
ERROR RESYNCHRONIZATION IN PRODUCER-CONSUMER SYSTEMS

David L. Russell and Thomas H. Bredt
Stanford University

This paper ~s concerned with error processing for parallel producer-consumer interactions
such as encountered in the desing of multi-process operating systems. Solutions to resynchroni-
zation problems that occur when a consumer process detects errors in information received from
a producer process are presented. Fundamental properties of this error processing are discussed.
I t is shown that exp l ic i t error processing results in an increase in program complexity and a
decrease in the ease of understanding a program.

Key Words and Phrases: software re l i ab i l i t y , error detection and recovery, faul t tolerance,
message fac i l i t i es , operating systems, asynchronous programming,
interprocess communication

CR Categories: 4.22, 4.29, 4.32, 4.35

I. INTRODUCTION

A Substantial portion of the software in most
systems is devoted to error processing of some form;
therefore fundamental properties of error processing
need to be clearly understood. Wulf [1] has dis-
cussed the techniques being used for treating
errors in the HYDRA operating system. Some gen-
eral conventions that are useful in writ ing collec-
tions of Sequential programs have also been pro-
posed [2,3]. In particular, Parnas has said [3]:

The interfaces between the modules must enable ~
the communication of information about external
errors. For example, i t should be possible
for a module to be informed that information,
given to i t ear l ier , was incorrect, or that a
request, which i t had issued some time ago,
was executed incorrectly. I t should be pos-
sible for a module, which detects inconsis-
tancies in incoming information, to inform
the supplying module about those inconsis-
tancies. The module supplying those data
should be designed to respond meaningfully
to such a notif ication.

In this paper i t is shown that, for parallel systems,
e r r o r recovery of the type proposed above can be
d i f f i c u l t to perform correctly. A particular
example of parallel process interaction, the pro-
ducer-consumer problem, is considered. Known
solutions are extended to handle errors of a par-
t icular type. Analysis of the program solutions
shows that fundamental properties of the error
situations cause the programs to be d i f f i c u l t to
design correctly and to understand.

This work was supported in part by the
National Science Foundation under Grant No.
GJ41644.

2. THE PRODUCER-CONSUMER SYSTEM

To motivate the discussion that follows, br ief
descriptions of two situations that require some
kind of error recovery are presented.

WYLBUR [4] is a text editor system developed
at Stanford University. In normal use, the WYLBUR
system accepts l ine images of commands that are to
be performed; these include commands to obtain
f i les for editing, the actual editing commands,
and miscellaneous system commands. Thus, for in-
stance, the command INSERT 3.5 allows a text l ine
to be inserted into the active f i l e , between lines
3 and 4, and assigns the l ine number 3.5 to i t .
I f however, a l ine numbered 3.5 already existed,
WYLBUR replies with an error message and the com-
mand must be corrected and repeated. Similarly,
i f a command is misspelled or is unacceptable for
some other reason, WYLBUR refuses the command and
issues an error message.

In some versions of WYLBUR, a preprocessor
allows commands to be batched and/or generated by
macro substitution. Thus i f a sequence of com-
mands is stored in the active f i l e , the command
EXEC ACTIVE submits these commands as a block to
the text editor. A sequence of frequently used
commands can be e f f ic ien t ly submitted to the
editor using this fac i l i t y . I f there is an error
in one of these commands, however, the editor
stops at the point that the incorrect command is
scanned and the block submission of commands is
terminated. Any commands remaining in the block
are automatically thrown away.

In some cases, this flushing of the remainder
of the block is desirable; in other cases, i t
would be preferable for the editor to accept a cor-
rected command and then Lontinue with the rest
of the block of submitted commands.

106

A second example occurred in the development
of a small operating system. An input driver for
a terminal was to be written. The driver was to
accept text from the terminal, buffer i t , and'pass
i t on to the remainder of the system. In addition,
for increased efficiency, the terminal was to be
operated in a read-ahead mode; that is, an entire
page of text and command words was to be input at
one time.

When the processors of the system found an
error in the command stream of the input text,
they were to return an error message to the term-
inal. However, by this time, subsequent commands
had already been entered into the input driver
buffer; some means had to be found to remove these
commands from the input stream and retry a correct-
ed version of the offending text.

In both of these examples, the following ele-
ments are present: a source of data that is una-
ware of the syntactical or semantic correctness of
the data, a sink for that data that is sensitive
to the correctness of the data, and multiple buf-
fering of the data stream that allows the source
Of data to get ahead of the sink.

As an idealized version of these problems, the
producer-consumer problem [5] is used in this
paper to study error recovery techniques. In this
problem, two relat ively independent processes, a
producer and a consumer, execute concurrently and
communicate through an interprocess communication
mechanism that ensures synchronization of the two
processes and mutual exclusion between their c r i t -
ical sections. An abstract view of the data flow
between the two processes is shown in Figure I.
The producer generates data and this data is used
by the consumer. I t is assumed that the producer
and consumer processes execute in an environment
with common shared memory and one or more processor
units. Each processor may have some local memory.

When an error is detected by the consumer,
the consumer takes action to inform the producer,
so that the producer can correct and retransmit
the corrected data. This exchange of error mes-
sages and producer responses acts to resynchronize
the two processes, and to allow their continued
cooperation. In this paper, solutions to the
producer-consumer problem that include expl ic i t
resynchronization of the processes in the event
of an error are considered. The program repre-
sentation, exact fai lure situations, assumptions,
and restrictions are discussed below.

Program Representation

The programs of this paper are expressed in
a PASCAL-like language [6] augmented by the
parallel statement proposed by Dijkstra [5]:

Figure I. Producer-consumer data flow

parbegi n Sl; $2; . . . S n parend. The parallel

statement indicates that the statements S l , S 2

S are to be executed concurrently. In addition, n
the language is augmented by messagelist declara-
tions and SEND-RECEIVE primitives similar to
those discussed by Brinch Hansen [7,8]. A
declaration var m: messagelist(n) __of T, for ex-
ample, declares m to be a messagelist whose
capacity is n messages, all of type T. The oper-
ation SEND(mlx) where m is a messagelist of some
type and x is a variable of that same type, wi l l
put the value of x into the messagelist named m;
further, that operation wi l l be a primitive oper-
ation and therefore a protected cr i t ica l region.
The complementary operation, RECEIVE(m,x), takes
a message from the messagelist m and places i t in
the variable x of the same type; i t is also a
primitive operation. I f a process attempts a
RECEIVE operation but the messagelist is empty,
the process is blocked (placed in a wait state).
I f a process attempts a SEND operation and the
messagelist is fu l l (i t has a f i n i t e capacity),
the process is also blocked. In addition, mes-
sages are assumed to be received in the same order
as they are sent.

With these features for interprocess commu-
ication, one possible solution to the producer-
consumer problem is given in Figure 2. In this
solution, a messagelist of capacity n is used to
transmit data between the producer and the con-
sumer. The multiple buffering of data between
the two processes contributes to the overall
efficiency of the system by increasing the poten-
t ia l system throughput. (Note that these processes
loop forever; no provision is made for handling
end-of-data situations.)

.t_y_p._ebuff = <<information to be transmitted>>;
va__[mlist: messagelist(n) of_buff;

~_rocedure producer;
var buffer: buff;
begin

while true do

bef~l'~l buffer;
send(mlist,buffer);

end;
end producer;

~rocedure consumer;
var buffer: buff;
begin

while true do
begin

receive(mlist,buffer);
empty buffer;

en__d;
end consumer;

begin
parbegin producer; consumer parend;

end.

Figure 2. Access by value

107

Type of Fallure Situations

Two types of failure situations are considered
in this paper. In both, the producer produces
data for the consumer. When the consumer obtains
this data i t is able to tell i f the data is invalid
before another message is received. I f the mes-
sage is invalid, the consumer initiates corrective
action of some kind by sending an error indication
to the producer. Between the time that the pro-
ducer sends the message that is invalid and the
time that i t receives the error indication for
that invalid buffer, the producer may have gene-
rated and sent several messages to the consumer.
The two failure situations considered differ in
the properties of these messages. In failures of
type F~ the records produced by the producer are
assumea to be dependent upon the preceding records;
the messages that have been sent but not received
must not be allowed to be consumed by the consumer.
In failures of type F~ the messages produced by the
producer are assumed to be independent; although
the sequence order of the messages is important,
the fact that one record may be incorrect does not
necessarily invalidate subsequent records.

In this paper, we seer solutions to the re-
synchronization problem of returning the prod~'er
and consumer processes to normal interaction fol-
lowing detection of a failure situation of type
Fa or F~ by the consumer. The following assump-
tions ahd restrictions are made in considering
solutions to the resynchronization problem.

Assumptions

I. The consumer detects an invalid buffer
immediately, as soon as i t is received.

2. The producer is able to correct andre-
transmit a buffer that is invalid when
obtained by the consumer. (This may
involve consulting with an external
oracle or the keeping redundant informa-.
tion by the producer).

3. End-of-data conditions are ignored.
4. The message system works correctly.
5. The hardware system works correctly.

Restrictions

I. The multiple buffering of the original
solutions must be retained as long as the
transmissions are successful. (Efficiency
should not be drastically reduced because
of re l iabi l i ty requirements.)

2. The transmitted buffers must be received
in sequence.

3. The resynchronization of the producer and
consumer must be performed using SEND-
RECEIVE primitives and global data.

3. SOLUTIONS TO THE RESYNCHRONIZATION PROBLEM

The program of Figure 3 solves the producer-
consumer problem in the absence of error. The
SEND-RECEIVE primitives are used to transmit the
location of the data that is the real object to
be transferred. Thus this is essentially an
access by reference. Furthermore, although the
data flow is in only one direction (from producer

to consumer), the addmsses of empty and ful l buf-
fers travel in both directions. This gives the
two processes of the solution a pleasant symmetry;
i t is not d i f f icu l t to be convinced that this pro-
gram is a correct solution.

Three solutions to the resynchronization
problem that access the message buffers by refer-
ence are now discussed in detail. The f i rs t two
examples are solutions to problems of type F~;
messages that have been produced are allowed" to
stay in the global buffers and are used after the
invalid message has been corrected. The third
solution discards messages that were produced after
the incorrect buffer; this solution applies to
failures of type F d-

This section concludes with a short descrip-
tion of some other methods of providing error
recovery in the producer-consumer system, followed
by a brief discussion of the ~lay problem asso-
ciated with many of the available solutions.

Access by Reference

How can the system of Figure 3 be extended
to provide for retransmission of buffers that were
incorrect when obtained by the consumer?

In the f i r s t place, i f the multiple buffer-
ing of the original program is to be maintained,

type buff = <<information to be transmitted>>;
index = l . .n;

var buffer: arraz(index) o_f_buff;
~ e m p t y , fu l l : messagelist(n) of index;

procedure producer;
var emptyid: index;
begin

while true do
begin

receive(empty,emptyid);
f i l l buffer(emptyid);
send(full,emptyid);

end;
end producer;

procedure consumer;
var ful l id: index;
begin

while true do
begin

receive(ful l , ful l id);
empty buffer(full id);
send(empty,fullid);

end;
end consumer;

begin
for i := 1 to n do send(empty,i);
parbeginproducer; consumer parend;

end.

Figure 3. Access by reference

108

then there are some constraints on the ways that
the consumer can acknowledge the correctness of
the data. In particular, the consumer cannot be
required to send an explicit "ok" back to the
producer after each buffer and before the producer
is allowed to Zi l l the next buffer. This would
cause lock-step synchronization between the two
processes, and the multiple buffering woui~d be
lost.

I f the producer is to be able to get O,], or
more buffers ahead of the consumer, then the con-
sumer cannot just return a simple error indication,
since the producer would not know which buffer was
invalid. The consumer must indicate to the pro-
ducer which buffer needs to be corrected and re-
transmitted. '~ Either theconsumer must expl ici t ly
indicate the address of the buffer that needs to

be retransmitted, or the contents of the buffer
must be self-identifying. The former case is con-
sidered f i rs t .

When the producer is informed of a contami-
nated buffer, i t can correct the buffer using re-
dundant information of some form. I t then must
signal the consumer in some way that the buffer
is ready to be obtained again. One way to signal
the consumer is by sending a message in a message
l i s t . But the same messagelist full that is used
to transmit the addresses of the original buffers
cannot be used since this may allow other buffers
to be obtained out-of-order. A different message-
l i s t must be used.

The solution of Figure 4 seems to satisfy all
these requirements. ~ssagelist err is used to
tel l the producer i f there was an invalid buffer,
and i f so, which one i t was. Messagelist checked
is used to let the consumer know when the buffer
has been corrected. (Checked is a messagelist of
type null, and has no data passed through i t ; SEND
and RECEIVE then act like Dijkstra's V and P syn-
chronizing primitives [5].)

In this solution an extra SEND-RECEIVE pair
is generated for every buffer that is transmitted
from the producer to the consumer. I f the over-
head is large for messagelist operations then i t
may be desirable to avoid some of these operations
by encoding some of the error information in glo-
bal shared data. An example of a solution that
uses global shared data to pass error information
is given in Figure 5.

The solution in Figure 5 illustrates a prob-
lem that often arises because there are two dif-
ferent actions the consumer must take, depend-
ing on whether the buffer was in error or not.

(I) I f the buffer was not invalid, then the
consumer must f i rs t

(a) empty the buffer (consume i t)
and then ')~b return the buffer (SEND(empty,

ful l id) or equivalent).

(2) I f the buffer was invalid, then the con-
sumer must f i rs t

(a) return an error indication,
(b) wait for a correct version of

the buffer contents to arrive,
and then (c) empty the buffer.

In case of an invalid buffer (case 2), some
kind of synchronization is necessary so that the
producer will know when i t can examine the error
indicator. I f busy waiting is to be avoided, this
must be done by a RECEIVE command. The error in-
dication may be passed in the messagelist of the
RECEIVE command i tsel f , or i t may be in a shared
global variable. Further, i f this RECEIVE command
is not to add too much overhead to the solution,
i t must be the same command that obtains the empty
buffer.

But now there are two different orders of the
operations <return empty buffer> and <empty the buf-
fer> and the consumer must deal explicit ly with the
two different cases. The two cases may be combined
in the consumer but only at the expense of clarity.
Recall that the producer must use two different
messagelists to receive error indications, or out-
of-order problems could occur. Therefore the con-
sumer must synchronizethe error handling by using
these two different messagelists. This further
complicates combination of the error and no-error

In Figure 5, the error response is in i t ia l l y
sent through the global buffer, and the messagelists
retry and retryok are subsequently used to syn-
chronize the retransmission of the corrected buffer.

All of the solutions so far have assumed that
the processes themselves explici t ly indicate the
addresses of the buffers to be retransmitted and
that the buffers contain no self-identifying in-
formation. I f , for example, the records are num-
bered when sent, then retransmission can be syn-
chronized by indicating the number of the buffer
to be resent. An example of this type of solution
is shown in Figure 6.

I f the consumer detects an error, i t returns
an "empty" buffer with the message "error - please
start over with message # ". The producer then
uses its redundant information to start over at
the appropriate record. I t may use the same mes-
sagelist for retransmission as well, since the
consumer can just ignore records until the proper
record arrives. Thus the out-of-order problem
is solved.

Other Solutions

Solutions to the error recovery problem for
the producer-consumer system can be characterized
by at least five factors: the failure situation
that is solved, the type of solution that is used,
the location where the error indication is passed,
the way that the incorrect message is identified,
and finally the particular version of synchroniz-
ing primitives that is used. Of course, these
factors are highly interdependent. Some of the
possibilities are discussed below.

Two relevant failure situations have already
been discussed: independent failures, F i , and
dependent failures, F d.

Two basic solution types also exist: retry
and ~ r ee. In retry solutions the invalid buffer
is repeated until accepted by the consumer; any
already-generated but not-yet-consumed buffers are

109

type buff = <<information to be transmitted>>;
index = l . . n ;
etype = O...n;

var buffer: array_(index) of buff ;
- - e m p t y , f u l l : messagelis-t(n) of index;

err : messagelist(n) of etypeT-
checked: messagelistTT) of nu l l ;

procedure producer;
var emptyid: index;

etyp: etype;
begin

while true do
begin

receive(err,etyp);
while etyp ~= 0 <<error occurred>> do

begin
correct buffer(etyp);
send(checked);
receive(err,etyp);

end;
receive(empty,emptyid);
f i l l buffer(emptyid);
send(full,emptyid);

end;
end producer;

procedure consumer;
var ful l id: index;
begin

while true do
begin

receive(ful l , ful l id);
while buffer(ful l id) is in error d__o

begin
send(err,full id);
receive(checked);

end;
<<now buffer(ful l id) is ok>>
send(err,O);
empty buffer(ful l id);
send(empty,fullid);

end;
end consumer;

begin
for i := 1 to n do

begin send~emp~-,i); send(err,O) end;
parbegin producer; consumer parend;

end.

Figure 4. Retry solution
(error location in messagelist)

txpe buff = <<information to be transmitted>>;
index = l . . n ;

var buffer: array(index) of buff ;
- - e m p t y , f u l l : messae~T~-t(n) of index;

re t ry : m e s s a g ~ - t ~ T ~ ~ nulT;-
retryok: messagel ist(IT-of Boolean;

procedure producer;
var emptyid: index;

errpresent: Boolean;
begin

while true do
begin

receive(empty,emptyid);
errpresent := buffer(emptyid) = "error";
while errpresent d__o

begin
correct buffer(emptyid);
send(retry);
receive(retryok,errpresent);

end;
f i l l buffer(emptyid);
send(full,emptyid);

end;
end producer;

procedure consumer;
var fu l l id: index;

errpresent: Boolean;
begin

while true do
begin

receive(ful l , fu l l id);
i_f_buffer(fullid) in error then

begin
buffer(ful l id) := "error";
errpresent := true;
send(empty,fulli~;
while errpresent do

begin
receive(retry);
errpresent := buffer in error;
i_f_~errpresent then

empty buffer(~-ITid);
send(retryok,errpresent);

end;
end

else
begin

empty buffer(ful l id);
send(empty,fullid);

end;
end;

end consumer;

begi._n
for i := l to n do send(empty,i);
parbegin pro-d-ucer--;- consumer parend;

end.

Figure 5. Retry solution
(error location in buffer)

ii0

type buff = <<information to be transmitted>>;
index = l . .n ;

var buffer: array(index) of
record serno: i n ~ e r ; info: buff end;

empty, fu] l i mTssagelistTffT-o~-index;

procedure producer;
va.__Femptyid: index;

next, lastgen: integer;

next := O;
lastgen := O;
while true do

be9in
receive(empty,emptyid);
with buffer(emptyid) do

begin
i f info = "error" then next := serno

else next ~-nex-t_~ l ; ___
i f n e x t = lastgen + l then

be9in
produce record # next;
lastgen := next;

end;
serno :: next;
info := record # next;

end;
send(full,emptyid);

end;
end producer;

procedure consumer;
var fu l l id : index;
~ l a s t r e c : integer;
bed

lastrec := O;
while true do

n begi
receive(fu l l , fu l l id) ;
with buffer(ful l id) d._o

i f info is in error the____n
-~e9in

serno := lastrec ÷ l ;
info := "error";

end
else
--TTserno~= lastrec + l then

ignore i t
else

begin
lastrec := lastrec + l ;
empty info;

end.;
end;

sendRempty,fullid);
end;

end consumer;

begin
for i := 1 to n do

begin
send(empty,i);
buffer(i) . info := "ok";

end;
parbegin producer; consumer paren_d;

end.

Figure 6. Purge solution

lef t alone, and are received when the consumer
resumes normal operation. In purge solutions the
producer starts over at the incorrect buffer; any
already-generated but not-yet-consumed buffers are
thrown away. (The solutions of Figures 4 and 5 are
retry solutions; the solution of Figure 6 is a
purge solution.) In order to handle a failure of
type F d a purge solution must be used. On the
other hand, failures of type Fi may be handled
by either retry or purge solutions. The risk is
that perfectly good buffers (which might be very
expensive to generate) may be discarded needlessly.

The actual indication of error may be passed
in several locations. In the solution of Figure 4,
the error message was passed in a messagelist.
In the other two examples the error messages were
in the global shared message buffers; there was
one error location per buffer. Other solutions
might have one error location per buffer, where
the error locations are in global shared memory
but separate from the message buffers, or they
might have one error location which applies to all
buffers at once.

The buffer that is invalid and must be cor-
rected can be identified by giving each message
a serial number, as in Figure 6. An alternate
method, which is applicable when the buffers are
in global shared memory, is to indicate the address
or the array index of the bad buffer. I f an array
of error indications is used, the value of the
array element can specify the correctness of the
corresponding buffer. The exact method of spec-
ifying the incorrect messaqe is clearly related

to where the error indication is passed and other
possibil i t ies than those mentioned here may be found.

The exact form of the SEND-RECEIVE primitives
used also characterizes a particular solution. In
this section messages were passed by reference.
By adding a return error path to Figure 2, a sol-
ution could be found that passed the messages by
value. But passing messages by value in a mes-
sagelist means that individual buffers are not
addressable; thus, some of the ways to identify
incorrect buffers are not possible. In particu-
lar, the messages must contain their own identi-
fication numbers.

I f all information is removed from the mes-
sagelists, they become messagelists of type null
and are equivalent to Di~kstra's P-V primitives.
I f only this type of primitives is used, then a

messagelist may not be used to convey the error
indication and identify the erroneous buffer, and
global variables must be used. (Of course, the
primitives may be used to define a cr i t ica l region
and therefore to simulate a messagelist.)

I t is possible to combine several of these
techniques in a single solution. For example,
messages could be passed eff ic ient ly by reference
until an error was detected. Then the two pro-
cesses could communicate the attempts to correct
the buffer contents by value until an acceptable
transmission was completed.

iii

A diagram showing the relationships among
solutions characterized in various ways is given
in Bgure 7. Anarrow from A to B indicates that
the problem or characterization of A may be re-
solved or implemented using the characterization
of B. (Note that the diagram does not include
characterizations based on the location of the
error indications.) The diagram represents the
principal approaches suggested to handle failure
situations; however, other designs may be possible.

Delay in Error Response

All of the solutions presented so far suffer
from a peculiar delay problem caused in part by
the requirement that muTETpTe buffering be retained
in the resulting programs.

When the Consumer sends an error indication
to the producer, the producer may not obtain this
error message for some time. In fact, i f the
error message is sent in a messagelist, in a global
array of buffers, or in a global array of error
flags, the error message wil l not be seen until
the entire set of error flags has been examined.
I f the messagelist or global array has a capacity

of n error messages, up to n buffers may be pro-
duced before the error message is received. In
the case of a retry solution, the consumer must
wait for the corrected buffer and the entire buffer
will be f i l led with produced, but unconsumed mes-
sages. In the case of u r~so lu t i ons , n messages
are produced and then thrown away by the consumer
when the producer restarts at the corrected buffer;
i f this message is again invalid, another n mes-
sages wil l be generated and thrown away.

This delay in seeing an error message is due
directly to the fact that n different locations
for error indications are provided and that an
immediate response is therefore not always possible.
One possible solution is to look at all n global
error flags every time through the producer loop;
the error indications can not therefore be sent
in a messagelist. However, a single global loca-
tion can act as an error flag and identify the
invalid message. This is because only one buffer
at a time wil l be flagged as invalid, since retry
solutions wait for the corrected version of that
buffer, and purge solutions ignore other buffers
until the corrected version is received.

%

purge

r

inter al id
(serial no.
in message)

retry

Yl
external id
(l oca t i on
of buffer)

fai Iure
situation

type of
solution

i denti f i ca-
tion of bad

buffer

SEND-RECl EVE SEND-RECEIVE SEND-RECEIVE
of null messages by reference by value

type of
primi t i ves

Figure 7. Characterization of resynchronization solutions.

112

Using a single global error flag can
lead to d i f f i cu l t ies . ' Since an immediate
response is desired, the producer must look at the
error flag on every execution of i ts main loop.

I f the producer sees that there are no outstanding
:errors to be corrected, i t gets an empty buffer
~and proceeds to f i l l i t ; i f there are no empty
buffers, the producer wi l l be blocked. In the re- 6.
try case, however, the consumer must release the
buffer to avoid deadlock. This is similar to the I .
situation in the solution of Figure 5, where the
buffer containing the error message must be re-
turned, and leads to the same complications o f
having two separate operation sequences in the
error and no-error cases. 2.

4. CONCLUSIONS

An analysis of solutions to a resynchroniza-
tion problem for producer-consumers systems has 3.
been made. A few of the many possible solutions
were considered in detail. Several factors
that are d i f f i cu l t to avoid appear in each of these
solutions. These factors are typical of situations
that exist in asynchronous computation and include 4.
the following:

-- unwanted messages are le f t in messagelists
and buffers when an error is detected, and
i t is d i f f i cu l t to get r id of this extra- 5.
neous data;

-- multiple buffering causes d i f f i cu l t ies in
relaying immediate error messages to the
process that is responsible for correcting
the error, and thus undesirable delays may
be generated; 6.

-- when the seance of messages is signif icant,
the d i f f i cu l t y of error processing is in-
creased because either two data streams 7.
must be provided (one for regular trans-
mission and one for corrected and re-
transmitted buffers), or the consumer must
be able to purge unwanted out-of-order 8.
records;

-- the error and no-error cases must often be
processed differently.

The solutions presented for the resynchroniz-
ation problem are unsatisfying due to the increase
in complexity and decrease in understandability oF
the resultant programs. However, by presenting
these solutions we hope to point out the d i f f i cu l t
nature of error processing and also to delimit some
of the fundamental problems that must be solved in
developing simpler approaches to asynchronous error
handling.

5. ACKNOWLEDGEMENTS

The authors would l ike to thank Hector Garcia
for the solution presented in Figure 4.

REFERENCES

Wulf, W~ A. Reliable Hardware-Software Archi-
tecture. Proceedinc~_ 3975 International Con-
ference on Reliable Software, SIG-PLAN Notices
9,6 (June 1975), 122-130.

Parnas, D. L. Response to detected errors in
well-structured programs. Technical Report,
Department of Computer Science, Carnegie-Mellon
University, July 1972.

Parnas, D. L. The influence of software struc-
ture on re l i ab i l i t y . Proceedings)975 Inter-
national Conference on Reliable Software,
SiGPLAN Notices 9,6 (June 1975), 358-362.

Fajman, R. and Borgelt, J. WYLBUR: An inter-
active text editing and remote job entry sys-
tem. Comm. ACM 16,5 (May 1973), 314-322.

Dijkstra, E. W. Cooperating Sequential Processes.
Technological University, Eindhoven, The
Netherlands, 1965. (Reprinted in Programming
Languages, Genuys (ed.), Academic Press, New
York, New York, 1968.)

Wirth, N. The programming language PASCAL.
Acta Informatica l , I (1971), 35-63.

Brinch Hansen, P.
gramming system.
238-241,250.

The nucleus of a multipro-
Comm. ACM 13, 4 (April, 1970),

Brinch Hansen, P. Operat.._in9 System Principles.
Prentice-Hall, Inc. Englewood Cl i f fs, New
Jersey, 1973, ch. 3.

113

