major advantage 

of this mechanism is that adding a system with a different RPC 

binding protocol only requires implementing a new binding NSM 

and registering its presence with the HNS. 

As an example of the use of the HNS, suppose a client of the 

HRPC system issues the import call: 

Import (ServiceName : "DesiredService", { * in * } 

HostName : "BIND, fiJ i. cs. washington, edu", { * in * ] 

ResultBinding : DesiredBinding) { * out * } 

Import nOW acts as a client of  the HNS to obtain a binding to 

"DesiredService" to retu~ to its caller. Import USeS the HostName 

specified by the client to construct the HNS name context 

("nRPCBinding-BIND") needed to look up the binding information in 

the t-INS. A call with query class "aRPCBinding" is then made to 

the HNS to obtain a Binding to the appropriate NSM: 

FindNSM(BindingToHNS: HNSBinding, 

QueryClass:"BRPCBinding", 

HNSName: 

{Context-"HRPCBinding-BIND", 

Name - "fiJi. ca. washington, edu" } , { * in * } 

NSMBinding : TheNSMBinding) { * out * } 

The Import oode then uses the NSMBinding to call the NSM, pass- 

ing R the HNSName: 

BindingNSM(BindingToNSM: TheNSMBinding, 

ServiceName:ServiceName, 

{*used by HRPC*} 

{*in*} 

{*used by HRPC*} 

{*in, from 

Import call*} 

{*in *} 

{*out *} 

HNSName: 

{Context-"HRPCBinding-BIND", 

Name-"fiJl.cs.washington.edu"}, 

ClientBinding: ResultBinding) 

The NSM looks up the local name C ' f i j i  .cs.washington.edu") in 

the name service, and then determines the needed port number for 

the ServiceName, using whatever binding protocol is appropriate 

for that particular system. The completed Binding to the service is 

then returned to the Import code, which returns the information to 

the client. 

The binding NSMs for both the BIND and Clearinghouse sub- 
systems are about 230 lines each. About three weeks were spent 

adding and modifying the code required to implement HNS-based 

binding. The majority of  this time consisted of implementing and 

measuring alternative approaches. 

Performance 

Every HNS naming request requires two steps in addition to 
the effort expended by the underlying name service: determining 

which NSM should handle the query, and calling that NSM. These 
two steps are the basic overhead of  I-INS naming. 

Our initial implementation of ZindNSM required elapsed times 

of  460 msec. per call. This poor performance, which was expected, 

was due to the cost of  the many BIND lcokups needed to access 
the meta-naming information. By installing a cache, we were able 

to reduce this cost to 88 msec. The remote call to the NSM takes 

22-38 msec., depending on the RPC system used. The remote call 

is avoided when the needed information is cached. 

In total, the basic overhead of I-INS naming is between 88 and 

126 msec. By way of comparison, a BIND name to address lookup 

takes 27 msee., and a Clearinghouse name to address lookup takes 

156 msee. s 

The above figures indicate the basic overhead inherent in 

HNS-based naming. As an example of  the costs of  t-INS-based 

naming in an application, we found that HRPC binding, including 

overhead, requires between 104 and 547 msec., depending on 

where the HNS and NSMs are located and how caching is done 
(described below). To give these numbers some significance, it is 

worthwhile to make comparisons with alternative binding mechan- 

s Clearinghouse accesses are slow because each access is 
authenticated, and virtually all data is retrieved from disk 
[Oppen & Dalal 1983]. In contrast, BIND does no authentica- 
tion and keeps all its information in primary memory. 
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isms. The interim HRPC binding mechanism, used prior to the 

construction of the I-INS prototype, was based on information rere- 

gistered in replicated local files. Binding using this scheme took 
200 msec. We should also compare our I-INS-based binding tim- 

ings with a scheme in which a name service holds all of  the (rere- 

gistered) data. We implemented such a scheme on top of  the 

Clearinghouse, and found that binding took 166 msec. 

While it may be possible to improve the performance of such a 

scheme (e.g., by using BIND instead of the Clearinghouse to store 
the data), this comparison shows that the tuned HNS performance 

is reasonably close to that of  homogeneous name services. 

Caching And  Colocation 

There are two ways to improve performance of the I-INS: one 

can use caching to reduce the number of calls made by the I-INS 
and NSMs to access their data, or one can link the I-INS and NSMs 

with the client so that local procedure calls can be used between 

them. Because the I-INS accesses its data from other servers 

(BIND for the meta-naming information, and the underlying name 

services for application data), even the HNS can be linked locally. 

Similarly, the NSMs can be linked with any process. 

The freedom to link the I-INS and NSMs with any process, 

rather than embodying them in a pa~cular  set of  servers, provides 

several possible designs for any particular HNS client. We call the 

choice of where the HNS and NSMs are linked for each client the 

colocation arrangement. This flexibility allows a tradeoffbetween 

performance and ease of management. On one hand, locally linked 

NSMs are harder to manage than remote NSMs, since adding a 

new one or modifying an existing one requires relinking all 

affected clients. 6 On the other hand, where the NSMs and t-INS are 

linked affects performance, since local calls are cheaper than 
remote ones. 

The performance tradeoffs involved in the colocation arrange- 

ment are actually more complicated than just described because of 
caching. The reduction in call overhead realized by linking pro- 

cedures locally is at odds with the fact that caching is more likely 

to be effective in long-lived remote servers than in locally linked 

copies. A natural question to ask is how big a cache hit improve- 

ment in the remote location is required to compensate for the 

increased calling cost. Letting C (') mean "cost of '  and using p to 

represent the cache hit fraction with locally linked copies and q the 

increase in the cache hit fraction obtained from remote location, we 
have 

C (remote location) = C (remote call) + (p +q)C (cache hit) 

+ (1-p-q)C(cache miss) 

C (local location) ffi C (local call) + (p )C (cache hit) 

+ (1-p)C(cache miss) 

Since C(local call) is effectively zero in the time scale of  the 
other terms, remote location is preferable whenever 

C (remote call) (1) 
q > C (cache miss) - C (cache hit) 

We will make use of this relationship shortly, after presenting 

measurements providing the cost measures needed to apply it. 

As a first attempt to characterize these tradeoffs, we ran a 

series of  experiments to determine how the various colocation 

arrangements and caching strategies affect performance. Although 

these experiments focus on HRPC binding, the results should apply 
to other applications as well. Our timings were made between two 

MicroVAX-II's at light load, with the BIND server used by the 

I-INS and the public BIND server each residing on lightly loaded 

MicroVAX-II's. All machines were joined by an Ethemet. 

Table 3.1 shows the measured performance for the case of 

HRPC import of  Sun RPC servers. The two dimensions of the 

table are colocation arrangement and the results of  cache lookups. 

(In the experiment for row 2 a single process remote from the 

client acted as the client's agent, making local calls to the HNS and 

then to the NSM. This structure provides a mixture of  colocation 

efficiency and ease of NSM update, as the code to be modified with 

changes to the NSM is well contained.) 

Column A illustrates the effect of  the colocation arrangement 

for the case of  no cache hits. (Since the overhead required to deter- 

mine that a reference is a miss is about 0.1% of the total times in 

column A, these times can also be interpreted as those required 

when no caching is implemented.) Each row represents a different 

choice of colocation. The configuration of row 1 requires no 
remote calls among the client, HNS, and NSM, those of rows 2-4 

each require one call, and that row 5 requires two calls. In all cases 

the client resided on separate hosts from the HNS/NSMs whenever 

they were not directly linked together. (Locating them on the same 

host reduces the timings by about 20 msec. in applicable 

configurations.) As can be seen in this column, the colocation of 

the client, I-INS, and NSMs can have only a modest influence on 

the total cost of  an I-INS query. The reason for this is the large 
fixed cost associated with the many remote accesses the I-INS must 

perform to determine a handle for an NSM. Thus, reducing the 

number of  remote calls by one or two has only a marginal effect. 
(Although colocation with the BIND service used by the HNS can 

have a fairly large effect, this is not a generally applicable approach 

and so is not considered further.) 

6 In systems that support shared libraries (e.g., Multics 
[Daley & Dennis 1967]) this is less of  an issue because multi- 
ple clients can be extended by updating a single shared li- 
brary. However, to our knowledge no systems support shared 
libraries across machine boundaries, and hence updating lo- 
cally linked clients would still require updates to each 
machine in turn. In contrast, since NSMs are called using 
HRPC, registering an NSM with the HNS extends the func- 
tionality of  all machines at once. 
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Colocation A. Cache Miss B. I-INS Cache Hit , C. I-INS and NSM 
Arrangement Cache Hit 

i J J 
1. [Client, HNS, NSMs] 460 180 104 

i i i 

2. [Client] [I-INS, NSMs] 517 235 137 
I I I 

3. [HNS] [Client, NSMs] 515 232 140 
i i i 

4. [NSMs] [Client, HNS] 509 225 147 
i | i 

5. [Client] [I-INS] [NSMs] 547 261 i 181 

Table 3.1: Performance of  H R P C  Binding  for Var ious  Colocat ion Arrangements  (msec.) 
[ ] indicates colocation. 

While it is possible to eliminate some of the indirection used 
by the I-INS, and so reduce the number of remote calls, this would 
also decrease the resilence of  the I-INS to reconfigurations of the 
distributed system. Instead, we improve the speed of each lookup 
through caching. Both the HNS and the NSMs were modified to 
cache the results of remote lookups. Column B of Table 3.1 shows 

the performance observed when the HNS has a cache hit but the 
NSM has a cache miss, while column C shows the performance 
when both phases have hits. 7 It is clear from the table that caching 
results in a significant performance improvement over the base 
case. Further, most of  this improvement is attributable to the I-INS. 
This is not too surprising since the basic HNS scheme requires six 
data mappings, each of  which involves a remote call in the case of 
a cache miss, while the NSM needs only a single remote call. 

Based on the observation that the HNS cache is the most 
important determinant of  performance, we experimented with the 
idea of  preloading that cache. (We also considered preloading the 
NSM caches, but that would be less effective). The motivation for 
this is simple. In those cases where the HNS used by the client is a 
local copy, the cost of the many remote lookups required on the 
initial reference to various pieces of  meta-naming information 
might exceed the cost of preloading the relatively small amount of 
information (currently about 2KB) required to guarantee HNS 
cache hits. The actual preload cost was measured to be about 390 
msee. s Since the cost of preloading plus a cache hit falls between 
one and two cache miss times, preloading seems to be effective in 
situations where two or more calls to the HNS for different 
context/query classes will be made. 

The major lesson to draw from the measurements of Table 3.1 
is that the potential benefit of caching far exceeds that obtainable 
solely by colocation. The reason for this is clear: at most two 

remote calls can be eliminated by colocation while each cache hit 
eliminates many. 

7 Cached data is tagged with a time-to-live field for cache 
invalidation. While this simplistic mechanism can cause 
cache consistency problems, it would not make sense to use a 
more sophisticated scheme because the source of our cached 
data (BIND) also uses this mechanism for cache invalidation. 
Given our assumption that data changes slowly over time, we 
feel that this mechanism will suffice. 

s The BIND zone transfer mechanism, used by BIND 
secondary servers to request data transfers from primary 
servers, was employed to preload the caches. 

Finally, there is still the question of whether colocation of the 
HNS or NSMs with the client is worthwhile. Beginning with the 
base case of  remote HNS and NSMs, consider the effect on perfor- 
mance of making the HNS local. Using equation (1), and estimat- 
ing C(remote call) as 33 msec., C(cache hit) as 261 msec., and 
C (cache miss) as 547 msec., we calculate that the cache hit frac- 
tion obtained when the HNS is remote must exceed that when it is 
local by an additional 11% for the remote case to provide better 
performance. Now consider also making the NSMs local. Apply- 
ing equation (1), and estimating C(cache hit) as 147 msec. and 
C (cache miss ) as 225 msec., an additional 42% cache hit must be 
experienced by the remote NSMs for them to be preferable to local 
copies. Neither of  these increments leads to a clear cut decision 
about the most efficient location for the HNS or the NSMs. 
Further work on the dynamic cache hit ratios achieved in practice 
will be required to make this decision for any particular workload. 
It is important to remember, however, that from a software mainte- 
nance point of view there is a high price for colocation in terms of 
the difficulty of maintaining the software in the face of  changes to 
the HNS and NSMs. 

Although unrelated to the specific purposes of the t-INS, we 
have had some interesting experience with the cache we imple- 
mented. In the initial version, we kept data in its marshalled form, 
and demarshalled it upon every access, expecting that marshalling 
was a minor expense. To our surprise, the cost of  marshalling was 
very high: the time taken to perform BIND ioolmps depended 
heavily on the number of BIND resource records returned. 9 As 
shown in Table 3.2, by simply changing the cache to keep 
demarshalled information, the times decreased dramatically. 

This result is surprising, especially in light of the fact that the 
HCS file system found that marshalling/demarshalling accounted 
for only 1% of its call time [Black et al. 1987]. Upon further 
investigation, we determined that the marshalling routines we used 
for BIND were significantly more expensive than those used by the 
HCS file system. This complexity was the price we paid for the 
RPC-style structure we built for our BIND interface: rather than 
use the standard BIND library routines (which include the code to 
marshal, send/receive, and interpret BIND client-server messages), 
we built an HRPC interface to BIND. This interface is built on top 

9 BIND data is stored as a collection of resource records, 
each of which can be up to 256 bytes of data. Separate 
resource records are intended to store alternate data for one 
name, e.g., multiple network addresses for gateway hosts. 
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Resource Cache miss Marshalled Demarshalled 
Records cache hit cache hit 

Per Name 

1 20.23 11.11 0.83 

6 32.34 26.17 1.22 

Table 3.2: The Effect of Marshalling Costs 
on Cache Access Speed (msec.) 

of our Raw HRPC protocol suite [Bershad et al. 1987], which 
allows HRPC clients to make calls to any message passing pro- 
gram that conforms with the basic RPC paradigm of "make a 

request and wait for a response". Instead of  writing complicated 
low-level marshalling routines to handle the BIND message for- 
mat, we described this format using our interface description 
language, and used the marshalling code generated by our stub 

compiler. 

The problem is that the generated marshalling routines, 
although correct, incur a good deal of overhead in procedure calls, 
indirect calls to marshalling routines, unnecessary dynamic 
memory allocation, and unnecessary levels of marshalling. In par- 
ticular, the standard BIND marshalling routines corresponding to 
the cases measured in Table 3.2 take .65 msec. and 2.6 msec. for 
one and six resource record lookups, respectively. While this 
experience shows that our HRPC-based marshalling scheme is 
quite a bit more expensive than necessary, it also shows that we 
were able to retain the advantages of this scheme at reasonable per- 
formance by making a simple change to our cache implementation. 

4. Related Work 

To recap, the goal of  our design is to allow the integration of 
existing name services to form a uniform, global facility. It is im- 
portant in our environment that existing applications be allowed to 
mn unaltered while at the same time reflecting the naming updates 
made by them to the network-wide clients of our name service. In 
this section we contrast our work with various earlier effoas in 
both heterogeneity and naming. 

Internet Mail Systems 

Most early work in heterogeneous naming concerned internet 
mail systems [Redell & White 1983], the most well-known exam- 
ple being UNIx sendmail [Allman 1985]. Sendmail uses rewriting 
roles to describe how to parse heterogeneous mail names. 
Although sendmail has allowed the interconneetion of a large 
variety of electronic mail networks, this technique has several 
drawbacks. First, sendmail centralizes the understanding of mail 
naming in a single component (which is replicated on each host); 
the proliferation of interconnected networks [Quaaerman & Hos- 
kins 1986] makes this approach difficult to manage. Second, send- 
mail depends on being able to discern naming semantics based on 
the syntactic structure of  names. Doing so impedes name space 
administration [Terry 1985,Terry 1986] and reflects the complex- 
ity of heterogeneous naming to clients and users of  sendmaii-based 
mail agents. 

CCITT has undertaken an effort to standardize mail naming 
and protocols for a world-wide electronic mail network [CCITT 
1984, Cunningham 1983]. While standardization would clearly be 
very beneficial in the long term, it does not provide a solution in 
the short term: as made evident by the ongoing transition to 
Domain-style naming [Postel 1984], renaming on such a grand 
scale is expensive and difficult. In addition, approaches based on 
standardization require a large effort, which would not be effec- 
tively amortized in our environment, since we have only a few 
instances of  many different system types. 

DEC SRC Global Name Service 

There has been recent work at the DEC Systems Research 
Center concerned with constructing a replicated name service 
intended to scale to the level of billions of names distributed 
throughout the world [Lampson 1986]. The major contribution of 
this work is a scheme for combining name services by allowing the 
root to be extended arbitrarily (in contrast to systems such as the 
Domain Internet naming scheme, which only grows downward 
from a fixed root). The major difficulty encountered is dealing with 
changed names: extending the root causes the absolute names of 
some (or all) entities to change; such global renaming is made 
feasible by the provision of  mechanisms that smooth the transition. 
One such mechanism involves leaving temporary forwarding links. 
A second mechanism involves allowing applications to "change 
roots", the idea being that only applications that actually need to 
access names in the newly extended root need change their root to 
the global root. A third mechanism involves keeping a list of 
important names that were reachable from previous roots in the 
"superroot". This scheme is intended for interim use only, as other- 
wise the superroot processing and storage requirements would not 
scale to the desired level. 

Although this work, like the FINS, is concerned with combin- 

ing name services, the focus and characteristics of the systems are 

quite different. The DEC SRC system is primarily concerned with 

scalability in the size dimension, where as the HNS work is more 
concerned with scalability in the heterogeneity dimension. The 
HNS assumes a single globally rooted context name space, concen- 

trating on allowing the individual names to vary in syntax and 

semantics. The DEC SRC system allows its name space to grow 

upwards, concentrating on ways to allow this freedom without the 

troubles typical of renaming and relative naming. 

Decentralized Name Interpretation 

Cheriton and Mann [Cberiton & Mann 1984,Cheriton & 

Mann 1986] have developed a facility for global naming with no 

central authority. The primary idea is that names are interpreted by 

the services that provide named entities, rather than by a logically 
centralized name service. The point of this method is that it saves 
accessing a second party service, gaining efficiency and robustness. 

The I-INS name space may also be classified as being decen- 
trally interpreted. However, there are more differences than simi- 
larities in our work. In V, the emphasis is on decentralized 
interpretation as a new naming scheme, oriented towards increas- 
ing efficiency and reliability in naming. In the HNS, the emphasis 
is on accommodating multiple existing naming facilities. Direct 
access naming is based, in part, on decentralized interpretation, but 
decentralized interpretation does not necessarily imply direct 
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access. 

Portal Based Naming 

Lantz et al. designed and implemented a naming system based 
on entities they call portals [Lantz, Edighoffer & Hitson 1985]. A 
portal is an active entity associated with an action to be taken when 
an entity is referenced. This introduces a level of  indirection in 
name interpretation, and supports monitoring, access control, and 
"domain switching", i.e., stripping off part of the name and passing 
the rest on to a new "domain" to continue its interpretation. This 
latter aspect could help support integration of  heterogeneous name 
services. 

While they bear some resemblance to NSMs, portals are 
intended to support a broader variety of functions. NSMs are 
intended primarily for dealing with heterogeneous naming seman- 
tics, and we have focused on the issues relevant to this purpose. In 
addition, there is no indication of how portals should be accessed 
or managed. The HNS provides the support needed to manage 
NSMs, separating the issues of  understanding semantics from 
name space administration. 

Administrative Autonomy 

Peterson defines a notion of heterogeneity concerning an inter- 
net that consists of  autonomous organizations [Peterson 1985]. 
The key problem is the lack of  a single system-wide user creation 
operation that assigns a high-level name to a user at creation time. 
His main concern is allowing users to name each other without 
forcing users to register explicitly with a name service. Like the 
I-INS, his mechanism integrates autonomous name spaces. Unlike 
the I-INS, Peterson's system provides a collection of tools that sup- 
port a bottom-up construction of  the naming network, continuously 
combining name spaces, rather than joining all name spaces under 
a single global root. Names thus seem to be relative to the current 
root, and change if the current root changes. Peterson also allows a 
less restrictive naming syntax than usual: names are sets, where 
each element of  the set is described by a regular expression. 

Jasmine File System 

Jasmine [Marzullo & Wiebe 1986] is a system consisting of 
workstation tools and network services to help programmers 
develop, release, and maintain large software systems. The 
Jasmine file system integrates heterogeneous file systems by using 
names that map, via syntactic transformations, to the names of files 
in the underlying file systems. The file system presents a 
Fetch/Store interface. To fetch or store a file, the system first con- 
suits a database to determine the file location and file system type. 
Based on the file system type, a call is made to a particular "plug- 
in" procedure to handle the operation [Wiebe 1987]. These plug-in 
procedures are similar to NSMs, in that they implement identical 
interfaces to different underlying systems, and new ones can be 
added by dynamically loading them. 

There are several differences from our work. First, NSMs are 
potentially remote procedures. Hence, the method of adding new 
ones differs from Jasmine. It is easier to add I-INS applications 
because NSM registration is done in one place, instead of on each 
host. On the other hand, the Jasmine procedures are more efficient 
than the most general I-INS case, since they are always local pro- 
cedures, with a less expensive selection protocol. Second, the 

I-INS is a more general mechanism, since it allows arbitrary nam- 
ing interfaces; Jasmine did not need to be this general. Third, 
Jasmine maintains location information for each file. This would 
be inappropriate in the HNS because it would make the location 
database comparable in size to the database of information to 
which names map. This is not a problem in a file system, since 
files are typically large relative to naming data. 

Heterogeneous Databases 

The database community has been working on integrating 
heterogeneous systems for several years. The goal is to allow users 
to read and manipulate data from several independently 
created/administered databases, each of which has different data 
formats, access protocols, and manipulation languages, The 
methods used for accessing these databases vary from multilevel 
translation (between query languages, data formats, etc.) [Temple- 
ton et al. 1986] to meta-query languages that allow the user to 
name various databases and define relationships between them, for 
manipulation, privacy, and equivalence dependencies [Litwin & 
Abdellatif 1986]. These schemes support joining of data in dif- 
ferent database schemas, and broadcasting of  user intentions over a 
number of database schemas with varying naming rules for data 
with similar meanings. 

These projects differ from our work in several significant 
ways. First, their goals are often different: Some systems want to 
allow users to perceive "varying views of reality" [Litwin & 
Abdellatif 1986], whereas the HNS is intended for allowing a more 
coherent view of abstractly similar subsystems. Second, these 
approaches are not typically factored in such a fashion to allow 
easy introduction of new database types, whereas reducing the cost 
of  integration is the primary goal of our work. Third, the imple- 
mentation techniques differ significantly: the database work often 
involves language translation, whereas our scheme uses registered 
agents to handle particular access protocols and data semantics. 

5.  C o n c l u s i o n s  

We have described a new approach to providing a name ser- 
vice for continually evolving systems that are composed of  a 
heterogeneous collection of subsystems, with the overall goal of 
reducing the cost of integrating new system types into an existing 
environment. Rather than implementing a new global standard, 
our approach is based on integrating existing name spaces through 
a structure that separates name space administration from 

knowledge of the semantics of naming in each of the assimilated 
subsystems. A major advantage of  this approach is ease of  integra- 
tion: newly added system types can participate in the larger system 
without modification, and systems that use the name service can 
take advantage of the services provided by new systems without 
modification. 

Based on measurements of  our prototype, we have shown that 
a specialized caching scheme based on locality of  reference of 
query class and name system type can provide acceptable perfor- 
mance, that caching of meta-naming information potentially saves 
more time than the difference between local and remote calls, and 
that the set of  colocation alternatives represents a spectrum of 
tradeoffs in performance for ease of  management, from which pro- 
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grammers can choose what best suits each particular application. 
We are continuing our effort towards improving the performance 
of the HNS without decreasing its flexibility. 

Another major contribution of our work is the soflware struc- 
ture we have defined. Relieving clients from the complexities of 
distribution and heterogeneity through the use of a global 
intermediary service (e.g., the HNS) and a set of agents that access 
existing services (e.g., the NSMs) is a generally applicable struc- 
ture. We are pursuing this structure in the context of both an elec- 
tronic mail system and also a heterogeneous file system that medi- 
ates access to the set of local file systems present in the environ- 
merit. 

A c k n o w l e d g m e n t s  

A major strength of our effort is that it arises within a larger 
context - the Heterogeneous Computer Systems (HCS) project - in 
which a number of investigators are working together on broad 
solutions to the various problems that arise in accommodating 
heterogeneity. HCS project pa~icipants in addition to the authors 
include Brian Bershad, Andrew Black, Fran Brenner, Dennis 
Ching, Sung Kwon Chung, Bjorn Freeman-Benson, Kimi Gosney, 
Edward Lazowska, Henry Levy, John Maloney, Cliff Neuman, 
Brian Pinkerton, Jan Sanislo, Mark Squillante, James Synge, and 
Doug Wiebe. 

Special thanks to Ed Lazowska for many careful readings and 
helpful suggestions. Jan Sanislo deserves special mention for over- 
seeing the implementation effort, and particularly for making 
HRPC work as well as it does. 
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