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An algorithm for efficiently managing the 
transfer of pages of information between main 
and secondary memory is developed and 
analyzed. The alogorithm applies to time- 
shared computer systems that use rotating 
magnetic drums as secondary storage devices. 
The algorithm is designed to provide efficient 
system performance when referenced pages are 
predominantly pre-loaded. However, the 
algorithm also provides optimum results for 
systems where all pages are loaded on demand. 
The nature of the improved performance which 
can be derived from page pre-loadin~ strategy 
is discussed. Simulation results are presented 
which plot system performance as a function of 
main memory size. 

Ip~roduction 

The efficient transfer of information 
between main and secondary memory is of major 
importance in providing a high level of 
performance in time-shared computer systems. 
Programs cannot run unless the information 
they reference is resident in main memory. 
Yet, due to the limited size of main memory, 
only a small fraction of the total information 
stored in the system can be resident in main 
memory at any particular time. Thus, a heavy 
load of information transfer into and out of 
main memory is inevitable. 

In this paper an aIEorithm for 
efficiently managing information transfer 
operations in a time-sharing system will be 
developed and analyzed. Simulation results 
using this algorithm will be presented. The 
secondary storage of the system is implemented 
with high performance, fixed head, rotating 
magnetic storage devices hereinafter referred 
to as drums. The algorithm will be developed 
on the assumption that pre-loading of pages 
referenced by a running process is the 
predominant method of page loading. Arguments 
will be presented to show that page pre- 
loading can lead to much higher levels of 
system performance for many hardware 

configurations. A sufficiently detailed model 
for such time-sharing systems will now be 
developed. 

Preliminaries 

We d e f i n e  t h r o u g h p u t  o f  a t i m e - s h a r i n g  
s y s t e m  t o  be t h e  r a t e  a t  w h i c h  u s e r  p roEram 
r e q u e s t s  f o r  s e r v i c e  a r e  s a t i s f i e d ,  In t h i s  
pape r  we w i l l  c o n s i d e r  t h r o u g h p u t  t o  be the  
measure  f o r  s y s t e m  p e r f o r m a n c e .  The t h r o u g h p u t  
o f  a t i m e - s h a r i n g  s y s t e m  i s  a f u n c t i o n  o f  
three basic factors: the hardware 
characteristics, the load of user programs 
requesting service, and the policies used to 
determine the resource management operations 
which convert user requests into actual 
service. 

The hardware model for the class of time- 
sharing systems considered in this paper 
consists of main memory, a single processor 
(CPO), and a single drum with a channel. All 
main and drum memory is logically divided into 
fixed size blocks, identical in size to the 
pages of information manipulated by the 
operating system. The processor and channel 
can both access all main memory. There exist 
blocks of main memory available for 
information transfer operations. In a real 
system there will generally be a number of 
blocks of memory which are permanently 
allocated and are, therefore, not part of the 
M blocks of available main memory. The drum is 
organized with S sectors around its 
circumference. One page of information can he 
transferred during each sector time (the time 
it takes for a sector to pass under the drum 
heads). During any sector time, the channel 
can read from the drum a page of information 
stored at the current sector position and load 
it into a block of main memory, unload a block 
of main memory and write the page of 
information on the drum at the current sector 
position, or idle. It is assumed that the drum 
can switch between read and write operations 
at consecutive sector times. It is further 
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assumed t h a t  s i m u l t a n e o u s  p r o c e s s o r  and 
c h a n n n e l  a c t i v i t y  does n o t  s i g n i f i c a n t l y  
d e g r a d e  t h e  p e r f o r m a n c e  o f  e i t h e r .  

To s a t i s f y  a u s e r  p r o g r a m  r e q u e s t  f o r  
s e r v i c e ,  t h e  o p e r a t i n g  s y s t e m  s c h e d u l e r  mus t  
s c h e d u l e  a p r o c e s s  a t  w h i c h  t i m e  t h e  pages  
r e q u i r e d  by t h e  p r o c e s s  a r e  l o a d e d  i n t o  m a i n  
memory .  In o r d e r  t o  s a t i s f y  r e s p o n s e  t i m e  
r e q u i r e m e n t s  o f  o t h e r  p r o g r a m s ,  t h e  s c h e d u l e r  
may p r e e m p t  a p r o c e s s  ( and  r e s c h e d u l e  i t  
l a t e r ) .  A t  t h i s  t i m e  t h e  pages  m o d i f i e d  d u r i n g  
e x e c u t i o n  must  be w r i t t e n  hack  o n t o  t h e  d rum,  
t h u s  m a k i n g  room i n  m a i n  memory f o r  o t h e r  
pages  t o  be l o a d e d .  ~e d e f i n e  t h e  s w a p p e r  as 
t h a t  p a r t  o f  t h e  o p e r a t i n g  s y s t e m  r e s p o n s i b l e  
f o r  m a n a g i n g  t h e s e  page  t r a n s f e r  o p e r a t i o n s .  

Associated with each process in the 
system at any given time is a working set. A 
working set of a process is that set of pages 
which should be main memory resident for the 
process to run efficiently. Thus, the pages 
judged likely to be referenced by the process 
In the near future should be in the working 
set. We intentionally avoid discussing in this 
p a p e r  how t h i s  j u d g e m e n t  i s  made as t h e  
s u b j e c t  has been d i s c u s s e d  e l s e w h e r e  i n  t h e  
l i t e r a t u r e  , 

For the purposes of analysis, we can 
consider a time-sharing system as operating 
somewhere between two extremes in page loading 
policy: pure demand paging and pure pre- 
loading. Many current systems have adopted the 
pure demand paging policy. Pure pre-loading 
cannot, in general, be achieved in a real 
system since working sets can rarely describe 
the imminent needs of a process with complete 
a c c u r a c y .  

For  t h e  p u r p o s e s  o f  t h i s  p a p e r ~  we can 
t h i n k  o f  t h e  l o a d  o f  u s e r  p r o g r a m  r e q u e s t s  f o r  
s e r v i c e  as b e i n g  m a n i f e s t e d  as a s t r e a m  o f  
p r o c e s s e s  r e q u e s t i n g  p r o c e s s o r  and m a i n  memory 
r e s o u r c e s .  A t  any  t i m e  we a r e  c o n c e r n e d  o n l y  
w i t h  t h o s e  p r o c e s s e s  w h i c h  a r e  s c h e d u l e d  
a n d / o r  h a v e  pages  o f  t h e i r  w o r k i n g  s e t s  
r e s i d e n t  i n  ma in  memory .  Such a p r o c e s s  may be 
i n  one o f  f o u r  s t a t e s  a t  any  t i m e :  t h e  r e q u e s t  
s t a t e ,  t h e  l o a d i n g  s t a t e ,  t h e  r e a d y  s t a t e ,  o r  
t h e  u n l o a d i n g  s t a t e .  A p r o c e s s  e n t e r s  t h e  
r e q u e s t  s t a t e  when i t  i s  s c h e d u l e d  by t h e  
o p e r a t i n g  s y s t e m .  A p r o c e s s  i s  a c t i v a t e d  and 
moved i n t o  t h e  l o a d i n g  s t a t e  d u r i n g  w h i c h  t i m e  
t h e  s w a p p e r  l o a d s  t h e  pages  o f  t h e  p r o c e s s e s  
p r e - l o a d  s e t .  When t h i s  i s  c o m p l e t e d ,  a 
p r o c e s s  e n t e r s  t h e  r e a d y  s t a t e .  Fo r  s i m p l i c i t y  
we s t i p u l a t e  t h a t  o n l y  a p r o c e s s  i n  t h e  r e a d y  
s t a t e  ( i . e .  w o r k i n g  s e t  t o t a l l y  r e s i d e n t )  may 
run  on t h e  CPU. I f  a r u n n i n g  p r o c e s s  demands a 
p a g e ,  i t  r e t u r n s  to  t h e  l o a d i n g  s t a t e  u n t i l  
t h e  demanded page  i s  l o a d e d .  We r e f e r  t o  t h e  
p r o c e s s e s  in  t h e  l o a d i n g  and r e a d y  s t a t e s  as 
t h e  a c t i v e  p r o c e s s e s ,  lVhen a p r o c e s s  c o m p l e t e s  
a c o m p u t a t i o n  o r  i s  p r e e m p t e d  by t h e  s c h e d u l e r  
t h e  p r o c e s s  e n t e r s  t h e  u n l o a d i n g  s t a t e  w h i l e  
a l l  pages  m o d i f i e d  d u r i n g  e x e c u t i o n  a r e  
w r i t t e n  back  o n t o  t h e  d rum.  We assume t h a t  a 
page  may be w r i t t e n  on t h e  drum i n t o  any  f r e e  
b l o c k  c o n v e n i e n t  t o  t h e  s w a p p e r .  One s e q u e n c e  
o f  t r a n s i t i o n s  by a p r o c e s s  t h r o u g h  t h e s e  
s t a t e s  w i l  1 be r e f e r e d  t o  as a s c h e d u l e  p e r i o d  
o f  t h e  p r o c e s s .  

The ma in  memory a l l o c a t i o n  s t r a t e g y  
a d o p t e d  i n  t h i s  p a p e r  i s  v e r y  s i m p l e .  Pages 

which are members of the working sets of 
loading process should be loaded at the 
convenience of the swapper into any free block 
of memory. If a page resident in main memory 
is not in the working set of a loading or 
ready process, it may be replaced. It is 
assumed that no pages of a processes working 
set are resident in main memory when the 
process is activated. It is further assumed 
that there are no shared pages, that is, no 
page is the member of more than one workin~ 
set. If either of these assumptions is 
violated then system performance will improve 
since less channel time is required to load 
these working sets. 

The Swapper 

Ti le s w a p p e r  p r o p o s e d  i n  t h i s  p a p e r  must  
make two  b a s i c  d e c i s i o n s :  

( 1 )  Process Activation. ~hen and what process 
to move from the request state into the 
loading state and thus, into 
consideration by the swapper. The swapper 
uses this decision capabilty to limit the 
number of processes which may 
simultaneously reside in main memory, 
thus controlling main memory 
overcrowding. 

(2)  Sector Command Selection. IVhich page to 
read or write at each sector position of 
the drum. 

T h e r e  e x i s t s  one s e c t o r  q u e u e  f o r  each  
s e c t o r  o f  t h e  d rum.  A s e c t o r  q u e u e  c o n t a i n s  a 
l i s t  o f  a l l  pages  w h i c h  s h o u l d  be r e a d  f r o m  
t h e  c o r r e s p o n d i n g  s e c t o r  on t h e  d rum.  When a 
p r o c e s s  i s  a c t i v a t e d  ( t h e  p r o c e s s  i s  moved t o  
t h e  l o a d i n g  s t a t e )  and e n t r i e s  f o r  a l  1 pages  
i n  t h e  p r e - l o a d  s e t  o f  t h e  p r o c e s s  a r e  a d d e d  
t o  t h e  a p p r o p r i a t e  s e c t o r  q u e u e s .  The demanded 
page o f  a r u n n i n g  p r o c e s s  i s  a l s o  e n t e r e d  on a 
s e c t o r  q u e u e .  A page  e n t r y  i s  r e m o v e d  f r o m  a 
s e c t o r  q u e u e  when t h e  page  i s  l o a d e d .  The drum 
l o a d  a t  any  t i m e  i s  d e f i n e d  as t h e  t o t a l  
number  o f  page  e n t r i e s  on a l l  t h e  S s e c t o r  
q u e u e s .  T h e r e  e x i s t s  a s i n g l e  page  w r i t e  q u e u e  
w h i c h  l i s t s  a l l  pages  w h i c h  s h o u l d  be w r i t t e n  
o u t .  When a p r o c e s s  d i s m i s s e s  ( c o m p l e t e s  a 
c o m p u t a t i o n  o r  i s  p r e e m p t e d )  a l l  pages  o f  i t s  
w o r k i n g  s e t  w h i c h  h a v e  been m o d i f i e d  a r e  added  
t o  t h e  page  w r i t e  q u e u e .  A page  i s  r e m o v e d  
f r o m  t h e  page  w r i t e  q u e u e  when i t  i s  w r i t t e n  
on t h e  d rum.  

The swapper must also consider the state 
of main memory in making its decisions. Each 
block of main memory is either free or 
allocated. A block is free if it does not 
contain a loaded page of a process in the 
l o a d i n g  s t a t e ,  a page o f  a p r o c e s s  i n  t h e  
r e a d y  s t a t e  o r  a m o d i f i e d  and n o t  y e t  u n l o a d e d  
page  o f  a p r o c e s s  i n  t h e  u n l o a d i n g  s t a t e .  A 
b l o c k  becomes f r e e  f o r  each  u n m o d i f i e d  page  i n  
t h e  w o r k i n g  s e t  o f  a p r o c e s s  when t h e  p r o c e s s  
d i s m i s s e s  and f o r  each m o d i f i e d  page  when t h e  
page  i s  u n l o a d e d .  A b l o c k  i s  a l l o c a t e d  when a 
page from the drum is loaded into it. 

Sector Command Selection 

A t  a p a r t i c u l a r  s e c t o r  p o s i t i o n  t h e  
s w a p p e r  may s e l e c t  t o  r e a d  any  page  on t h e  
c u r r e n t  s e c t o r  q u e u e  o r  w r i t e  some page  on t h e  
page w r i t e  q u e u e .  The s w a p p e r  may s e l e c t  a 
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page read only if there exists a page of free 
memory to read into. It should make its 
selection so as to maximize the total drum 
utilization and minimize the average memory 
space-time utilized by the processes in the 
loading and unloading states. 

If there is a choice between doing a read 
or a write, the read should be selected. Let 
Qw be the number of 0ages on the page write 
queue and Qr be the number of resident pages 
of the process of the page that would be read. 
If the write is done (and the read not) then 
the read cannot be done again for a full drum 
revolution. Thus, the total memory space-time 
is increased by a factor S*Qr. If the read is 
done then all the writes are put off only one 
sector time so the total space-time increases 
by Qw. Thus~ a read should be preferred over a 
write whenever Qr*S)Qw. This inequality will 
almost always be satisfieds since S is 
generally quite large. Thus, the swapper will 
do a read whenever the current sector queue is 
not empty and there exists a page of free 
memory. 

If there is more than one page on the 
current sector queue then the swapper must 
decide which page to read. Each page on the 
queue is a member of the working set of some 
process. All the processes in loading state 
are assigned priorities according to some 
rule. Of the processes with pages o n  the 
current sector queue, the swapper selects to 
do a read of a page of the process with 
highest priority. If processes are assigned 
priorities accordin~ to the order they enter 
the loading state, then the sector queues are 
first come-first served. The main memory 
required by the loading processes is minimized 
if the average number of main memory resident 
pages per loading process is minimized. This 
suggests the following rule for assignin~ 
p r i o r i t i e s :  p r i o r i t i e s  e r e  a s s i g n e d  as a 
f u n c t i o n  o f  t i m e  a c c o r d i n g  t o  t h e  n u m b e r  o f  
pages a process has resident in main memory, 
the process with the most resident pages 
receiving highest priority. Simulations were 
made to compare this priority rule against the 
first come-first served rule and other rules. 
All the rules yielded approximately the same 
level of performance with the number of 
resident pages rule slightly out performing 
the others. This insensitivity of system 
performance to the priority rule can be easily 
understood. The process priorities only affect 
the swapper function when the current sector 
queue contains more than a single element and, 
under the drum loads which produce optimum 
results, this occurs only a small fraction of 
the time. 

If there does not exist a block of free 
memory into which to read the selected page, 
then it may be desirable to release a loaded 
page of another process in the loading state 
thus freeing up the block of memory in which 
the released page resided. The released page 
must be reloaded later. A page may be released 
if it is an unmodified resident member of the 
working set of some process in the' loading 
s t a t e  o t h e r  t h a n  t h e  p r o c e s s  o f  t h e  p a g e  
s e l e c t e d  t o  r e a d .  The  s w a p p e r  may r e l e a s e  a 
p a g e  o n l y  i f  s u c h  a p a n e  e x i s t s .  I f  m o r e  t h a n  
o n e  s u c h  p a g e  e x i s t s ,  t h e n  t h e  s w a p p e r  m u s t  
s e l e c t  w h i c h  p a g e  t o  r e l e a s e .  The  same p r o c e s s  
p r i o r i t i e s  u s e d  t o  s e l e c t  t h e  p a g e  t o  r e a d  a r e  

used to select the page to release. The 
swapper should select t o  release a page from 
the process with lowest priority, and tile 
swapper should release the page only if the 
priority of the process of the page selected 
to read is higher than the priority of the 
process of the page selected to release. In 
other words, a page already resident in main 
memory should be released and overwritten with 
another page only if the residency of the new 
page is considered more important than that of 
the old page. Introducing this page releasing 
mechanism into the algorithm allows for 
greater system performance by permitting a 
drum load greater than tile free memory size 
without fear of hanging up the system if this 
should lead to a situation where free memory 
is exhausted and there are no pages to be 

w r i t t e n  o u t .  

Considerable improvement in the basic 
algorithm can be achieved if the following 
drum allocation requirement is enforced. Uever 
allocate any two pages of the same working set 
at the same sector position on the drum. This 
implies that the working set size must be less 
than the number of sectors about the drum, but 
this will generally be tile case with high 
performance drums. When a working set is so 
allocated it is said to have no sector 
conflicts. This allocation requirement is 
enforced whenever a modified page is written 
out. A page may not be written out anywhere, 
but is restricted to those sectors which do 
not already contain another page of the same 
working set. Only if the working set size 
approaches the number of sectors about the 
drum will there be a significant increase in 
memory resources required to unload processes 
as a result of the increased difficulty in 
finding a sector at which a page of the 
working set has not already been allocated. 

By allocating a working set without 
sector conflicts it is possible to load the 
entire working set within one drum revolution 
time. This optimum reading time can be impeded 
by an insufficiency of free memory into which 
to load the working set or by sector 
interference due to the loading of pages 
belonging to other processes. Using the no 
sector conflict allocation strategy, the 
sector interference problem is reduced. The 
number of pages on a sector queue, which is 
proportional to the level of interference, 
cannot exceed the number of processes in the 
loading state. With random allocation the 
number of pages on a sector queue is limited 
only by the drum load. Tile effect is to spread 
the pages on the sector queues out over a 
greater number of different queues, thus 
reducing the number of unoccupied queues for a 
given drum load. System performance for a 
given average drum load is increased since the 
effective drum utilization is directly 
proportional to the probability a current 
sector queue is occupied (see analysis 
section). Figure I plots the probability that 
a current sector queue is occupied vs. average 
drum load (L) for the random and no sector 
conflict allocation situations. In both 
simulations the memory size was large enough 
to avoid page releasing. Notice that for a 
given average drum load, a greater probability 
of an occupied current sector queue and 
consequently a greater throughput is achieved 
in the case when no sector conflict allocation 
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is used than in the case when it is not. The 
curves clearly indicate the advantage of no 
sector conflict allocation. 

When shared pages exist in a time-sharin~ 
system, it may not be possible to write out 
the pages of a working set so as to avoid 
sector conflicts, since a page which is shared 
by two active processes will be unloaded when 
the second process dismisses and will allocate 
the page without regard to the allocation of 
the working set of the first process. Of 
course, this problem does not arise for read- 
only pages which are the most common kind of 
shared pages. Nriteable shared pages can, 
therefore, hinder system performance by 
introducing sector conflicts if they occur in 
sufficient quantities. It is not believed that 
this is a serious problem. 

I t  mus t  be f u r t h e r  n o t e d  t h a t  t h e  swamper  
can  do a page  w r i t e  o n l y  i f  t h e r e  e x i s t s  an 
u n a l l o c a t e d  drum b l o c k  a t  t h e  c u r r e n t  s e c t o r  
p o s i t i o n .  U n l e s s  t h e  d rum i s  o v e r l o a d e d  a f r e e  
b l o c k  w i l l  a l m o s t  a l w a y s  e x i s t  when i t  i s  
n e e d e d .  In  a l l  s i m u l a t i o n  r e s u l t s  r e p o r t e d  i n  
t h i s  p a p e r  i t  i s  assumed t h a t  f r e e  b l o c k s  
e x i s t  a t  a l l  s e c t o r  p o s i t i o n s  on t h e  d rum.  

The complete algorithm is now summarized. 
The algorithm is invoked once for each sector 
time. 

Sector Command Selection Algorithm 

Step I. (page to read?) Go to step 7 if the 
current sector queue is empty. 

Step 2. (select a read) Of the processes with 
pages on the current sector queue, select 
to read the page of the process with the 
highest priority. 

S t e p  3. ( f r e e  memory? )  Go t o  s t e p  6 i f  t h e r e  
i s  f r e e  memory .  

S t e p  4. ( s e l e c t  a r e l e a s e )  Of t i l e  p r o c e s s e s  i n  
t h e  l o a d i n g  s t a t e ,  o t h e r  t h a n  t h e  one  o f  
t h e  s e l e c t e d  r e a d ,  w h i c h  h a v e  a t  l e a s t  
one  u n m o d i f i e d  r e s i d e n t  p a g e ,  s e l e c t  
page f r o m  t h e  p r o c e s s  w i t h  t h e  l o w e s t  
p r i o r i t y .  Go t o  s t e p  7 i f  no such p r o c e s s  
e x i s t s .  

S t e p  5.  ( d o  a r e l e a s e )  R e l e a s e  t h e  s e l e c t e d  
page  i f  t h e  p r i o r i t y  o f  t h e  p r o c e s s  o f  
t h e  s e l e c t e d  r e l e a s e  i s  l o w e r  t h a n  t h e  
p r i o r i t y  o f  t h e  p r o c e s s  o f  t h e  s e l e c t e d  
r e a d  e l s e  go t o  s t e p  7. 

S t e p  6. ( d o  t h e  r e a d )  S t a r t  t h e  s e l e c t e d  r e a d  
command and e x i t .  

S t e p  7. ( d o  a w r i t e )  I f  a f r e e  d rum b l o c k  
e x i s t s  a t  t h e  c u r r e n t  s e c t o r ,  s t a r t  a 
w r i t e  command f o r  t h e  f i r s t  page on t h e  
page w r i t e  q u e u e  w h i c h  w o u l d  n o t  c a u s e  a 
s e c t o r  c o n f l i c t  i f  such a page e x i s t s  and 
e x i t .  

A n a l y s i s  

I t  i s  t h e  p u r p o s e  o f  t h e  s w a p p e r  to  
m a x i m i z e  s y s t e m  t h r o u g h p u t  w h i c h  i s  d i r e c t l y  
p r o p o r t i o n a l  t o  t h e  r a t e  a t  w h i c h  p r o c e s s e s  
can be s e r v i c e d  by t h e  s w a p p e r .  I f  D i s  t h e  
f r a c t i o n  o f  t i m e  t h e  d rum i s  r e a d i n g  o r  
w r i t i n g  pages  ( i . e .  n o t  i d l e )  and U i s  t h e  
a v e r a g e  t i m e  a p r o c e s s  u t i l i z e s  t h e  d rum 
d u r i n g  a s c h e d u l e  p e r i o d  o f  a p r o c e s s ,  t h e n  
t h i s  s e r v i c e  r a t e  i s  just t h e  r a t i o  D/U.  Now, 
l e t  w be t h e  a v e r a g e  p r e - l o a d  s e t  s i z e ,  m t h e  
a v e r a g e  number  o f  pages  m o d i f i e d  d u r i n g  a 
s c h e d u l e  p e r i o d  o f  a p r o c e s s  and u be t h e  
a v e r a g e  number  o f  pages  r e l e a s e d  p e r  p r o c e s s  
s c h e d u l e  p e r i o d ,  t h e n ,  n o r m a l i z i n g  t i m e  u n i t s  
so t h a t  a s e c t o r  t i m e  i s  u n i t y ,  we h a v e  
U=w+m+u. D i s  t h e  p r o b a b i l i t y  o f  r e a d i n g  a 
page  w i t h o u t  r e l e a s i n g  a p a g e ( P  w ) p l u s  t h e  
p r o b a b i l i t y  o f  r e a d i n g  a page  a f t e r  r e l e a s i n g  
a page  (Pu )  p l u s  t h e  p r o b a b i l i t y  o f  w r i t i n g  a 
m o d i f i e d  page  (Pm) ,  (D=Pw+Pm+Pu) . O b s e r v i n g  
that P,1=(m/w)Pw and Pu=(U/W)Pw, we determine 
that D/U=~v/w. System performance is directly 
proportional to the probability of doing a 
useful read (Pw). This probability is in turn 
equal to the probability of an occupied 
current sector queue times the probability of 
the existence of a block of free memory. 

The value (w÷m)D/U, which we define as 
the effective drum utilization (F), provides a 
more convenient measure which is directly 
p r o p o r t i o n a l  t o  t h r o u g h p u t .  Maximum s y s t e m  
performance is achieved when the effective 
drum utilization is unity. A little algebra 
indicates that F is the probability of doing a 
useful read (Pw) plus that of doing a write 
(B,l). F falls below unity due to useless reads 
(reads of pages subsequently released) and 
idle sector times. System performance is 
optimized when the summed probability of these 
latter two events is minimized. Figure 2 plots 
a characteristic curve for effective drum 
utilization (F) vs. average drum load (L). 
System performance is optimized at a 
particular value for the average drum load. If 
L is less than the optimum, then many sector 
queues will be empty and there will be 
increased drum idle time. If L is greater than 
the optimum then main memory will contain the 
pages of more different working sets, thus 
overcrowding main memory and decreasing the 
probability of free memory while increasing 
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F i g u r e  2. Opt imum Drum Load 
I .  o! 

.67 

.33  

A 

i0 20 30 
a v e r a g e  drum l o a d  
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B - p r o b a b i l i t y  o f  i d l e  s e c t o r  t i m e  
F - e f f e c t i v e  d rum u t i l i z a t i o n  
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the probability of an occuppied sector queue, 
therefore increasing the probability of 
u s e l e s s  r e a d s  due t o  page  r e l e a s i n g .  
Simulation results for typical systems 
indicate that optimum system performance is 
achieved when the average drum load is about 
equal to half the number of sectors about the 
drum (L~S/2). 

Process Activation 

It is through the process activation 
decision that the swapper is able to regulate 
the drum load. Initially, the request state 
will be regarded as a first come-first served 
queue. The first process in the request state 
queue is the next process to be activated. 
This assumption assures a minimum variation in 
the response times of the processes requesting 
service. The simplest activation algorithm is 
to consider the next process whenever adding 
its pages on the sector queues would not cause 
the drum load to exceed some value specified 
as a parameter to the algorithm (L'). In this 
case the average drum load would be given 
approximately by L=L'-w/2. The drum load would 
vary with the variation in pre-load set sizes. 

This algorithm can be improved upon if 
the amount of free memory is taken into 
account in making the process activation 
decision. Nhen free memory is larger, a higher 
drum load can he tolerated, thus suggesting 
the following activation algorithm: activate 
the next process if the drum load plus the 
size of the pre-load set of the next ~rocess 
minus the amount of free memory is less than 
the parameter L I The approximate average drum 
load would then be L=L'-w/2÷Mf where Nf is the 
average free memory size. This modification 
tends to make the probability of activating a 
process higher if there is more free memory. 
This, in effect, introduces feedback into the 
queue of free memory blocks by increasing the 
arrival rate into the queue when the free 
memory size is small. A smaller free memory 
size will cause a smaller drum load, which 

w i l l  r e d u c e  t h e  p r o b a b i l i t y  o f  d o i n g  a r e a d ,  
w h i c h  w i l l  i n c r e a s e  t h e  p r o b a b i l i t y  o f  d o i n g  a 
w r i t e ,  w h i c h  w i l l  i n c r e a s e  t h e  a r r i v a l  r a t e  
i n t o  t h e  f r e e  memory q u e u e .  Thus ,  on  t h e  
average less free memory is required, 
therefore, more memory is available for 
loading processes which allows a higher 
average drum load and consequently a greater 
level of system performance. 

If processes are taken off the request 
state queue in some order other than first 
come-first served, then the activation 
algorithm can be improved even further, but 
not without cost. The following rule when 
added to the previously specified algorithm 
can completely eliminate sector interference. 
Select as the next process to activate the 
first process on the request state queue whose 
pre-load set if added to the sector queues 
will not add a page entry to any sector queue 
which is already occupied. A process may be 
activated only if such a process exists in the 
request state. Using this sector interference 
elimination rule, a current sector queue can 
have just one or zero pages in it. The effect 
is to maximally spread tile pages over the 
sector queues. System performance is increased 
by increasing the probability of an occupied 
current sector queue for a given average drum 
load. Typical simulation results showing the 
improvement due to this process selection rule 
are plotted in figure I. 

T h i s  p r o c e s s  s e l e c t i o n  r u l e  has t h r e e  
d i s a d v a n t a g e s .  F i r s t ,  i t  r e q u i r e s  a d d i t i o n a l  
c o m p u t a t i o n a l  o v e r h e a d  t o  d e t e r m i n e  i f  each  
p r o c e s s  i n  t h e  r e q u e s t  s t a t e  c a u s e s  any  s e c t o r  
i n t e r f e r e n c e .  S e c o n d ,  s i n c e  t h e  r e q u e s t  s t a t e  
may be s e r v i c e d  i n  any  o r d e r ,  t h e  v a r i a t i o n  in  
r e s p o n s e  t i m e s  w i l l  i n c r e a s e  c o n s i d e r a b l y .  In 
f a c t ,  i t  c a n n o t  be g u a r a n t e e d  t h a t  a p r o c e s s  
i n  t h e  r e q u e s t  s t a t e  w i l l  e v e r  be s e r v i c e d .  
O n l y  s y s t e m s  w i t h  s u f f i c i e n t l y  l o n g  r e s p o n s e  
t i m e  r e q u i r e m e n t s  can a f f o r d  t o  use t h i s  r u l e .  
T h i r d ,  a s y s t e m  p e r f o r m s  b e t t e r  u n d e r  t h i s  
a l g o r i t h m  o n l y  i f  t h e  r e q u e s t  s t a t e  i s  
sufficiently large. There is a greater 
probability of finding a process which causes 
no interference if the request state is 
larger. Thus, the average drum load is a 
monotonically increasing function of the 
average request state size. If a time-sharing 
system is not sufficiently loaded (this may be 
because excessive loading would cause 
unacceptable response time) to produce a 
sufficiently large request state, then the 
average drum load might be so low that better 
performance could be achieved with first come- 
first served selection. For example, in the 
situation simulated in figure I, curve C it 
was found that this selection rule increases 
performance over first come-first served 
selection only if the average request state 
size is greater than seven. 

U s i n g  t h i s  s e c t o r  i n t e r f e r e n c e  
e l i m i n a t i o n  s e l e c t i o n  r u l e ,  s y s t e m  p e r f o r m a n c e  
can be i m p r o v e d  s t i l l  f u r t h e r  by r e s t r i c t i n g  
t h e  a 1 1 o c a t i o n  o f  pages  o f  a w o r k i n g  s e t  t o  
some c o n t i g u o u s  s u b s e c t i o n  o f  t h e  s e c t o r s  o f  
t h e  d rum.  In d o i n g  t h i s  i t  becomes e a s i e r  t o  
f i n d  a p r o c e s s  w h i c h  does  n o t  c a u s e  any  s e c t o r  
i n t e r f e r e n c e  f o r  t h e  same r e q u e s t  s t a t e  s i z e  
s i n c e  t h e  s e c t o r  p o s i t i o n s  o f  t h e  p a g e s  o f  two 
d i f f e r e n t  w o r k i n g  s e t s  a r e  mo re  l i k e l y  t o  be 
d i s j o i n t .  A l t e r n a t e l y ,  i t  can be s t a t e d  t h a t  
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Simulation 

D 

A s i m u l a t o r  was d e v e l o p e d  t o  d e t e r m i n e  
s y s t e m  p e r f o r m a n c e  and o t h e r  m e a s u r e s  as a 
f u n c t i o n  o f  t h e  s y s t e m  p a r a m e t e r s  u n d e r  
c e r t a i n  a s s u m p t i o n s  now s t a t e d .  The s i m u l a t o r  
o p e r a t e s  in  d e s c r e t e  t i m e  u n i t s ,  t h e  a t o m i c  
u n i t  b e i n g  a s e c t o r  t i m e .  In a l l  s i m u l a t i o n  
r e s u l t s  p r e s e n t e d  i n  t h i s  p a p e r ,  t h e  c o m p u t e  
t i m e s  o f  p r o c e s s e s  d u r i n g  s c h e d u l e  p e r i o d s  a r e  
P o i s s o n  d i s t r i b u t e d  w i t h  mean t ,  and t h e  p r e -  
l o a d  s e t  s i z e s  a r e  u n i f o r m l y  d i s t r i b u t e d  
b e t w e e n  w /2  and 3 w / 2 .  The number  o f  pages  o f  a 
p r o c e s s  m o d i f i e d  d u r i n g  e x e c u t i o n  i s  a l w a y s  
d i r e c t l y  p r o p o r t i o n a l  t o  t h e  w o r k i n g  s e t  s i z e  
o f  t h e  p r o c e s s  i n  t h e  r a t i o  m/w o r  m / d .  Fo r  
p u r e  demand p a g i n g  c o n d i t i o n s ,  t h e  number  o f  
pages  demanded by a p r o c e s s  i s  p r o p o r t i o n a l  t o  
i t s  c o m p u t e  t i m e  i n  t h e  r a t i o  w / t  and a l l  
pages  a r e  demanded a t  c o m p u t e  t i m e  z e r o  o f  t h e  
schedule period. All simulation results 
reported in this paper are for a system with 
one CPU and one drum with 32 ~ectors. The 
simulator was implemented in QSPL , a system 
programming language for the Berkeley SDS-940 
time-sharing system-~ 

Figure 3 plots simulation results which 
compare CPU utilization 'against main memory 
size for systems with several different 
program loads under pure pre-loading strategy. 
Curves A, B, and C correspond to systems with 
balanced loads, curve D to a channel limited 
system, and curve E to a CPU limited system. 
CPU utilization is directly proportional to 
effective drum utilization in the ratio 
t/(w+m). Remember t is measured in units of 
sector times. In all these simulations the 
system is always fully loaded i.e. the request 
state is never empty. 

O p e r a t i n g  Sys tem O v e r h e a d  

The s w a p p e r  r e q u i r e s  c o m p u t a t i o n a l  and 
memory  r e s o u r c e s  i n  o r d e r  t o  f u n c t i o n .  I t  
r e q u i r e s  memory t o  h o l d  t h e  s e c t o r  q u e u e s ,  t h e  
page w r i t e  q u e u e ,  and t h e  code  o f  t h e  s w a p p e r  
p r o g r a m .  T h i s  amoun t  o f  memory s h o u l d  be v e r y  
s m a l l  c o m p a r e d  t o  t h a t  n e e d e d  t o  swap w o r k i n g  
s e t s .  In  a d d i t i o n ,  t h e r e  must  be memory f o r  
t h e  o p e r a t i n g  s y s t e m  d a t a  s t r u c t u r e s  w h i c h  
l o c a t e  and i d e n t i f y  pages  on t h e  d rum and in  
ma in  memory .  T h i s  memory  r e q u i r e m e n t  can be 
q u i t e  l a r g e  i n  some o p e r a t i n g  s y s t e m  d e s i g n s .  

Figure 3. Pure Pre-loadlng Performance this allocation restriction improves 
performance by reducing the time it takes to 1.0 
load a working set. This allocation 
restriction helps only if the average pre-load 
set size is much less than the number of 
s e c t o r s  a b o u t  t h e  d rum(w<<S)  and w r i t e a b l e  
s h a r e d  pages  a r e  n o t  so p r e v a l e n t  as t o  
nullify the effect of this allocation. If w is ~.67 
too large compared to S, then the increased .~ 
difficulty in writing pages due to the 
allocation restriction will cause the average .~ 
amount of memory required by processes in the -- 
unloading state to be increased by more than 
t h e  l o a d i n g  s t a t e  memory r e q u i r e m e n t  i s  ~ .33  
reduced. As an example, simulation results 
show that if the average pre-load set size is 
about one-fourth the number of sectors about 
the drum (w=S/~), then a significant (5-I0~) 
improvement in system performance occurs when 
the pages of a working set are restricted to 0 
one-half to three-quarters of the total drum 
s e c t o r s .  

0 16 32 ~8 
m a i n  memory s i z e  ( p a g e s )  

A - w=8 m=~ t = 1 2  S=32 
B - w=4 m=2 t=6 
C - w=16 m=8 t=24  
D - w :8  m=4 t : 6  
E - w : 8  in :4 t =24  
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The c o m p u t a t i o n a l  r e q u i r e m e n t s  o f  t h e  
a l g o r i t h m  can be q u i t e  h i g h .  The s w a p p e r  
p r o c e d u r e  mus t  be c a l l e d  once  e v e r y  s e c t o r  
t i m e  o f  t h e  d rum.  i f  t h e  page s i z e  i s  s m a l l ,  
say  512 w o r d s ,  t h e n  t h e  p r o c e d u r e  m i g h t  be 
c a l l e d  as f r e q u e n t l y  as once  e v e r y  250 m i c r o -  
s e c o n d s .  The c o m p u t a t i o n a l  o v e r h e a d  i s  
i n v e r s e l y  p r o p o r t i o n a l  t o  t h e  page  s i z e .  In 
s y s t e m s  w i t h  one  o r  more  l a r E e  drums i t  i s  
p r o b a b l y  n e c e s s a r y  t o  d e d i c a t e  an e n t i r e  
p r o c e s s o r  t o  t h e  s w a p p e r  f u n c t i o n  s i n c e  t h e  
s w a p p e r  d e c i s i o n s  r e q u i r e  n o n - t r i v i a l  
c o m p u t a t i o n s .  Because  o f  t h e  s w a p p e r s  
s p e c i a l i z e d  f u n c t i o n ,  i t  m i g h t  be most  
e f f i c f e n t l y  i m p l e m e n t e d  on a m i c r o - p r o c e s s o r .  

Demand P a g i n g  

The s w a p p e r  u s i n g  t h e  p r e v i o u s l y  
d e s c r i b e d  a l g o r i t h m  can s a t i s f y  demand p a g i n g  
r e q u e s t s  o f  r u n n i n g  p r o c e s s e s  i n  a v e r y  
n a t u r a l  way .  i~hen a p r o c e s s  demands a p a g e ,  
t h e  p r o c e s s  i s  i m m e d i a t e l y  moved  t o  t h e  
l o a d i n g  s t a t e  and t h e  demanded page  e n t e r e d  on 
t h e  a p p r o p r i a t e  s e c t o r  q u e u e .  Thus ,  thee 
s w a p p e r  sees  a p r o c e s s  whose  w o r k i n g  s e t  i s  
l o a d e d  b u t  f o r  a s i n g l e  p a g e .  Even i n  t h e  
e x t r e m e  case  w h e r e  a l l  pages  a r e  l o a d e d  by 
demand p a g i n g ,  t h e  a l g o r i t h m  w o r k s  c o r r e c t l y  
and e f f i c i e n t l y .  In  f a c t ,  u s i n g  t h e  number  o f  
m a i n  memory r e s i d e n t  pages  t o  d e t e r m i n e  
p r o c e s s  p r i o r i t i e s  p r o v i d e s  a b e t t e r  
p e r f o r m i n g  s w a p p e r  t h a n  t h e  ~ p a g i n g  d r u m '  
d e s c r i b e d  in  t h e  l i t e r a t u r e  1 , 3  { w h i c h  uses  
f i r s t  c o m e - f i r s t  s e r v e d  p r i o r i t i e s )  by 
m i n i m i z i n g  t h e  memory r e q u i r e d  by p r o c e s s e s  i n  
t h e  l o a d i n g  s t a t e .  

Under  p u r e  demand p a g i n g  s t r a t e g y ,  a 
d i f f e r e n t  r u l e  s h o u l d  be used  t o  d e t e r m i n e  
when t o  a c t i v a t e  a p r o c e s s .  U n l i k e  t h e  p u r e  
p r e - l o a d i n g  case  { w h e r e  i t  i s  assumed t h a t  a l l  
pages  t o  be r e f e r e n c e d  a r e  p r e - l o a d e d ) ,  i t  i s  
n o t  known a t  a c t i v a t i o n  t i m e  w h a t  t h e  e v e n t u a l  
m a i n  memory  demand o f  t h e  a c t i v a t e d  p r o c e s s  
w i l l  be .  T h e r e f o r e ,  u n d e r  p u r e  demand p a g i n g  a 
new p r o c e s s  s h o u l d  be a c t i v a t e d  o n l y  i f  t h e  
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sum of the expected memory demands of the 
active processes (i.e. in the loading and 
ready states) does not exceed some parameter 
whose value is proportional to the main memory 
size. The constant of proportionality can be 
tuned to achieve an optimum compromise between 
drum utilization and page releasing resulting 
from an overcrowded memory. The working set 
size for a process can serve as an estimate 
for the expected memory demand. Lacking this 
information, the estimate for a process's 
memory demand can just be the average number 
of pages demanded by processes in the system. 
This amounts to maintaining a constant number 
of active processes at any time i.e. a process 
is activated whenever another process 
dismisses. This is the activation rule used in 
the reported pure demand paging simulations. 

P r e - l o a d i n g  v s .  Demand P a g i n g  

In this section we will present arguments 
based on simulation results and approximate 
analysis which will demonstrate the improved 
performance which can be achieved by using 
pure pre-loading strategy instead of pure 
demand paging strategy. Let w be the average 
pre-load set size under pure pre-loading and 
let d be the average number of pages demanded 
by a process during a schedule period under 
pure demand paging. The extreme of pure pre- 
loading cannot be achieved in a real system, 
but as this limit is approached the average 
pre-load set size will tend to contain more 
pages which are not subsequently referenced 
when t h e  p r o g r a m  runs  d u r i n g  t h e  c u r r e n t  
s c h e d u l e  p e r i o d .  C l e a r l y ,  t h e  a v e r a g e  p r e - l o a d  
s e t  s i z e  unde r  p u r e  p r e - l o a d i n g  Is  g r e a t e r  
t han  t h e  a v e r a g e  number o f  pages  demanded per  
s c h e d u l e  p e r i o d  unde r  p u r e  demand p a g i n g  
( w > d ) ,  h o w e v e r ,  a p r e c i s e  r e l a t i o n s h i p  b e t w e e n  
t h e s e  two q u a n t i t i e s  can be d e t e r m i n e d  o n l y  
t h r o u g h  e m p i r i c a l  e v i d e n c e  o b t a i n e d  f r o m  r e a l  
s y s t e m s .  

At any time each block of main memory is 
either free or allocated to a process in the 
loading, ready, or unloading state. Therefore, 
we can define four quantities which represent 
the number of free main memory blocks or the 
number of main memory blocks allocated to all 
the processes in these three states at any 
time averaged over all time. We call these 
quantities the free, loading state, ready 
state, and unloading state memory requirements 
and d e n o t e  them by Mf , M l s ,  Hrs , Mus , 
r e s p e c t i v e l y .  

A numerical example based on simulation 
results will be instructive. Assume a loaded 
(request state never empty) and balanced 
(w+m=t) system and a drum with thirty-two 
sectors. Further assume a system load with 
average working set size of eight pages 
(w=d=8), half of the pages modified during the 
schedule period (m=4) and mean compute time 
per schedule period of twelve sector times 
(t=12). Under these conditions the following 
simulation results are obtained for the pure 
pre-loading case: i , t l s=16 ,  Mrs=8, ~s=3 and 
Mf=3 for a total memory requirement of 32 
blocks. These results are obtained with an 
average drum load of 16 pages and a resulting 
optimum effective drum utilization of about 
80~. Under pure demand paging the following 
simulation results are obtained: His =~2, 
Mrs=8,  I,~js=3, fdf =15 f o r  a t o t a l  memory 

r e q u i r e m e n t  o f  68 b l o c k s  w i t h  a p p r o x i m a t e l y  
t h e  same a v e r a g e  drum l o a d  and o p t i m u m  
e f f e c t i v e  drum u t i l i z a t i o n  as b e f o r e .  Thus,  
f o r  t h i s  e x a m p l e  a b o u t  t w i c e  as much memory i s  
r e q u i r e d  unde r  p u r e  demand p a g i n g  t o  a c h i e v e  a 
g i v e n  l e v e l  o f  s y s t e m  p e r f o r m a n c e  as unde r  
p u r e  p r e - l o a d i n g .  

We w i l l  now p r o v i d e  a r g u m e n t s  w h i c h  
e x p l a i n  t h i s  d i f f e r e n c e  in  memory 
r e q u i r e m e n t s .  A l i t t l e  r e f l e c t i o n  s h o u l d  
c o n v i n c e  t h e  r e a d e r  t h a t  t h e  r e a d y  s t a t e  and 
u n l o a d i n g  s t a t e  memory r e q u i r e m e n t s  w i l l  be 
a p p r o x i m a t e l y  t h e  same f o r  a g i v e n  l e v e l  o f  
s y s t e m  p e r f o r m a n c e  r e g a r d l e s s  o f  t h e  l o a d i n g  
s t r a t e g y  used .  The a v e r a g e  f r e e  memory s i z e  
w i l l ,  i n  g e n e r a l ,  be g r e a t e r  f o r  t h e  demand 
p a g i n g  case  as a r e s u l t  o f  t h e  ~ r e a t e r  
u n c e r t a i n t y  o f  t h e  f u t u r e  memory demand o f  an 
a c t i v e  p r o c e s s .  

The l o a d i n g  s t a t e  memory r e q u i r e m e n t  
shows t h e  g r e a t e s t  d e p e n d e n c e  on t h e  page 
l o a d i n g  s t r a t e g y  e m p l o y e d .  Under  p u r e  p r e -  
l o a d i n g  a t  any t i m e  each o f  t h e  pages  o f  a 
p r o c e s s  in  t h e  l o a d i n g  s t a t e  i s  e i t h e r  
r e s i d e n t  in  ma in  memory o r  on a s e c t o r  q u e u e .  
I f  t h e r e  i s  no s e c t o r  i n t e r f e r e n c e  b e t w e e n  
pages o f  d i f f e r e n t  p r o c e s s e s ,  t hen  a l l  pages  
in  t h e  s e c t o r  queues  w i l l  be read  a t  t h e  f i r s t  
o p p o r t u n i t y  and t h e r e f o r e ,  a s s u m i n g  u n i f o r m  
d i s t r i b u t i o n  o f  pages  a r o u n d  t h e  d rum,  we 
c o n c l u d e  t h a t  a l o a d i n g  p r o c e s s  has an a v e r a g e  
o f  w/2  pages r e s i d e n t  i n  ma in  memory ~ l s  =w /2 )  
and w /2  pages on t h e  s e c t o r  q u e u e s .  The 
a v e r a g e  number o f  p r o c e s s e s  in  t h e  l o a d i n g  
s t a t e  i s  j u s t  t h e  a v e r a g e  drum l o a d  d i v i d e d  by 
t h e  a v e r a g e  number o f  s e c t o r  queue e n t r i e s  pe r  
p r o c e s s  ( ~ s  = 2 L / w ) .  The l o a d i n g  s t a t e  memory 
r e q u i r e m e n t  i s  t h e  p r o d u c t  o f  t h e  a v e r a g e  
number o f  r e s i d e n t  pages  pe r  l o a d i n g  s t a t e  
p r o c e s s  t i m e s  t h e  a v e r a g e  number o f  such 
p r o c e s s e s  (Mls  =Nls * q l s  ) .  T h e r e f o r e ,  we 
c o n c l u d e  t h a t  t h e  a p p r o x i m a t e  l o a d i n g  s t a t e  
memory r e q u i r e m e n t  unde r  p u r e  p r e - l o a d i n g  i s  
j u s t  t h e  a v e r a g e  drum l o a d  ( M l s = L ) .  

Under  p u r e  demand p a g i n g  t h e r e  i s ,  i n  
g e n e r a l ,  one page on a s e c t o r  queue  f o r  each 
p r o c e s s  in  t h e  l o a d i n g  s t a t e .  T h e r e f o r e ,  t h e  
mean l o a d i n g  s t a t e  s i z e  i s  a p p r o x i m a t e l y  t h e  
a v e r a g e  drum l o a d  ( q l s = L ) .  The a v e r a g e  number 
o f  r e s i d e n t  pages  pe r  p r o c e s s  in  t h e  l o a d i n g  
s t a t e  i s  a p p r o x i m a t e l y  h a l f  t h e  number o f  
pages demanded pe r  s c h e d u l e  p e r i o d  a s s u m i n g  
t h e  pages a r e  l o a d e d  u n i f o r m l y  w i t h  t i m e  
( W l s : d / 2 ) .  M u l t i p l y i n g  t h e s e  two f a c t o r s  we 
g e t  M l s : L d / 2  as t h e  a p p r o x i m a t e  l o a d i n g  s t a t e  
memory r e q u i r e m e n t  unde r  p u r e  demand p a g i n g .  
Ti le l o a d i n g  s t a t e  memory r e q u i r e m e n t  o f  42 
pages d e t e r m i n e d  f r o m  t h e  p r e v i o u s  s i m u l a t i o n  
r e s u l t  i s  c o n s i d e r a b l y  l e s s  t h a n  t h e  64 pages 
e x p e c t e d  f r o m  t h i s  a p p r o x i m a t e  a n a l y s i s .  T h i s  
r e d u c t i o n  can be l a r g e l y  a t t r i b u t e d  t o  t h e  
a d v a n t a g e o u s  use o f  t h e  p r i o r i t y  r u l e  based on 
t h e  number o f  r e s i d e n t  pages o f  a p r o c e s s .  

A s y s t e m  i s  c h a n n e l  l i m i t e d  i f  t h e  
a v e r a g e  d rum c h a n n e l  t i m e  u t i l i z e d  pe r  
s c h e d u l e  p e r i o d  i s  g r e a t e r  t h a n  t h e  a v e r a g e  
compu te  t i m e  pe r  s c h e d u l e  p e r i o d  ( w + m > t ) .  
Assum ing  t h a t  t h e  s y s t e m  i s  c h a n n e l  l i m i t e d  
( w h i c h  i s  t h e  o n l y  i n t e r e s t i n g  c a s e ) ,  we a r g u e  
t h a t  t he  t h r o u g h p u t  o f  a s y s t e m  i s  t h e  same 
f o r  a g i v e n  a v e r a g e  drum l o a d  i f  t h e  s y s t e m  i s  
o p e r a t i n g  unde r  p u r e  p r e - l o a d i n g  o r  under  p u r e  
demand p a g i n g .  S i n c e  l e s s  pages  mus t  be t o a d e d  
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per schedu le  p e r i o d  under pure demand pag ing  
(d<w), a g r e a t e r  t h roughpu t  is ach ieved  f o r  a 
given effective drum utilization. However, a 
greater effective drum utilization is achieved 
for a given average drum load under pure pre- 
loading due to the no sector conflict drum 
allocation s t r a t e g y .  In figure 1 the 
difference is clearly indicated where curve A 
corresponds to the demand paging case and 
curve B corresponds to a pre-loading case. 
These two effects approximately cancel 
yielding about the same throughput for a given 
drum load under either loading strategy. 
Therefore, using the results of the previous 
two paragraphs, we conclude that the loading 
state memory requirement under pure demand 
paging is greater than that under pure pre- 
loading by a factor of about d/2. 

It should be noted that the reduced 
memory requirement due to pre-loading can be 
obtained only in systems with drums with a 
large number of sectors. Tile average drum load 
which produces the optimum performance for a 
particular program load will be proportional 
to the number of drum sectors. The reduced 
drum load for smaller drums will reduce the 
l o a d i n g  s t a t e  memory r equ i r emen t  
p r o p o r t i o n a l l y  under both s t r a t e g i e s  and 
consequen t l y  the advantage o f  p r e - l o a d i n g  is 
d i m i n i s h e d .  

Summary 

Three things were accomplished in this 
paper: I) we have developed and analyzed an 
algorithm for efficiently managing the 
transfer of pages between main memory and a 
large secondary drum storage device in systems 
which use either demand paging or pre-loading 
page l o a d i n g  s t r a t e g i e s ,  2) s i m u l a t i o n  r e s u l t s  
were p resen ted  which p l o t t e d  system 
per formance a g a i n s t  slain memory s i z e  f o r  a 
system us ing  pure p r e - l o a d i n g  s t r a t e g y  under 
v a r i o u s  program loads and 3) an argument based 
on s i m u l a t i o n  r e s u l t s  and a p p r o x i m a t e  average 
v a l u e  a n a l y s i s  was p resen ted  which conc luded 
t h a t  the use o f  p r e - l o a d i n g  s t r a t e g y  w i t h  the 
g i ven  a l g o r i t h m  i n s t e a d  o f  pure demand pag ing  
can c o n s i d e r a b l y  reduce the main memory 
r e q u i r e d  to a c h i e v e  a p a r t i c u l a r  l e v e l  o f  
system per fo rmance i f  the drum is ]arEa enough 
to s t o r e  c o n s i d e r a b l y  more than a t y p i c a l  
w o r k i n g  set  o f  i n f o r m a t i o n  in one drum 
r e v o l u t i o n .  
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