AN ALGORITHM FOR DRUM STORAGE MAMAGEMENT
IN TIME-SHARING SYSTEMS

Mark L.

Greenberg

University of California, Berkeley

An algorithm for efficiently managing the
transfer of pages of information between main
and secondary memory is developed and
analyzed, The alogorithm applies to time=-
shared computer systems that use rotating
magnetic drums as secondary storage devices,
The algorithm is designed to provide efficient
system performance when referenced pages are
predominantly pre-loaded. However, the
algorithm also provides optimum results for
systems where all pages are loaded on demand.
The nature of the improved performance which
can be derived from page pre-loading strategy
is discussed. Simulation results are presented
which plot system performance as a function of
main memory size.

Introduction

The efficient transfer of information
between main and secondary memory is of major
importance in providing a high 1level of

performance in time-shared computer systems.
Programs cannot run unless the information
they reference 1is resident in main memory.
Yet, due to the limited size of main memory,
only a small fraction of the total information
stored in the system can be resident in main
memory at any particular time. Thus, a heavy

load of information transfer into and out of
main memory is inevitable.

in this paper an algorithm for
efficiently managing information transfer
operations in a time-sharing system will be
developed and analyzed. Simulation results
using this algorithm will be presented. The

secondary storage of the system is implemented
with high performance, fixed head, rotating
magnetic storage devices hereinafter referred
to as drums. The algorithm will be developed
on the assumption that pre-loading of pages
referenced by a running process 1Is the

predominant method of page loading. Arguments
will be presented to show that page pre-
loading can lead to much higher 1levels of
system performance for many hardware

141

A sufficiently detailed model
time-sharing systems will now be

configurations.
for such
developed.

Preliminaries

We define throughput of a
system to be

time-sharing
the rate at which user program
requests for service are satisfied., In this
paper we will consider throughput to be the
measure for system performance. The throughput
of a time-sharing system 1is a function of
three basic factors: the hardware
characteristics, the 1load of wuser programs
requesting service, and the policies used to
determine the resource management operations
which convert user requests into actual
service.

The hardware model for the class of time-
sharing systems considered in this paper
consists of main memory, a single processor
(CPU), and a single drum with a channel, A1l

main and drum memory is logically divided into
fixed size blocks, identical in size to the
pages of information manipulated by the

operating system. The processor and channel
can both access all main memory. There exist M
blocks of main memory available for
information transfer operations. In a real
system there will generally be a npumber of
blocks of memory which are permanently
allocated and are, therefore, not part of the
M blocks of available main memory. The drum is
organized with S sectors around its
circumference. One page of information can be
transferred during each sector time (the time
it takes for a sector to pass under the drum
heads). During any sector time, the channel
can read from the drum a page of information
stored at the current sector position and load
it into a block of main memory, unload a block
of main memory and write the page of
information on the drum at the current sector
position, or idle. It is assumed that the drum
can switch between read and write operations
at consecutive sector times. It is further

as sumed that simul taneous processor and
channnel activity does not significantly
degrade the performance of either,

To satisfy a user program request for
service, the operating system scheduler must

schedule a process at which time the pages
required by the process are loaded into main
memory, In order to satisfy response time

requirements of other programs, the scheduler
may preempt a process (and reschedule it
later). At this time the pages modified during
execution must be written back onto the drum,
thus making room in main memory for other
pages to be loaded. We define the swapper as
that part of the operating system responsible
for managing these page transfer operations.

each process in the

Associated with

system at any given time is a working set. A
working set of a process is that set of pages
which should be main memory resident for the

process to run efficiently. Thus, the pages
judged likely to be referenced by the process
in the near future should be in the working
set. We intentionally avoid discussing in this
paper how this judgement is made as the
subject has been discussed elsewhere in the
literature .

For the purposes of analysis, we can
consider a time-sharing system as operating
somewhere hetween two extremes in page loading
policy: pure demand paging and pure pre-
loading., Many current systems have adopted the
pure demand paging policy. Pure pre-loading
cannot, in general, be achieved 1in a real
system since working sets can rarely describe
the imminent needs of a process with complete
accuracy.

For the purposes of this paper, we can
think of the load of user program requests for
service as being manifested as a stream of
processes requesting processor and main memory
resources, At any time we are concerned only
with those processes which are scheduled
and/or have pages of their working sets
resident in main memory. Such a process may be
in one of four states at any time: the request

state, the loading state, the ready state, or
the unloading state. A process enters the
request state when it is scheduled by the

operating system. A process is activated and

moved into the loading state during which time
the swapper loads the pages of the process's
pre-load set. When this 1is compnleted, a

process enters the ready state, For simplicity
we stipulate that only a process in the ready
state (i.e. working set totally resident) may
run on the CPU. If a running process demands a
page, It returns to the loading state until
the demanded page is loaded. We refer to the
processes in the loading and ready states as
the active processes. When a process completes
a computation or is preempted by the scheduler
the process enters the unloading state while
all pages modified during execution are
written back onto the drum. We assume that a
page may be written on the drum into any free
block convenient to the swapper. One sequence
of transitions by a process through these
states will be refered to as a schedule period
of the process.

The
adopted

allocation
very

main memory
in this paper is

strategy
simple. Pages

which members of the working sets of
loading process should be 1loaded at the
convenience of the swapper into any free block
of memory. If a page resident in main memory

are

is not in the working set of a loading or
ready process, it may be replaced., It is
assumed that no pages of a processes working
set are resident in main memory when the
process 1Is activated. It is further assumed

that there are no shared pages, that 1is, no
page is the member of more than one working
set. 1 f either of these assumptions s
violated then system performance will improve
since less channel time is required to load
these working sets.

The Swapper

The swapper proposed in this must

nake two basic decisions:

paper

Wwhen and what process
to move from the request state into the
loading state and thus, into
consideration by the swapper. The swapper
uses this decision capabilty to limit the

(1) Process Activation.

number of processes which may
simultaneously reside in main memory,
thus controlling main memory

overcrowding.

(2) Sector Command Selection. Which page to
read or write at each sector position of
the drum.

There exists one sector queue for each
sector of the drum., A sector queue contains a
list of all pages which should be read from
the corresponding sector on the drum., When a
process is activated (the process is moved to
the loading state) and entries for all pages
in the pre-load set of the process are added
to the appropriate sector queues. The demanded
page of a running process is also entered on a
sector queue., A page entry is removed from a
sector queue when the page is loaded. The drum
tload at any ¢time 1is defined as the total
number of page entries on all the S sector
queues., There exists a single page write queue
which 1ists all pages which should be written
out. When a process dismisses (completes a
computation or is preempted) all pages of its
working set which have been modified are added
to the page write queue. A page is removed
from the page write queue when it is written
on the drum.

The swapper must also consider the state
of main memory in making its decisions. Each
block of main memory is either free or
allocated. A block is free if it does not

contain a loaded page of a process in the
loading state, a page of a process in the
ready state or a modified and not yet unloaded
page of a process in the unloading state. A
block becomes free for each unmodified page in
the working set of a process when the process
dismisses and for each modified page when the
page is unloaded. A block is allocated when a
page from the drum is loaded into it.

Sector Command Selection

At a particular sector position the
swapper may select to read any page on the
current sector queue or write some page on the
page write queue., The swapper may select a

if there exists a page of free
into. It should make its
selection so as to maximize the total drum
utilization and minimize the average memory
space-time utilized by the processes in the
loading and unloading states,

page read only
memory to read

If there is a choice between doing a read
or a write, the read should be selected. Let
Qw be the number of pages on the page write
queue and QOr be the number of resident pages
of the process of the page that would be read.
If the write is done (and the read not) then
the read cannot be done again for a full drum
revolution. Thus, the total memory space-time
is increased by a factor S*Qr. [If the read is
done then all the writes are put off only one
sector time so the total space-time increases
by Qw. Thus, a read should be preferred over a
write whenever Qr*S>Qw. This inequality will
almost always be satisfied, since S is
generally quite large. Thus, the swapper will
do a read whenever the current sector queue is

not empty and there exists a page of free
memory.

If there is more than one page on the
current sector queue then the swapper must
decide which page to read. Each page on the
queue is a memher of the working set of some
process. All the processes in loading state
are assigned priorities according to some
rule. Of the processes with pages on the
current sector queue, the swapper selects to

do a read of a page of the process with
highest priority. |If processes are assigned
priorities according to the order they enter
the loading state, then the sector queues are
first come-first served. The main memory
required by the loading processes is minimized
if the average number of main memory resident
pages per loading process is minimized, This
suggests the following rule for assigning
priorities: priorities are assigned as a
function of time according to the number of

pages a process has resident in main memory,
the process with the most resident pages
receiving highest priority. Simulations were

made to compare this priority rule against the
first come-first served rule and other rules,
A1l the rules yielded approximately the same
level of performance with the number of
resident pages vrule slightly out performing
the others. This insensitivity of system
performance to the priority rule can be easily
understood. The process priorities only affect
the swapper function when the current sector
gqueue contains more than a single element and,
under the drum 1loads which produce optimum
results, this occurs only a small fraction of
the time.

does not exist a block of free
to read the selected page,
then it may be desirable to release a loaded
page of another process in the 1loading state
thus freeing wup the block of memory in which
the released page resided. The released page
rust be reloaded later. A page may be released
if it is an unmodified resident member of the
working set of some process in the' loading
state other than the process of the page
selected to read. The swapper may release a
page only if such a page exists. |If more than
one such page exists, then the swapper must
select which page to release. The same process
priorities used to select the page to read are

If there
memory into which

143

used to select the page to release., The
swapper should select to release a page from
the process with lowest priority, and the
swapper should release the page only if the

priority of the process of the page selected
to read is higher than the priority of the
process of the page selected to release. In
other words, a page already resident in main
memory should bhe released and overwritten with
another page only if the residency of the new
page is considered more important than that of
the old page. Introducing this page releasing

mechanism into the algorithm allows for
greater system performance by permitting a
drum load greater than the free memory size
without fear of hanging up the system if this

should lead to a situation where
is exhausted and there are
written out.

free memory
no pages to be

Considerable improvement in the basic
algorithm can be achieved if the following
drum allocation requirement is enforced. MNever
allocate any two pages of the same working set
at the same sector position on the drum, This
implies that the working set size must be less
than the number of sectors about the drum, but

this will generally be the case with high
performance drums. When a working set is so
allocated it is said to have no sector

conflicts. This allocation requirement is
enforced whenever a modified page is written
out. A page may not be written out anywhere,

to those sectors which do
the same
working set size
about the
increase in

processes

but is restricted
not already contain another page of
working set. Only if the
approaches the number of sectors

drum will there be a significant

memory resources required to unload
as a vresult of the increased difficulty in
finding a sector at which a page of the
working set has not already been allocated,

By allocating a working set without
sector conflicts it is possible to load the
entire working set within one drum revolution
time. This optimum reading time can be impeded
by an insufficiency of free memory into which
to load the working set or by sector
interference due to the Jloading of pages
belonging to other processes, Using the no
sector conflict allocation strategy, the
sector interference problem is reduced. The
numher of pages on a sector queue, which is
proportional to the 1level of interference,
cannot exceed the number of processes in the
loading state. With random atllocation the
number of pages on a sector queue is limited
only by the drum load. The effect is to spread
the pages on the sector aqueues out over a
greater number of different queues, thus
reducing the number of unoccupied queues for a
given drum Jload. System performance for a
given average drum load is increased since the
effective drum utilization is directly
proportional to the probability a current
sector queue is occupied (see analysis
section). Figure 1 plots the probahility that
a current sector queue is occupied vs. average
drum load (L) for the random and no sector
conflict allocation situations. In both
simulations the memory size was large enough
to avoid page releasing. HNotice that for a
given average drum load, a greater probability
of an occupied current sector queue and
consequently a greater throughput is achieved
in the case when no sector conflict allocation

Figure 1. Drum Allocation Rules

1.0
©
4]
a
o c B
8 .67 A
[})
3
Q
3
o
-
2 .33
O
[
1]
o
)
.
& 9

0 8 16 24 32
average drum load
A - random allocation
B - no sector conflict allocation
C - no sector interferenceselection
M=32 S=32 w=8 m=4 t=12

is used than in the case when it is not. The

curves clearly indicate the advantage of no

sector conflict allocation.

when shared pages exist in a time-sharing
system, it may not be possible to write out
the pages of a working set so as to avoid
sector conflicts, since a page which is shared
by two active processes will be unloaded when
the second process dismisses and will allocate

the page without regard to the allocation of
the working set of the first process. Of
course, this problem does not arise for read-
only pages which are the most common kind of
shared pages. Writeable shared pages can,
therefore, hinder system per formance by
introducing sector conflicts if they occur in

sufficient quantities. It is not believed that

this is a serious prohlem,

It must be further noted that the swapper
can do a page write only if there exists an
unallocated drum block at the current sector
position. Unless the drum is overloaded a free
block will almost always exist when it is
needed. In all simulation results reported in
this paper it is assumed that free blocks
exist at all sector positions on the drum.

The complete algorithm is now summarized.
The algorithm is invoked once for each. sector
time.

Sector Command Selection Algorithm

Go to step 7 if the

is empty.

1. (page to read?)
current sector queue

Step

Step 2. (select a read) Of the processes with
pages on the current sector queue, select
to read the page of the process with the
highest priority.

if there

Step 3. (free memory?) Go to step 6

is free memory.

144

h. (select a release) Of the processes in
the loading state, other than the one of
the selected read, which have at least
one unmodified resident page, select o2
page from the process with the lowest
priority. Go to step 7 if no such process
exists.

5. (do a release) Release the selected
page if the priority of the process of
the selected release is lower than the
priority of the process of the selected
read else go to step 7.

Step

Step

6. (do the read) Start the selected read
command and exit.

Step

7. (do a write) |If a free drum block
exists at the current sector, start a
write command for the first page on the
page write queue which would not cause a
sector conflict if such a page exists and

exit,

Step

Analysis

purpose of the

maximize system throughput which
proportional to the rate at which
can be serviced by the swapper.

fraction of time the drum is

writing pages (i.e. not idle) and U is the
average time a process utilizes the drum
during a schedule period of a process, then
this service rate is just the ratio D/U. Now,
let w be the average pre=-load set size, m the
average number of pages modified during a
schedule period of a process and u be the
average number of pages released per process
schedule period, then, normalizing time units
so that a sector time is wunity, we have
Usw+m+u, D s the probability of reading a
page without releasing a page(P,) plus the
probability of reading a page after releasing
a page (P,) plus the probability of writing a
modified page (Py), (D=P,+P,+P). Observing
that Pu=(m/w)P, and P =(u/w)P,, we determine
that D/U=Py/w. System performance is directly

It is the swapper to
is directly

processes
If D is the

reading or

proportional to the probability of doing a
useful read (Py). This probability is in turn
equal to the probability of an occupied
current sector queue times the probability of

the existence of a block of free memory.

The value (w+m)D/U, which we define as
the effective drum utilization (F), provides a
more convenient measure which is directly
proportional to throughput., Maximum system
performance is achieved when the effective
drum wutilization 1is unity. A little algebra
indicates that F is the probability of doing a
useful read (Py) plus that of doing a write
(Pn). F falls below unity due to useless reads
(reads of pages subsequently released) and
idle sector times. System performance s
optimized when the summed probability of these
latter two events is minimized, Figure 2 plots
a characteristic curve for effective drum
utilization (F) vs. average drum load (L).
System performance is optimized at a
particular value for the average drum load. If
L is less than the optimum, then many sector
queues will be empty and there will be
increased drum idle time., If L is greater than
the optimum then main memory will contain the
pages of more different working sets, thus
overcrowding main memory and decreasing the
probability of free memory while increasing

Figure 2, Optimum Drum LlLoad
1.0
.67
F
B
.33
A
0
0 10 20 30 ko

average drum load

A - probability of page releasing
B - probability of idle sector time
F - effective drum utilization

probability of an occuppied sector queue,
increasing the probability of
useless reads due to page releasing.
Simulation results for typical systems
indicate that optimum system performance is
achieved when the average drum load is about
egual to half the number of sectors about the
drum (L=S/2).

the
therefore

Process Activation

It is

through the process activation
decision that the swapper is able to regulate
the drum load. Initially, the request state

will be regarded as a first come-first served
queue. The first process in the request state
gueue is the next process to be activated.
This assumption assures a minimum variation in
the response times of the processes requesting
service, The simplest activation algorithm is
to consider the next process whenever adding
its pages on the sector queues would not cause

the drum load to exceed some value specifigd
as a parameter to the algorithm (L'). In this
case the average drum load would be given

approximately by L=L"'"-w/2. The drum load would
vary with the variation in pre-load set sizes.

This algorithm can be improved wupon if
the amount of free memory is taken into
account in making the process activation
decision. When free memory is larger, a higher
drum load can be tolerated, thus suggesting
the following activation algorithm: activate
the next process if the drum load plus the
size of the pre~load set of the next process
minus the amount of free memory is less than

the parameter L'. The approximate average drum
load would then be L=L'-w/2+Mf where Mf is the
average free memory size. This modification
tends to make the probability of activating a
process higher if there is more free memory.
This, in effect, introduces feedback into the
queue of free memory blocks by increasing the
arrival rate into the queue when the free
memory size is small. A smaller free memory
size will cause a smaller drum 1load, which

145

will reduce the probability of doing a read,
which will increase the probability of doing a
write, which will increase the arrival rate
into the free memory queue. Thus, on the
average less free memory is required,
therefore, more memory is available for
loading processes which allows a higher
average drum load and consequently a greater
level of system performance.

If processes
state queue in some
come=-first served,
algorithm can be

are taken off the request
order other than first

then the activation
improved even further, but
not without cost. The following rule when
added to the previously specified algorithm
can completely eliminate sector interference.
Select as the next process to activate the
first process on the request state queue whose
pre-load set if added to the sector queues
will not add a page entry to any sector queue
which is already occupied. A process may be
activated only if such a process exists in the
request state. Using this sector interference
elimination rule, a current sector queue can
have just one or zero pages in it. The effect
is to maximally spread the pages over the
sector queues. System performance is increased
by increasing the probability of an occupied
current sector queue for a given average drum
load. Typical simulation results showing the
improvement due to this process selection rule
are plotted in figure 1.

selection rule has three
First, it reguires additional
computational overhead to determine if each
process in the request state causes any sector
interference. Second, since the request state
may be serviced in any order, the variation in
response times will increase considerably. In
fact, it cannot be guaranteed that a process
in the request state will ever be serviced.
Only systems with sufficiently long response
time requirements can afford to use this rule.
Third, a system performs bhetter under this
algorithm only if the request state is
sufficiently large. There is a greater
probability of finding a process which causes
no interference i{f the request state s
targer. Thus, the average drum 1load is a
monotonically increasing function of the
average request state size. If a time-sharing
system is not sufficiently loaded (this may be
because excessive loading would cause
unacceptable response time) to produce a
sufficiently large request state, then the
average drum load might be so low that better
performance could be achieved with first come-
first served selection. For example, in the
situation simulated in figure 1, curve C it
was found that this selection rule increases
performance over first come=-first served
selection only if the average request state
size is greater than seven.

This process
disadvantages.

interference
system performance

Using this sector
elimination selection rule,
can be improved still further by restricting
the allocation of pages of a working set to
some contiguous subsection of the sectors of
the drum. In doing this it becomes easier to
find a process which does not cause any sector
interference for the same request state size
since the sector positions of the pages of two
different working sets are more likely to be
disjoint, Alternately, it can be stated that

this allocation restriction improves
performance by reducing the time it takes to
load a working set. This allocation
restriction helps only if the average pre-load
set size is much 1less than the number of
sectors about the drum(w<<S) and writeable
shared pages are not so prevalent as to
nulltify the effect of this allocation. If w is
too large compared to S, then the Iincreased
difficulty in writing pages due to the
allocation restriction will cause the average
amount of memory required by processes in the
unloading state to be increased by more than
the loading state memory requirement s
reduced. As an example, simulation results
show that if the average pre-load set size is
about one-fourth the number of sectors about
the drum (w=S/4), then a significant (5-10%)
improvement in system performance occurs when
the pages of a working set are restricted to
one-half to three-quarters of the total drum
sectors.

Simulation

developed to determine
system performance and other measures as a
function of the system parameters under
certain assumptions now stated. The simulator
operates in descrete time units, the atomic
unit being a sector time. In all simulation
results presented in this paper, the compute
times of processes during schedule periods are
Poisson distributed with mean t, and the pre-~
load set sizes are wuniformly distributed
between w/2 and 3w/2. The number of pages of a

A simutator was

process modified during execution is always
directly proportional to the working set size
of the process in the ratio m/w or m/d. For

pure demand paging conditions, the pumber of
pages demanded by a process is proportional to
its - compute time in the ratio w/t and all

pages are demanded at compute time zero of the

schedule period. Al simulation results
reported in this paper are for a system with
one CPU and one drum with 32 sectors. The

simulator was implemented in QSPL°, a system
programming languagf for the Berkeley SDS-940
time-sharing system -,

Figure 3 plots simu]agion results which
compare CPU wutilization ‘against main memory
size for systems with several different

program loads under pure pre-loading strategy.
Curves A, B, and C correspond to systems with
batanced 1loads, curve D to a channel limited
system, and curve E to a CPU limited system,
CPU wutilization 1is directly proportional to
effective drum utilization in the ratio
t/(w+m), Remember t is measured in wunits of
sector times. In all these simulations the
system is always fully loaded i.e. the request
state is never empty.

Operating System Overhead

The swapper requires computational and
memory resources in order to function. It
requires memory to hold the sector queues, the
page write queue, and the code of the swapper
program. This anfount of memory should be very
small compared to that needed to swap working
sets. |In addition, there must be memory for
the operating system data structures which
locate and identify pages on the drum and in
main memory. This memory requirement can be
quite large in some operating system designs.

146

Figure 3. Pure Pre-loading Performance
1.0
5.67
o
© B
N //
5 A C
3,35 E
e
S D
0
0 16 32 48 64
main memory size (pages)
A - w=8§ m=h t=12 $=32
B -~ w=l m=2 t=6
C - w=16 m=8 t=24
D - w=8 m=4 =6
E - w=8 m=4 t=24
The computational requirements of the
algorithm can bhe quite high. The swapper
procedure must be called once every sector

If the page size is small,
then the procedure might be

time of the drum,
say 512 words,

called as frequently as once every 250 micro-
seconds. The computational overhead is
inversely proportional to the page size. I'n
systems with one or more large drums it s
probably necessary to dedicate an entire
processor to the swapper function since the
swapper decisions require non-trivial
computations. Because of the swappers
specialized function, it might be most

efficiently implemented on a micro-processor,

Demand Paging

The swapper using the previously
described algorithm can satisfy demand paging
requests of running processes in a very
natural way. When a process demands a page,
the process is immediately moved to the
loading state and the demanded page entered on
the appropriate sector queue. Thus, the.

swapper sees a process whose working set is
loaded but for a single page. Even in the
extreme case where 2ll pages are loaded by

demand paging, the algorithm works
and efficiently. In fact,
main memory resident

process priorities

performing swapper

correctly
using the number of
pages to determine

provides a better
than the_ 'paging drum'
described in the literaturel.3 (which uses
first come-first served priorities) by
minimizing the memory required by processes in
the loading state.

Under

. pure demand paging strategy, a
different rule should be used to determine
when to activate a process. Unlike the pure

pre-loading case (where it is assumed that all
pages to be referenced are pre-loaded), it is
not known at activation time what the eventual
main memory demand of the activated process
will be, Therefore, under pure demand paging a
new process should be activated only if the

expected memory demands of the
(i.e. in the 1loading and
ready states) does not exceed some parameter
whose value is proportional to the main memory
size. The constant of proportionality can be
tuned to achieve an optimum compromise between
drum wutilization and page releasing resulting
from an overcrowded memory. The working set
size for a process can serve as an estimate
for the expected memory demand. Lacking this
information, the estimate for a process's
memory demand can just be the average number
of pages demanded by processes in the system.
This amounts to maintaining a constant number
of active processes at any time i.e. a process
is activated whenever another process
dismisses. This is the activation rule used in
the reported pure demand paging simulations,

sum of the
active processes

Pre-loading vs. Demand Paging

In this section we will present arguments
based on simulation results and approximate
analysis which will demonstrate the improved
performance which can be achieved by using
pure pre-loading strategy instead of pure
demand paging strategy. Let w be the average
pre-load set size under pure pre-loading and
let d be the average number of pages demanded

by a process during a schedule period under
pure demand paging. The extreme of pure pre-
loading cannot be achieved in a real system,
but as this limit is approached the average
pre-load set size will tend to contain more
pages which are not subsequently referenced
when the program runs during the current
schedule period. Cleariy, the average pre-load
set size under pure pre-loading is greater

than the average number of pages demanded per
schedule period under pure demand paging
(w>d), however, a precise relationship hetween
these two guantities can be determined only
through empirical evidence ohtained from real
systems.

At any time each block of main memory is
either free or allocated to a process in the
loading, ready, or unloading state. Therefore,
we can define four quantities which represent
the number of free main memory blocks or the
number of main memory blocks allocated to all

the processes in these three states at any
time averaged over all time. We <call these
quantities the free, loading state, ready
state, and unloading state memory requirements
and denote them by MNf , Ms, Mg, HMys,
respectively,

A numerical example based on simulation

Assume a loaded
and halanced

instructive.
state never empty)
system and a drum with thirty-two
Further assume a system 1load with
working set size of eight pages
(w=d=8), half of the pages modified during the
schedule period (mn=4) and mean compute time
per schedule period of twelve sector times
(t=12). Under these conditions the following
simulation results are obtained for the pure
pre-loading case: Mjg=16, M.o=8, M,g=3 and
Mfg=3 for a total memory requirement of 32
blocks. These results are obtained with an
average drum load of 16 pages and a resulting
optimum effective drum wutilization of about
80%. Under pure demand paging the following
simulation results are obtained: Mg =42,
Mys =3, Mg =15 for a total memory

results will be
(request
(w+m=t)

sectors.

average

MFS=81

147

requirement of 68 blocks with approximately
the same average drum 1load and optimum
effective drum utilization as before. Thus,

for this example about twice as much memory is
required under pure demand paging to achieve a
given level of system performance as under
pure pre-loading.

We will now provide arguments which
explain this difference in memory
requirements. A little reflection should
convince the reader that the ready state and
unloading state memory requirements will be

approximately the same for a given level of

system performance regardless of the loading
strategy used. The average free memory size
will, in general, be greater for the demand
paging case as a result of the greater

uncertainty of the future memory demand of
active process.

an

The 1loading state memory requirement
shows the greatest dependence on the page
loading strategy employed. Under pure pre-
loading at any time each of the pages of a
process in the Jloading state is either
resident in main memory or on a sector Qqueue,
I1f there 1is no sector interference between

pages of different processes, then all pages
in the sector queues will be read at the first
opportunity and therefore, assuming uniform
distribution of pages around the drum, we
conclude that a loading process has an average
of w/2 pages resident in main memory Wy =w/2)
and w/2 pages on the sector queues. The
average number of processes in the loading
state is just the average drum load divided by
the average number of sector queue entries per
process (Qg =2L/w). The loading state memory
requirement 1is the product of the average
number of resident pages per loading state
process times the average number of such
processes (Mg =W *Qig). Therefore, we
conclude that the approximate Jloading state
memory requirement under pure pre-loading is
just the average drum load (Mjg=L).

there 1is, in

Under pure demand paging

general, one page on a sector queue for each
process in the loading state. Therefore, the
mean loading state size is approximately the

average drum load (Qjg=L).
of resident

The average number
pages per process in the loading
state is approximately half the numbher of
pages demanded per schedule period assuming
the pages are loaded uniformly with time
(Wis=d/2). Multiplying these two factors we
get Mjg=Ld/2 as the approximate loading state
memory requirement under pure demand paging.
The loading state memory requirement of 42
pages determined from the previous simulation
result is considerably less than the 64 pages
expected from this approximate analysis. This
reduction can be largely attributed to the
advantageous use of the priority rule based on
the number of resident pages of a process.

A system is channel 1limited if the
average drum channel time utilized per
schedule period 1is greater than the average
compute time per schedule period (w+m>t).
Assuming that the system is channel limited
(which is the only interesting case), we argue

that the throughput of a system 1is the same
for a given average drum load if the system is
operating under pure pre-loading or under pure
demand paging. Since less pages must be loaded

per schedule period under pure demand paging
(d<w), a greater throughput is achieved for a
given effective drum utilization., However, a
greater effective drum utilization is achieved
for a given average drum load under pure pre-

loading due to the no sector conflict drum
allocation strategy. In figure 1 the
difference is clearly indicated where curve A
corresponds to the demand paging case and
curve B corresponds to a pre-loading case.
These two effects approximately cancel

yielding about the same throughput for a given

drum load under either loading strategy.
Therefore, using the results of the previous
two paragraphs, we conclude that the Jloading
state memory requirement under pure demand
paging is greater than that wunder pure pre-
loading by a factor of about d/2.

It should be noted that the reduced
memory requirement due to pre-loading can be

obtained only in systems with drums with a
large number of sectors. The average drum load
which produces the optimum performance for a
particular program load will be proportional
to the number of drum sectors. The reduced
drum load for smaller drums will reduce the
loading state memory requirement
proportionally under both strategies and
consequently the advantage of pre-loading is
diminished.
ummar

Three things were accomplished in this
paper: 1) we have developed and analyzed an
algorithm for efficiently managing the
transfer of pages between main memory and a
large secondary drum storage device in systems
which wuse either demand paging or pre-loading
page loading strategies, 2) simulation results

were presented which plotted system
performance against main memory size for a
system using pure pre-loading strategy under

various program loads and 3) an argument based
on simulation results and approximate average
value analysis was presented which concluded
that the use of pre-loading strategy with the

given algorithm instead of pure demand paging
can considerably reduce the main memory
required to achieve a particular 1level of
system performance if the drum is large enough
to store considerably more than a typical
working set of information in one drum

revolution,

Acknowledgement

The algorithm described in this paper was
initially developed by the author an@ Robert
R. Van Tuyl during the summer of 1968 ', The
author wishes to thank Charles A, Grant for
his helpful advice concerning the preparation
of this paper.

148

References

of
sJcce,

Scheduling on
1967, pp.

Denning, P.J., Effects
File Memory Operations,
9-21.

Working Set Model for
ACM, 11, May 1968,

Denning, P.J., The
Program Behaviour, Comm.
pp. 323-333.

P.J.,
1970,

Virtual Memory, Comp.

pp.153~-189.

Denning, Surv.,

2, Sept.

Deutsch, L.P.,
Reference Manual,
Contract SD-185,
Berkeley.

Lampson, B.wW., QSPL
Document R-28, ARPA
University of California,

L.P., Durham, L., Lampson,
Reference Manual Time-Sharing
Document R-21, ARPA Contract
University of California, Berkeley.

Deutsch, B.W.,
System,

sD~185,

Storage
Ph.D
of

[Secondary
Management in Time-Sharing Systems,
Thesis, Dept. of EECS, University
California, Berkeley.

Greenberg,

Van Tuyl, R.R., An Algorithm for Swapping
Data from Drum to Core, Document P-16, ARPA
Contract SD-185, University of California,
Berkeley.

