
AN ALGORITHM FOR DRUM STORAGF MANAGEMENT
IN TIME-SHARII'!G SYSTEMS

~lark L. Greenberg

University of California, Berkeley

An algorithm for efficiently managing the
transfer of pages of information between main
and secondary memory is developed and
analyzed. The alogorithm applies to time-
shared computer systems that use rotating
magnetic drums as secondary storage devices.
The algorithm is designed to provide efficient
system performance when referenced pages are
predominantly pre-loaded. However, the
algorithm also provides optimum results for
systems where all pages are loaded on demand.
The nature of the improved performance which
can be derived from page pre-loadin~ strategy
is discussed. Simulation results are presented
which plot system performance as a function of
main memory size.

Ip~roduction

The efficient transfer of information
between main and secondary memory is of major
importance in providing a high level of
performance in time-shared computer systems.
Programs cannot run unless the information
they reference is resident in main memory.
Yet, due to the limited size of main memory,
only a small fraction of the total information
stored in the system can be resident in main
memory at any particular time. Thus, a heavy
load of information transfer into and out of
main memory is inevitable.

In this paper an aIEorithm for
efficiently managing information transfer
operations in a time-sharing system will be
developed and analyzed. Simulation results
using this algorithm will be presented. The
secondary storage of the system is implemented
with high performance, fixed head, rotating
magnetic storage devices hereinafter referred
to as drums. The algorithm will be developed
on the assumption that pre-loading of pages
referenced by a running process is the
predominant method of page loading. Arguments
will be presented to show that page pre-
loading can lead to much higher levels of
system performance for many hardware

configurations. A sufficiently detailed model
for such time-sharing systems will now be
developed.

Preliminaries

We d e f i n e t h r o u g h p u t o f a t i m e - s h a r i n g
s y s t e m t o be t h e r a t e a t w h i c h u s e r p roEram
r e q u e s t s f o r s e r v i c e a r e s a t i s f i e d , In t h i s
pape r we w i l l c o n s i d e r t h r o u g h p u t t o be the
measure f o r s y s t e m p e r f o r m a n c e . The t h r o u g h p u t
o f a t i m e - s h a r i n g s y s t e m i s a f u n c t i o n o f
three basic factors: the hardware
characteristics, the load of user programs
requesting service, and the policies used to
determine the resource management operations
which convert user requests into actual
service.

The hardware model for the class of time-
sharing systems considered in this paper
consists of main memory, a single processor
(CPO), and a single drum with a channel. All
main and drum memory is logically divided into
fixed size blocks, identical in size to the
pages of information manipulated by the
operating system. The processor and channel
can both access all main memory. There exist
blocks of main memory available for
information transfer operations. In a real
system there will generally be a number of
blocks of memory which are permanently
allocated and are, therefore, not part of the
M blocks of available main memory. The drum is
organized with S sectors around its
circumference. One page of information can he
transferred during each sector time (the time
it takes for a sector to pass under the drum
heads). During any sector time, the channel
can read from the drum a page of information
stored at the current sector position and load
it into a block of main memory, unload a block
of main memory and write the page of
information on the drum at the current sector
position, or idle. It is assumed that the drum
can switch between read and write operations
at consecutive sector times. It is further

141

assumed t h a t s i m u l t a n e o u s p r o c e s s o r and
c h a n n n e l a c t i v i t y does n o t s i g n i f i c a n t l y
d e g r a d e t h e p e r f o r m a n c e o f e i t h e r .

To s a t i s f y a u s e r p r o g r a m r e q u e s t f o r
s e r v i c e , t h e o p e r a t i n g s y s t e m s c h e d u l e r mus t
s c h e d u l e a p r o c e s s a t w h i c h t i m e t h e pages
r e q u i r e d by t h e p r o c e s s a r e l o a d e d i n t o m a i n
memory . In o r d e r t o s a t i s f y r e s p o n s e t i m e
r e q u i r e m e n t s o f o t h e r p r o g r a m s , t h e s c h e d u l e r
may p r e e m p t a p r o c e s s (and r e s c h e d u l e i t
l a t e r) . A t t h i s t i m e t h e pages m o d i f i e d d u r i n g
e x e c u t i o n must be w r i t t e n hack o n t o t h e d rum,
t h u s m a k i n g room i n m a i n memory f o r o t h e r
pages t o be l o a d e d . ~e d e f i n e t h e s w a p p e r as
t h a t p a r t o f t h e o p e r a t i n g s y s t e m r e s p o n s i b l e
f o r m a n a g i n g t h e s e page t r a n s f e r o p e r a t i o n s .

Associated with each process in the
system at any given time is a working set. A
working set of a process is that set of pages
which should be main memory resident for the
process to run efficiently. Thus, the pages
judged likely to be referenced by the process
In the near future should be in the working
set. We intentionally avoid discussing in this
p a p e r how t h i s j u d g e m e n t i s made as t h e
s u b j e c t has been d i s c u s s e d e l s e w h e r e i n t h e
l i t e r a t u r e ,

For the purposes of analysis, we can
consider a time-sharing system as operating
somewhere between two extremes in page loading
policy: pure demand paging and pure pre-
loading. Many current systems have adopted the
pure demand paging policy. Pure pre-loading
cannot, in general, be achieved in a real
system since working sets can rarely describe
the imminent needs of a process with complete
a c c u r a c y .

For t h e p u r p o s e s o f t h i s p a p e r ~ we can
t h i n k o f t h e l o a d o f u s e r p r o g r a m r e q u e s t s f o r
s e r v i c e as b e i n g m a n i f e s t e d as a s t r e a m o f
p r o c e s s e s r e q u e s t i n g p r o c e s s o r and m a i n memory
r e s o u r c e s . A t any t i m e we a r e c o n c e r n e d o n l y
w i t h t h o s e p r o c e s s e s w h i c h a r e s c h e d u l e d
a n d / o r h a v e pages o f t h e i r w o r k i n g s e t s
r e s i d e n t i n ma in memory . Such a p r o c e s s may be
i n one o f f o u r s t a t e s a t any t i m e : t h e r e q u e s t
s t a t e , t h e l o a d i n g s t a t e , t h e r e a d y s t a t e , o r
t h e u n l o a d i n g s t a t e . A p r o c e s s e n t e r s t h e
r e q u e s t s t a t e when i t i s s c h e d u l e d by t h e
o p e r a t i n g s y s t e m . A p r o c e s s i s a c t i v a t e d and
moved i n t o t h e l o a d i n g s t a t e d u r i n g w h i c h t i m e
t h e s w a p p e r l o a d s t h e pages o f t h e p r o c e s s e s
p r e - l o a d s e t . When t h i s i s c o m p l e t e d , a
p r o c e s s e n t e r s t h e r e a d y s t a t e . Fo r s i m p l i c i t y
we s t i p u l a t e t h a t o n l y a p r o c e s s i n t h e r e a d y
s t a t e (i . e . w o r k i n g s e t t o t a l l y r e s i d e n t) may
run on t h e CPU. I f a r u n n i n g p r o c e s s demands a
p a g e , i t r e t u r n s to t h e l o a d i n g s t a t e u n t i l
t h e demanded page i s l o a d e d . We r e f e r t o t h e
p r o c e s s e s in t h e l o a d i n g and r e a d y s t a t e s as
t h e a c t i v e p r o c e s s e s , lVhen a p r o c e s s c o m p l e t e s
a c o m p u t a t i o n o r i s p r e e m p t e d by t h e s c h e d u l e r
t h e p r o c e s s e n t e r s t h e u n l o a d i n g s t a t e w h i l e
a l l pages m o d i f i e d d u r i n g e x e c u t i o n a r e
w r i t t e n back o n t o t h e d rum. We assume t h a t a
page may be w r i t t e n on t h e drum i n t o any f r e e
b l o c k c o n v e n i e n t t o t h e s w a p p e r . One s e q u e n c e
o f t r a n s i t i o n s by a p r o c e s s t h r o u g h t h e s e
s t a t e s w i l 1 be r e f e r e d t o as a s c h e d u l e p e r i o d
o f t h e p r o c e s s .

The ma in memory a l l o c a t i o n s t r a t e g y
a d o p t e d i n t h i s p a p e r i s v e r y s i m p l e . Pages

which are members of the working sets of
loading process should be loaded at the
convenience of the swapper into any free block
of memory. If a page resident in main memory
is not in the working set of a loading or
ready process, it may be replaced. It is
assumed that no pages of a processes working
set are resident in main memory when the
process is activated. It is further assumed
that there are no shared pages, that is, no
page is the member of more than one workin~
set. If either of these assumptions is
violated then system performance will improve
since less channel time is required to load
these working sets.

The Swapper

Ti le s w a p p e r p r o p o s e d i n t h i s p a p e r must
make two b a s i c d e c i s i o n s :

(1) Process Activation. ~hen and what process
to move from the request state into the
loading state and thus, into
consideration by the swapper. The swapper
uses this decision capabilty to limit the
number of processes which may
simultaneously reside in main memory,
thus controlling main memory
overcrowding.

(2) Sector Command Selection. IVhich page to
read or write at each sector position of
the drum.

T h e r e e x i s t s one s e c t o r q u e u e f o r each
s e c t o r o f t h e d rum. A s e c t o r q u e u e c o n t a i n s a
l i s t o f a l l pages w h i c h s h o u l d be r e a d f r o m
t h e c o r r e s p o n d i n g s e c t o r on t h e d rum. When a
p r o c e s s i s a c t i v a t e d (t h e p r o c e s s i s moved t o
t h e l o a d i n g s t a t e) and e n t r i e s f o r a l 1 pages
i n t h e p r e - l o a d s e t o f t h e p r o c e s s a r e a d d e d
t o t h e a p p r o p r i a t e s e c t o r q u e u e s . The demanded
page o f a r u n n i n g p r o c e s s i s a l s o e n t e r e d on a
s e c t o r q u e u e . A page e n t r y i s r e m o v e d f r o m a
s e c t o r q u e u e when t h e page i s l o a d e d . The drum
l o a d a t any t i m e i s d e f i n e d as t h e t o t a l
number o f page e n t r i e s on a l l t h e S s e c t o r
q u e u e s . T h e r e e x i s t s a s i n g l e page w r i t e q u e u e
w h i c h l i s t s a l l pages w h i c h s h o u l d be w r i t t e n
o u t . When a p r o c e s s d i s m i s s e s (c o m p l e t e s a
c o m p u t a t i o n o r i s p r e e m p t e d) a l l pages o f i t s
w o r k i n g s e t w h i c h h a v e been m o d i f i e d a r e added
t o t h e page w r i t e q u e u e . A page i s r e m o v e d
f r o m t h e page w r i t e q u e u e when i t i s w r i t t e n
on t h e d rum.

The swapper must also consider the state
of main memory in making its decisions. Each
block of main memory is either free or
allocated. A block is free if it does not
contain a loaded page of a process in the
l o a d i n g s t a t e , a page o f a p r o c e s s i n t h e
r e a d y s t a t e o r a m o d i f i e d and n o t y e t u n l o a d e d
page o f a p r o c e s s i n t h e u n l o a d i n g s t a t e . A
b l o c k becomes f r e e f o r each u n m o d i f i e d page i n
t h e w o r k i n g s e t o f a p r o c e s s when t h e p r o c e s s
d i s m i s s e s and f o r each m o d i f i e d page when t h e
page i s u n l o a d e d . A b l o c k i s a l l o c a t e d when a
page from the drum is loaded into it.

Sector Command Selection

A t a p a r t i c u l a r s e c t o r p o s i t i o n t h e
s w a p p e r may s e l e c t t o r e a d any page on t h e
c u r r e n t s e c t o r q u e u e o r w r i t e some page on t h e
page w r i t e q u e u e . The s w a p p e r may s e l e c t a

142

page read only if there exists a page of free
memory to read into. It should make its
selection so as to maximize the total drum
utilization and minimize the average memory
space-time utilized by the processes in the
loading and unloading states.

If there is a choice between doing a read
or a write, the read should be selected. Let
Qw be the number of 0ages on the page write
queue and Qr be the number of resident pages
of the process of the page that would be read.
If the write is done (and the read not) then
the read cannot be done again for a full drum
revolution. Thus, the total memory space-time
is increased by a factor S*Qr. If the read is
done then all the writes are put off only one
sector time so the total space-time increases
by Qw. Thus~ a read should be preferred over a
write whenever Qr*S)Qw. This inequality will
almost always be satisfieds since S is
generally quite large. Thus, the swapper will
do a read whenever the current sector queue is
not empty and there exists a page of free
memory.

If there is more than one page on the
current sector queue then the swapper must
decide which page to read. Each page on the
queue is a member of the working set of some
process. All the processes in loading state
are assigned priorities according to some
rule. Of the processes with pages o n the
current sector queue, the swapper selects to
do a read of a page of the process with
highest priority. If processes are assigned
priorities accordin~ to the order they enter
the loading state, then the sector queues are
first come-first served. The main memory
required by the loading processes is minimized
if the average number of main memory resident
pages per loading process is minimized. This
suggests the following rule for assignin~
p r i o r i t i e s : p r i o r i t i e s e r e a s s i g n e d as a
f u n c t i o n o f t i m e a c c o r d i n g t o t h e n u m b e r o f
pages a process has resident in main memory,
the process with the most resident pages
receiving highest priority. Simulations were
made to compare this priority rule against the
first come-first served rule and other rules.
All the rules yielded approximately the same
level of performance with the number of
resident pages rule slightly out performing
the others. This insensitivity of system
performance to the priority rule can be easily
understood. The process priorities only affect
the swapper function when the current sector
queue contains more than a single element and,
under the drum loads which produce optimum
results, this occurs only a small fraction of
the time.

If there does not exist a block of free
memory into which to read the selected page,
then it may be desirable to release a loaded
page of another process in the loading state
thus freeing up the block of memory in which
the released page resided. The released page
must be reloaded later. A page may be released
if it is an unmodified resident member of the
working set of some process in the' loading
s t a t e o t h e r t h a n t h e p r o c e s s o f t h e p a g e
s e l e c t e d t o r e a d . The s w a p p e r may r e l e a s e a
p a g e o n l y i f s u c h a p a n e e x i s t s . I f m o r e t h a n
o n e s u c h p a g e e x i s t s , t h e n t h e s w a p p e r m u s t
s e l e c t w h i c h p a g e t o r e l e a s e . The same p r o c e s s
p r i o r i t i e s u s e d t o s e l e c t t h e p a g e t o r e a d a r e

used to select the page to release. The
swapper should select t o release a page from
the process with lowest priority, and tile
swapper should release the page only if the
priority of the process of the page selected
to read is higher than the priority of the
process of the page selected to release. In
other words, a page already resident in main
memory should be released and overwritten with
another page only if the residency of the new
page is considered more important than that of
the old page. Introducing this page releasing
mechanism into the algorithm allows for
greater system performance by permitting a
drum load greater than tile free memory size
without fear of hanging up the system if this
should lead to a situation where free memory
is exhausted and there are no pages to be

w r i t t e n o u t .

Considerable improvement in the basic
algorithm can be achieved if the following
drum allocation requirement is enforced. Uever
allocate any two pages of the same working set
at the same sector position on the drum. This
implies that the working set size must be less
than the number of sectors about the drum, but
this will generally be tile case with high
performance drums. When a working set is so
allocated it is said to have no sector
conflicts. This allocation requirement is
enforced whenever a modified page is written
out. A page may not be written out anywhere,
but is restricted to those sectors which do
not already contain another page of the same
working set. Only if the working set size
approaches the number of sectors about the
drum will there be a significant increase in
memory resources required to unload processes
as a result of the increased difficulty in
finding a sector at which a page of the
working set has not already been allocated.

By allocating a working set without
sector conflicts it is possible to load the
entire working set within one drum revolution
time. This optimum reading time can be impeded
by an insufficiency of free memory into which
to load the working set or by sector
interference due to the loading of pages
belonging to other processes. Using the no
sector conflict allocation strategy, the
sector interference problem is reduced. The
number of pages on a sector queue, which is
proportional to the level of interference,
cannot exceed the number of processes in the
loading state. With random allocation the
number of pages on a sector queue is limited
only by the drum load. Tile effect is to spread
the pages on the sector queues out over a
greater number of different queues, thus
reducing the number of unoccupied queues for a
given drum load. System performance for a
given average drum load is increased since the
effective drum utilization is directly
proportional to the probability a current
sector queue is occupied (see analysis
section). Figure I plots the probability that
a current sector queue is occupied vs. average
drum load (L) for the random and no sector
conflict allocation situations. In both
simulations the memory size was large enough
to avoid page releasing. Notice that for a
given average drum load, a greater probability
of an occupied current sector queue and
consequently a greater throughput is achieved
in the case when no sector conflict allocation

143

1.01

"5
3
U
O
o . 67

0

~ . 3 3
0
Ill

_d
0

Q.
0

Figure i. Drum Allocation Rules

A B

/

8 16 24

average ~rum load

A - random a11ocation
B - no sector conflict allocation
C - no sector interference selection

M=32 S=32 w=8 m=4 t=12

32

is used than in the case when it is not. The
curves clearly indicate the advantage of no
sector conflict allocation.

When shared pages exist in a time-sharin~
system, it may not be possible to write out
the pages of a working set so as to avoid
sector conflicts, since a page which is shared
by two active processes will be unloaded when
the second process dismisses and will allocate
the page without regard to the allocation of
the working set of the first process. Of
course, this problem does not arise for read-
only pages which are the most common kind of
shared pages. Nriteable shared pages can,
therefore, hinder system performance by
introducing sector conflicts if they occur in
sufficient quantities. It is not believed that
this is a serious problem.

I t mus t be f u r t h e r n o t e d t h a t t h e swamper
can do a page w r i t e o n l y i f t h e r e e x i s t s an
u n a l l o c a t e d drum b l o c k a t t h e c u r r e n t s e c t o r
p o s i t i o n . U n l e s s t h e d rum i s o v e r l o a d e d a f r e e
b l o c k w i l l a l m o s t a l w a y s e x i s t when i t i s
n e e d e d . In a l l s i m u l a t i o n r e s u l t s r e p o r t e d i n
t h i s p a p e r i t i s assumed t h a t f r e e b l o c k s
e x i s t a t a l l s e c t o r p o s i t i o n s on t h e d rum.

The complete algorithm is now summarized.
The algorithm is invoked once for each sector
time.

Sector Command Selection Algorithm

Step I. (page to read?) Go to step 7 if the
current sector queue is empty.

Step 2. (select a read) Of the processes with
pages on the current sector queue, select
to read the page of the process with the
highest priority.

S t e p 3. (f r e e memory?) Go t o s t e p 6 i f t h e r e
i s f r e e memory .

S t e p 4. (s e l e c t a r e l e a s e) Of t i l e p r o c e s s e s i n
t h e l o a d i n g s t a t e , o t h e r t h a n t h e one o f
t h e s e l e c t e d r e a d , w h i c h h a v e a t l e a s t
one u n m o d i f i e d r e s i d e n t p a g e , s e l e c t
page f r o m t h e p r o c e s s w i t h t h e l o w e s t
p r i o r i t y . Go t o s t e p 7 i f no such p r o c e s s
e x i s t s .

S t e p 5. (d o a r e l e a s e) R e l e a s e t h e s e l e c t e d
page i f t h e p r i o r i t y o f t h e p r o c e s s o f
t h e s e l e c t e d r e l e a s e i s l o w e r t h a n t h e
p r i o r i t y o f t h e p r o c e s s o f t h e s e l e c t e d
r e a d e l s e go t o s t e p 7.

S t e p 6. (d o t h e r e a d) S t a r t t h e s e l e c t e d r e a d
command and e x i t .

S t e p 7. (d o a w r i t e) I f a f r e e d rum b l o c k
e x i s t s a t t h e c u r r e n t s e c t o r , s t a r t a
w r i t e command f o r t h e f i r s t page on t h e
page w r i t e q u e u e w h i c h w o u l d n o t c a u s e a
s e c t o r c o n f l i c t i f such a page e x i s t s and
e x i t .

A n a l y s i s

I t i s t h e p u r p o s e o f t h e s w a p p e r to
m a x i m i z e s y s t e m t h r o u g h p u t w h i c h i s d i r e c t l y
p r o p o r t i o n a l t o t h e r a t e a t w h i c h p r o c e s s e s
can be s e r v i c e d by t h e s w a p p e r . I f D i s t h e
f r a c t i o n o f t i m e t h e d rum i s r e a d i n g o r
w r i t i n g pages (i . e . n o t i d l e) and U i s t h e
a v e r a g e t i m e a p r o c e s s u t i l i z e s t h e d rum
d u r i n g a s c h e d u l e p e r i o d o f a p r o c e s s , t h e n
t h i s s e r v i c e r a t e i s just t h e r a t i o D/U. Now,
l e t w be t h e a v e r a g e p r e - l o a d s e t s i z e , m t h e
a v e r a g e number o f pages m o d i f i e d d u r i n g a
s c h e d u l e p e r i o d o f a p r o c e s s and u be t h e
a v e r a g e number o f pages r e l e a s e d p e r p r o c e s s
s c h e d u l e p e r i o d , t h e n , n o r m a l i z i n g t i m e u n i t s
so t h a t a s e c t o r t i m e i s u n i t y , we h a v e
U=w+m+u. D i s t h e p r o b a b i l i t y o f r e a d i n g a
page w i t h o u t r e l e a s i n g a p a g e (P w) p l u s t h e
p r o b a b i l i t y o f r e a d i n g a page a f t e r r e l e a s i n g
a page (Pu) p l u s t h e p r o b a b i l i t y o f w r i t i n g a
m o d i f i e d page (Pm) , (D=Pw+Pm+Pu) . O b s e r v i n g
that P,1=(m/w)Pw and Pu=(U/W)Pw, we determine
that D/U=~v/w. System performance is directly
proportional to the probability of doing a
useful read (Pw). This probability is in turn
equal to the probability of an occupied
current sector queue times the probability of
the existence of a block of free memory.

The value (w÷m)D/U, which we define as
the effective drum utilization (F), provides a
more convenient measure which is directly
p r o p o r t i o n a l t o t h r o u g h p u t . Maximum s y s t e m
performance is achieved when the effective
drum utilization is unity. A little algebra
indicates that F is the probability of doing a
useful read (Pw) plus that of doing a write
(B,l). F falls below unity due to useless reads
(reads of pages subsequently released) and
idle sector times. System performance is
optimized when the summed probability of these
latter two events is minimized. Figure 2 plots
a characteristic curve for effective drum
utilization (F) vs. average drum load (L).
System performance is optimized at a
particular value for the average drum load. If
L is less than the optimum, then many sector
queues will be empty and there will be
increased drum idle time. If L is greater than
the optimum then main memory will contain the
pages of more different working sets, thus
overcrowding main memory and decreasing the
probability of free memory while increasing

144

F i g u r e 2. Opt imum Drum Load
I . o!

.67

.33

A

i0 20 30
a v e r a g e drum l o a d

A - p r o b a b i l i t y o f page r e l e a s i n g
B - p r o b a b i l i t y o f i d l e s e c t o r t i m e
F - e f f e c t i v e d rum u t i l i z a t i o n

~0

the probability of an occuppied sector queue,
therefore increasing the probability of
u s e l e s s r e a d s due t o page r e l e a s i n g .
Simulation results for typical systems
indicate that optimum system performance is
achieved when the average drum load is about
equal to half the number of sectors about the
drum (L~S/2).

Process Activation

It is through the process activation
decision that the swapper is able to regulate
the drum load. Initially, the request state
will be regarded as a first come-first served
queue. The first process in the request state
queue is the next process to be activated.
This assumption assures a minimum variation in
the response times of the processes requesting
service. The simplest activation algorithm is
to consider the next process whenever adding
its pages on the sector queues would not cause
the drum load to exceed some value specified
as a parameter to the algorithm (L'). In this
case the average drum load would be given
approximately by L=L'-w/2. The drum load would
vary with the variation in pre-load set sizes.

This algorithm can be improved upon if
the amount of free memory is taken into
account in making the process activation
decision. Nhen free memory is larger, a higher
drum load can he tolerated, thus suggesting
the following activation algorithm: activate
the next process if the drum load plus the
size of the pre-load set of the next ~rocess
minus the amount of free memory is less than
the parameter L I The approximate average drum
load would then be L=L'-w/2÷Mf where Nf is the
average free memory size. This modification
tends to make the probability of activating a
process higher if there is more free memory.
This, in effect, introduces feedback into the
queue of free memory blocks by increasing the
arrival rate into the queue when the free
memory size is small. A smaller free memory
size will cause a smaller drum load, which

w i l l r e d u c e t h e p r o b a b i l i t y o f d o i n g a r e a d ,
w h i c h w i l l i n c r e a s e t h e p r o b a b i l i t y o f d o i n g a
w r i t e , w h i c h w i l l i n c r e a s e t h e a r r i v a l r a t e
i n t o t h e f r e e memory q u e u e . Thus , on t h e
average less free memory is required,
therefore, more memory is available for
loading processes which allows a higher
average drum load and consequently a greater
level of system performance.

If processes are taken off the request
state queue in some order other than first
come-first served, then the activation
algorithm can be improved even further, but
not without cost. The following rule when
added to the previously specified algorithm
can completely eliminate sector interference.
Select as the next process to activate the
first process on the request state queue whose
pre-load set if added to the sector queues
will not add a page entry to any sector queue
which is already occupied. A process may be
activated only if such a process exists in the
request state. Using this sector interference
elimination rule, a current sector queue can
have just one or zero pages in it. The effect
is to maximally spread tile pages over the
sector queues. System performance is increased
by increasing the probability of an occupied
current sector queue for a given average drum
load. Typical simulation results showing the
improvement due to this process selection rule
are plotted in figure I.

T h i s p r o c e s s s e l e c t i o n r u l e has t h r e e
d i s a d v a n t a g e s . F i r s t , i t r e q u i r e s a d d i t i o n a l
c o m p u t a t i o n a l o v e r h e a d t o d e t e r m i n e i f each
p r o c e s s i n t h e r e q u e s t s t a t e c a u s e s any s e c t o r
i n t e r f e r e n c e . S e c o n d , s i n c e t h e r e q u e s t s t a t e
may be s e r v i c e d i n any o r d e r , t h e v a r i a t i o n in
r e s p o n s e t i m e s w i l l i n c r e a s e c o n s i d e r a b l y . In
f a c t , i t c a n n o t be g u a r a n t e e d t h a t a p r o c e s s
i n t h e r e q u e s t s t a t e w i l l e v e r be s e r v i c e d .
O n l y s y s t e m s w i t h s u f f i c i e n t l y l o n g r e s p o n s e
t i m e r e q u i r e m e n t s can a f f o r d t o use t h i s r u l e .
T h i r d , a s y s t e m p e r f o r m s b e t t e r u n d e r t h i s
a l g o r i t h m o n l y i f t h e r e q u e s t s t a t e i s
sufficiently large. There is a greater
probability of finding a process which causes
no interference if the request state is
larger. Thus, the average drum load is a
monotonically increasing function of the
average request state size. If a time-sharing
system is not sufficiently loaded (this may be
because excessive loading would cause
unacceptable response time) to produce a
sufficiently large request state, then the
average drum load might be so low that better
performance could be achieved with first come-
first served selection. For example, in the
situation simulated in figure I, curve C it
was found that this selection rule increases
performance over first come-first served
selection only if the average request state
size is greater than seven.

U s i n g t h i s s e c t o r i n t e r f e r e n c e
e l i m i n a t i o n s e l e c t i o n r u l e , s y s t e m p e r f o r m a n c e
can be i m p r o v e d s t i l l f u r t h e r by r e s t r i c t i n g
t h e a 1 1 o c a t i o n o f pages o f a w o r k i n g s e t t o
some c o n t i g u o u s s u b s e c t i o n o f t h e s e c t o r s o f
t h e d rum. In d o i n g t h i s i t becomes e a s i e r t o
f i n d a p r o c e s s w h i c h does n o t c a u s e any s e c t o r
i n t e r f e r e n c e f o r t h e same r e q u e s t s t a t e s i z e
s i n c e t h e s e c t o r p o s i t i o n s o f t h e p a g e s o f two
d i f f e r e n t w o r k i n g s e t s a r e mo re l i k e l y t o be
d i s j o i n t . A l t e r n a t e l y , i t can be s t a t e d t h a t

145

Simulation

D

A s i m u l a t o r was d e v e l o p e d t o d e t e r m i n e
s y s t e m p e r f o r m a n c e and o t h e r m e a s u r e s as a
f u n c t i o n o f t h e s y s t e m p a r a m e t e r s u n d e r
c e r t a i n a s s u m p t i o n s now s t a t e d . The s i m u l a t o r
o p e r a t e s in d e s c r e t e t i m e u n i t s , t h e a t o m i c
u n i t b e i n g a s e c t o r t i m e . In a l l s i m u l a t i o n
r e s u l t s p r e s e n t e d i n t h i s p a p e r , t h e c o m p u t e
t i m e s o f p r o c e s s e s d u r i n g s c h e d u l e p e r i o d s a r e
P o i s s o n d i s t r i b u t e d w i t h mean t , and t h e p r e -
l o a d s e t s i z e s a r e u n i f o r m l y d i s t r i b u t e d
b e t w e e n w /2 and 3 w / 2 . The number o f pages o f a
p r o c e s s m o d i f i e d d u r i n g e x e c u t i o n i s a l w a y s
d i r e c t l y p r o p o r t i o n a l t o t h e w o r k i n g s e t s i z e
o f t h e p r o c e s s i n t h e r a t i o m/w o r m / d . Fo r
p u r e demand p a g i n g c o n d i t i o n s , t h e number o f
pages demanded by a p r o c e s s i s p r o p o r t i o n a l t o
i t s c o m p u t e t i m e i n t h e r a t i o w / t and a l l
pages a r e demanded a t c o m p u t e t i m e z e r o o f t h e
schedule period. All simulation results
reported in this paper are for a system with
one CPU and one drum with 32 ~ectors. The
simulator was implemented in QSPL , a system
programming language for the Berkeley SDS-940
time-sharing system-~

Figure 3 plots simulation results which
compare CPU utilization 'against main memory
size for systems with several different
program loads under pure pre-loading strategy.
Curves A, B, and C correspond to systems with
balanced loads, curve D to a channel limited
system, and curve E to a CPU limited system.
CPU utilization is directly proportional to
effective drum utilization in the ratio
t/(w+m). Remember t is measured in units of
sector times. In all these simulations the
system is always fully loaded i.e. the request
state is never empty.

O p e r a t i n g Sys tem O v e r h e a d

The s w a p p e r r e q u i r e s c o m p u t a t i o n a l and
memory r e s o u r c e s i n o r d e r t o f u n c t i o n . I t
r e q u i r e s memory t o h o l d t h e s e c t o r q u e u e s , t h e
page w r i t e q u e u e , and t h e code o f t h e s w a p p e r
p r o g r a m . T h i s amoun t o f memory s h o u l d be v e r y
s m a l l c o m p a r e d t o t h a t n e e d e d t o swap w o r k i n g
s e t s . In a d d i t i o n , t h e r e must be memory f o r
t h e o p e r a t i n g s y s t e m d a t a s t r u c t u r e s w h i c h
l o c a t e and i d e n t i f y pages on t h e d rum and in
ma in memory . T h i s memory r e q u i r e m e n t can be
q u i t e l a r g e i n some o p e r a t i n g s y s t e m d e s i g n s .

Figure 3. Pure Pre-loadlng Performance this allocation restriction improves
performance by reducing the time it takes to 1.0
load a working set. This allocation
restriction helps only if the average pre-load
set size is much less than the number of
s e c t o r s a b o u t t h e d rum(w<<S) and w r i t e a b l e
s h a r e d pages a r e n o t so p r e v a l e n t as t o
nullify the effect of this allocation. If w is ~.67
too large compared to S, then the increased .~
difficulty in writing pages due to the
allocation restriction will cause the average .~
amount of memory required by processes in the --
unloading state to be increased by more than
t h e l o a d i n g s t a t e memory r e q u i r e m e n t i s ~ .33
reduced. As an example, simulation results
show that if the average pre-load set size is
about one-fourth the number of sectors about
the drum (w=S/~), then a significant (5-I0~)
improvement in system performance occurs when
the pages of a working set are restricted to 0
one-half to three-quarters of the total drum
s e c t o r s .

0 16 32 ~8
m a i n memory s i z e (p a g e s)

A - w=8 m=~ t = 1 2 S=32
B - w=4 m=2 t=6
C - w=16 m=8 t=24
D - w :8 m=4 t : 6
E - w : 8 in :4 t =24

64

The c o m p u t a t i o n a l r e q u i r e m e n t s o f t h e
a l g o r i t h m can be q u i t e h i g h . The s w a p p e r
p r o c e d u r e mus t be c a l l e d once e v e r y s e c t o r
t i m e o f t h e d rum. i f t h e page s i z e i s s m a l l ,
say 512 w o r d s , t h e n t h e p r o c e d u r e m i g h t be
c a l l e d as f r e q u e n t l y as once e v e r y 250 m i c r o -
s e c o n d s . The c o m p u t a t i o n a l o v e r h e a d i s
i n v e r s e l y p r o p o r t i o n a l t o t h e page s i z e . In
s y s t e m s w i t h one o r more l a r E e drums i t i s
p r o b a b l y n e c e s s a r y t o d e d i c a t e an e n t i r e
p r o c e s s o r t o t h e s w a p p e r f u n c t i o n s i n c e t h e
s w a p p e r d e c i s i o n s r e q u i r e n o n - t r i v i a l
c o m p u t a t i o n s . Because o f t h e s w a p p e r s
s p e c i a l i z e d f u n c t i o n , i t m i g h t be most
e f f i c f e n t l y i m p l e m e n t e d on a m i c r o - p r o c e s s o r .

Demand P a g i n g

The s w a p p e r u s i n g t h e p r e v i o u s l y
d e s c r i b e d a l g o r i t h m can s a t i s f y demand p a g i n g
r e q u e s t s o f r u n n i n g p r o c e s s e s i n a v e r y
n a t u r a l way . i~hen a p r o c e s s demands a p a g e ,
t h e p r o c e s s i s i m m e d i a t e l y moved t o t h e
l o a d i n g s t a t e and t h e demanded page e n t e r e d on
t h e a p p r o p r i a t e s e c t o r q u e u e . Thus , thee
s w a p p e r sees a p r o c e s s whose w o r k i n g s e t i s
l o a d e d b u t f o r a s i n g l e p a g e . Even i n t h e
e x t r e m e case w h e r e a l l pages a r e l o a d e d by
demand p a g i n g , t h e a l g o r i t h m w o r k s c o r r e c t l y
and e f f i c i e n t l y . In f a c t , u s i n g t h e number o f
m a i n memory r e s i d e n t pages t o d e t e r m i n e
p r o c e s s p r i o r i t i e s p r o v i d e s a b e t t e r
p e r f o r m i n g s w a p p e r t h a n t h e ~ p a g i n g d r u m '
d e s c r i b e d in t h e l i t e r a t u r e 1 , 3 { w h i c h uses
f i r s t c o m e - f i r s t s e r v e d p r i o r i t i e s) by
m i n i m i z i n g t h e memory r e q u i r e d by p r o c e s s e s i n
t h e l o a d i n g s t a t e .

Under p u r e demand p a g i n g s t r a t e g y , a
d i f f e r e n t r u l e s h o u l d be used t o d e t e r m i n e
when t o a c t i v a t e a p r o c e s s . U n l i k e t h e p u r e
p r e - l o a d i n g case { w h e r e i t i s assumed t h a t a l l
pages t o be r e f e r e n c e d a r e p r e - l o a d e d) , i t i s
n o t known a t a c t i v a t i o n t i m e w h a t t h e e v e n t u a l
m a i n memory demand o f t h e a c t i v a t e d p r o c e s s
w i l l be . T h e r e f o r e , u n d e r p u r e demand p a g i n g a
new p r o c e s s s h o u l d be a c t i v a t e d o n l y i f t h e

146

sum of the expected memory demands of the
active processes (i.e. in the loading and
ready states) does not exceed some parameter
whose value is proportional to the main memory
size. The constant of proportionality can be
tuned to achieve an optimum compromise between
drum utilization and page releasing resulting
from an overcrowded memory. The working set
size for a process can serve as an estimate
for the expected memory demand. Lacking this
information, the estimate for a process's
memory demand can just be the average number
of pages demanded by processes in the system.
This amounts to maintaining a constant number
of active processes at any time i.e. a process
is activated whenever another process
dismisses. This is the activation rule used in
the reported pure demand paging simulations.

P r e - l o a d i n g v s . Demand P a g i n g

In this section we will present arguments
based on simulation results and approximate
analysis which will demonstrate the improved
performance which can be achieved by using
pure pre-loading strategy instead of pure
demand paging strategy. Let w be the average
pre-load set size under pure pre-loading and
let d be the average number of pages demanded
by a process during a schedule period under
pure demand paging. The extreme of pure pre-
loading cannot be achieved in a real system,
but as this limit is approached the average
pre-load set size will tend to contain more
pages which are not subsequently referenced
when t h e p r o g r a m runs d u r i n g t h e c u r r e n t
s c h e d u l e p e r i o d . C l e a r l y , t h e a v e r a g e p r e - l o a d
s e t s i z e unde r p u r e p r e - l o a d i n g Is g r e a t e r
t han t h e a v e r a g e number o f pages demanded per
s c h e d u l e p e r i o d unde r p u r e demand p a g i n g
(w > d) , h o w e v e r , a p r e c i s e r e l a t i o n s h i p b e t w e e n
t h e s e two q u a n t i t i e s can be d e t e r m i n e d o n l y
t h r o u g h e m p i r i c a l e v i d e n c e o b t a i n e d f r o m r e a l
s y s t e m s .

At any time each block of main memory is
either free or allocated to a process in the
loading, ready, or unloading state. Therefore,
we can define four quantities which represent
the number of free main memory blocks or the
number of main memory blocks allocated to all
the processes in these three states at any
time averaged over all time. We call these
quantities the free, loading state, ready
state, and unloading state memory requirements
and d e n o t e them by Mf , M l s , Hrs , Mus ,
r e s p e c t i v e l y .

A numerical example based on simulation
results will be instructive. Assume a loaded
(request state never empty) and balanced
(w+m=t) system and a drum with thirty-two
sectors. Further assume a system load with
average working set size of eight pages
(w=d=8), half of the pages modified during the
schedule period (m=4) and mean compute time
per schedule period of twelve sector times
(t=12). Under these conditions the following
simulation results are obtained for the pure
pre-loading case: i , t l s=16 , Mrs=8, ~s=3 and
Mf=3 for a total memory requirement of 32
blocks. These results are obtained with an
average drum load of 16 pages and a resulting
optimum effective drum utilization of about
80~. Under pure demand paging the following
simulation results are obtained: His =~2,
Mrs=8, I,~js=3, fdf =15 f o r a t o t a l memory

r e q u i r e m e n t o f 68 b l o c k s w i t h a p p r o x i m a t e l y
t h e same a v e r a g e drum l o a d and o p t i m u m
e f f e c t i v e drum u t i l i z a t i o n as b e f o r e . Thus,
f o r t h i s e x a m p l e a b o u t t w i c e as much memory i s
r e q u i r e d unde r p u r e demand p a g i n g t o a c h i e v e a
g i v e n l e v e l o f s y s t e m p e r f o r m a n c e as unde r
p u r e p r e - l o a d i n g .

We w i l l now p r o v i d e a r g u m e n t s w h i c h
e x p l a i n t h i s d i f f e r e n c e in memory
r e q u i r e m e n t s . A l i t t l e r e f l e c t i o n s h o u l d
c o n v i n c e t h e r e a d e r t h a t t h e r e a d y s t a t e and
u n l o a d i n g s t a t e memory r e q u i r e m e n t s w i l l be
a p p r o x i m a t e l y t h e same f o r a g i v e n l e v e l o f
s y s t e m p e r f o r m a n c e r e g a r d l e s s o f t h e l o a d i n g
s t r a t e g y used . The a v e r a g e f r e e memory s i z e
w i l l , i n g e n e r a l , be g r e a t e r f o r t h e demand
p a g i n g case as a r e s u l t o f t h e ~ r e a t e r
u n c e r t a i n t y o f t h e f u t u r e memory demand o f an
a c t i v e p r o c e s s .

The l o a d i n g s t a t e memory r e q u i r e m e n t
shows t h e g r e a t e s t d e p e n d e n c e on t h e page
l o a d i n g s t r a t e g y e m p l o y e d . Under p u r e p r e -
l o a d i n g a t any t i m e each o f t h e pages o f a
p r o c e s s in t h e l o a d i n g s t a t e i s e i t h e r
r e s i d e n t in ma in memory o r on a s e c t o r q u e u e .
I f t h e r e i s no s e c t o r i n t e r f e r e n c e b e t w e e n
pages o f d i f f e r e n t p r o c e s s e s , t hen a l l pages
in t h e s e c t o r queues w i l l be read a t t h e f i r s t
o p p o r t u n i t y and t h e r e f o r e , a s s u m i n g u n i f o r m
d i s t r i b u t i o n o f pages a r o u n d t h e d rum, we
c o n c l u d e t h a t a l o a d i n g p r o c e s s has an a v e r a g e
o f w/2 pages r e s i d e n t i n ma in memory ~ l s =w /2)
and w /2 pages on t h e s e c t o r q u e u e s . The
a v e r a g e number o f p r o c e s s e s in t h e l o a d i n g
s t a t e i s j u s t t h e a v e r a g e drum l o a d d i v i d e d by
t h e a v e r a g e number o f s e c t o r queue e n t r i e s pe r
p r o c e s s (~ s = 2 L / w) . The l o a d i n g s t a t e memory
r e q u i r e m e n t i s t h e p r o d u c t o f t h e a v e r a g e
number o f r e s i d e n t pages pe r l o a d i n g s t a t e
p r o c e s s t i m e s t h e a v e r a g e number o f such
p r o c e s s e s (Mls =Nls * q l s) . T h e r e f o r e , we
c o n c l u d e t h a t t h e a p p r o x i m a t e l o a d i n g s t a t e
memory r e q u i r e m e n t unde r p u r e p r e - l o a d i n g i s
j u s t t h e a v e r a g e drum l o a d (M l s = L) .

Under p u r e demand p a g i n g t h e r e i s , i n
g e n e r a l , one page on a s e c t o r queue f o r each
p r o c e s s in t h e l o a d i n g s t a t e . T h e r e f o r e , t h e
mean l o a d i n g s t a t e s i z e i s a p p r o x i m a t e l y t h e
a v e r a g e drum l o a d (q l s = L) . The a v e r a g e number
o f r e s i d e n t pages pe r p r o c e s s in t h e l o a d i n g
s t a t e i s a p p r o x i m a t e l y h a l f t h e number o f
pages demanded pe r s c h e d u l e p e r i o d a s s u m i n g
t h e pages a r e l o a d e d u n i f o r m l y w i t h t i m e
(W l s : d / 2) . M u l t i p l y i n g t h e s e two f a c t o r s we
g e t M l s : L d / 2 as t h e a p p r o x i m a t e l o a d i n g s t a t e
memory r e q u i r e m e n t unde r p u r e demand p a g i n g .
Ti le l o a d i n g s t a t e memory r e q u i r e m e n t o f 42
pages d e t e r m i n e d f r o m t h e p r e v i o u s s i m u l a t i o n
r e s u l t i s c o n s i d e r a b l y l e s s t h a n t h e 64 pages
e x p e c t e d f r o m t h i s a p p r o x i m a t e a n a l y s i s . T h i s
r e d u c t i o n can be l a r g e l y a t t r i b u t e d t o t h e
a d v a n t a g e o u s use o f t h e p r i o r i t y r u l e based on
t h e number o f r e s i d e n t pages o f a p r o c e s s .

A s y s t e m i s c h a n n e l l i m i t e d i f t h e
a v e r a g e d rum c h a n n e l t i m e u t i l i z e d pe r
s c h e d u l e p e r i o d i s g r e a t e r t h a n t h e a v e r a g e
compu te t i m e pe r s c h e d u l e p e r i o d (w + m > t) .
Assum ing t h a t t h e s y s t e m i s c h a n n e l l i m i t e d
(w h i c h i s t h e o n l y i n t e r e s t i n g c a s e) , we a r g u e
t h a t t he t h r o u g h p u t o f a s y s t e m i s t h e same
f o r a g i v e n a v e r a g e drum l o a d i f t h e s y s t e m i s
o p e r a t i n g unde r p u r e p r e - l o a d i n g o r under p u r e
demand p a g i n g . S i n c e l e s s pages mus t be t o a d e d

147

per schedu le p e r i o d under pure demand pag ing
(d<w), a g r e a t e r t h roughpu t is ach ieved f o r a
given effective drum utilization. However, a
greater effective drum utilization is achieved
for a given average drum load under pure pre-
loading due to the no sector conflict drum
allocation s t r a t e g y . In figure 1 the
difference is clearly indicated where curve A
corresponds to the demand paging case and
curve B corresponds to a pre-loading case.
These two effects approximately cancel
yielding about the same throughput for a given
drum load under either loading strategy.
Therefore, using the results of the previous
two paragraphs, we conclude that the loading
state memory requirement under pure demand
paging is greater than that under pure pre-
loading by a factor of about d/2.

It should be noted that the reduced
memory requirement due to pre-loading can be
obtained only in systems with drums with a
large number of sectors. Tile average drum load
which produces the optimum performance for a
particular program load will be proportional
to the number of drum sectors. The reduced
drum load for smaller drums will reduce the
l o a d i n g s t a t e memory r equ i r emen t
p r o p o r t i o n a l l y under both s t r a t e g i e s and
consequen t l y the advantage o f p r e - l o a d i n g is
d i m i n i s h e d .

Summary

Three things were accomplished in this
paper: I) we have developed and analyzed an
algorithm for efficiently managing the
transfer of pages between main memory and a
large secondary drum storage device in systems
which use either demand paging or pre-loading
page l o a d i n g s t r a t e g i e s , 2) s i m u l a t i o n r e s u l t s
were p resen ted which p l o t t e d system
per formance a g a i n s t slain memory s i z e f o r a
system us ing pure p r e - l o a d i n g s t r a t e g y under
v a r i o u s program loads and 3) an argument based
on s i m u l a t i o n r e s u l t s and a p p r o x i m a t e average
v a l u e a n a l y s i s was p resen ted which conc luded
t h a t the use o f p r e - l o a d i n g s t r a t e g y w i t h the
g i ven a l g o r i t h m i n s t e a d o f pure demand pag ing
can c o n s i d e r a b l y reduce the main memory
r e q u i r e d to a c h i e v e a p a r t i c u l a r l e v e l o f
system per fo rmance i f the drum is]arEa enough
to s t o r e c o n s i d e r a b l y more than a t y p i c a l
w o r k i n g set o f i n f o r m a t i o n in one drum
r e v o l u t i o n .

Acknowledgement

The a l g o r i t h m d e s c r i b e d in t h i s paper was
i n i t i a l l y deve loped by the au tho r a n t Robert
R. Van Tuyl d u r i n g the summer o f 1968 . The
a u t h o r wishes to thank Char les A. Grant f o r
h is h e l p f u l a d v i c e conce rn i ng the p r e p a r a t i o n
o f t h i s paper .

References

I . Denning, P.J., Effects of Scheduling on
Fi le Memory Operations, SJCC, 1967, pp.
9-21.

2. Denning, P .d . , The Working Set Model f o r
Program Behav iou r , Comm. ACM, 11, May 1968,
pp. 523-333.

3. Denning, P . J . , V i r t u a l t4emory, Comp. Su rv . ,
2, Sept. 1970, pp .153-189 .

4. Deutsch, L .P . ,
Reference Manual,
C o n t r a c t SD-185,
B e r k e l e y .

Lampson, B.N. , QSPL
Document R-28, ARPA

U n i v e r s i t y o f C a l i f o r n i a ,

5. Deutsch, L .P . , Durham, L . , Lampson,
Reference Hanual T ime-Sha r i ng
Document R-21, A R P A Con t rac t
University of California, Berkeley.

B,~, l
System,
SD-185,

6. Greenberg, Iq .L . , Secondary S to rage
Management in T ime-Sha r i ng Systems, Ph.D
Thes i s , Dept. o f EECS, U n i v e r s i t y o f
C a l i f o r n i a , B e r k e l e y .

7. Van Tuy l , R.R., An A l g o r i t h m f o r Swapping
Data f rom Drum to Core, Document P-16, ARPA
Con t rac t SD-185, U n i v e r s i t y o f C a l i f o r n i a ,
B e r k e l e y .

148

