
HOW TO EVALUATE PAGE REPLACEMENT ALGORITHMS

Richard Y. Kain
University of Minnesota

The designer of a virtual memory system can obtain accurate estimates of the average
memory requirements of programs running in the system by weighting the average allocation
during execution intervals with the average allocation during page waiting intervals. We show
how to combine the averages, how to use the measure to determine the size of primary memory
while achieving system balance between memory and processor demands, and how to partially order
the performance of paging algorithms.

Key Words and Phrases: Memory Management, Operating Systems, Paging, Performance Evaluation

CR Categories: 4.3, 4.32

Introduction

Systems designers introduce virtual memory
to decrease software costs and to reduce the main
memory requirements [6,8]. Previous analysts have
considered a process's memory requirement as the
(~irtual-time) average of the space used during
the execution intervals of that process. They
trade this space requirement against the corre-
sponding page fault frequency. The virtual-time
average does not match the real-time average when
the allocation varies dynamically. The real-time
average is the average over the entire time that
the process is resident in the memory. The
designer can use the real-time average to rank
page replacement algorithms and to determine the
size of main memory such that the processor and
memory demands will be matched.

Other investigators [9,10] have used
queueing networks for performance studies.
Queueing models require restrictions on the ser-
vice time distributions (at least they must
have rational Laplace transforms); these require
approximations to the actual situation. Models
with different classes of customers[3] should be
better approximations, but to exactly model the
paging environment many states would be needed,
and they would have to be aggregated before com-
puting the solutions. The analyst would have to
use simulations to verify the solutions.

Time Requirements

A process in a paging system cannot use one
contiguous block of processor time because the
process requires input/output and page swapping
activity. For this analysis we ignore input/output
activity.

Conventional paging algorithm performance anal-
yses have determined the page fault frequency f: the
fractional number of memory references that name
a page not currently stored in primary memory.
If there is one memory reference per time unit,
the execution of a process will cause fT page
faults, where T is the total execution time of
the process.

Let R be the (assumed constant) time required
to handle a page fault, including swapping the
new page. Then the total system residence time*
is T(i + fR); during that interval the process
will have utilized the processor for time T, so
its fractional use of the processor's capacity is

i
O = l+fR (i)

Note that 0 depends on many factors, including the
memory management algorithm since that determines
f. Note also that scheduling waits may cause
the process to remain longer in the system, using
a smaller fraction of the processor's capacity.
Because analysts may approximate the.latter effect
by increasing the value of R, the following
developments ignore scheduling waits.

Space Requirements

Some paging algorithms (e.g., fixed-partition
LRU) assign "fixed" partitions of memory to each
process when it is created. If the partition
size** ism, the process uses m pages during its
entire system residence time, and therefore its
space requirement is m.

* The real time interval during which memory
space is allocated to the process.

** All space measures are in units of page frames.

Most paging algorithms (e.g., working set)
allow dynamic allocations; the instantaneous
memory allocation to each process is determined by
complex interactions among many factors including
the referencing pattern and the management algo =
rithm. In most, but not all, management algorithms
the allocation changes only at page fault times.

Therefore, each interval of constant alloca-
tion begins (Fig. i) with a page fetch of length
R followed by a wait for CPU time (assumed to be
zero), followed by an execution interval termi-
nating in a page fault, a scheduler interrupt, or
job completion (since we ignored input/output
activity). Since we assume that the space allo-
cation changes only at page faults, scheduler
interrupts do not affect the space allocation for
this process.

Conventional analyses of paging algorithms
determine the average allocation in virtual time.
These virtual-time averages are not the same as
the real-time averages because they do not include
the average allocation during page waits, which
requires considering the correlation between the
size of the memory allocation and the length of
the execution interval before the page fault.

To analyze this effect, consider a single
process in the system. Let p(i) be the fractional
amount of virtual time that the memory allocation
for that process is i pages, and let h(i) be the
fraction of references that cause page faults
among all reference attempts while the process
has been allocated i pages. The (virtual-time)
average allocation during execution intervals is

e = Ziip(i) (2)

To compute the allocation averaged over all
page fault waiting intervals, count the number of page
faults and the numbers of times that the allocation is
i when the fault occurs. The total number of page
faults with allocation i is Tp(i)h(i) since h(i) is
conditioned upon the allocation being i, and Tp(i) is
the number of reference attempts while the allocation
is i. Summing over all i, we obtain the total number
of faults F = {Tp(i)h(i). Now the cumulative alloca-
tion at page faults times is TZip(i)h(i), assuming
that the allocation during fault processing is,the
same as the allocation during the next execution
interval. By associating the waiting period preceding
each execution interval with the fault at the end of
the interval, we obtain the expression for the average
allocation at page fault times:

{ip(i)h(i)

~f = Zp(i)h(i) (3)
i

The allocation averaged in ~eal time is

+ fRmf
- e
m =

i+ fR
(4)

Conventional performance analyses derive me,
but m is the measure of the memory requirement for
each process. The error depends on the speed
ratio R and the difference between ~e and mf.
Whenever the page fault frequency is a monoto-
nically decreasing function of the memory alloca-
tion (which is true for all stack algorithms [6]),
page faults tend to occur more frequently when
the allocation is smaller. This observation is
the basis for a formal proof (omitted here~ that
~f < me" Since m is a weighted average of mf and
me, then N < me" An approximation to this effect
is given by the following argument.

Assume an exponential behavior for the page
fault frequency as a function of the memory
allocation:

h(i) = %e -%i (5)

Assume the distribution of p(i) to be the
weighted sum of normal distributions [4]:

_ (i-mj)2

p(i) 1 J 5 2OJ 2 J
= Z e , with Z p. = i (6)

j=l°j j=l 3

Now approximate the summations in (3) by integrals:

_ (x-mj)2

J 20. 2
Z Pj~ Fxe-~Xe 3 dx

j = l ~ . 2 ~ ~ - =
mf = J (7)

_ (x-mj)2

J P ~ 2°'23
Z e-lXe dx

j=l O.¢z~ -~
3

where we have taken liberties with the lower limits
to obtain approximate solutions*. Integrating, we
have, for J = i,

- ~o 2 [(8)
Nf = N e e

Table i show this approximation compared with the
actual behavior of the working set algorithm [i~2]
and with the modeled behavior of the page fault
frequency algorithm [ii]. Columns 4 and 5 show
* For realistic parameters, mj > 2Oj, and the
areas under the negative regions will not be
significant.

Q

' ' I I I
I I EX. I IEX. I I EX.
I W A I T I (E X E C U T E) I W A I T I IWAIT I

' ' L I I EX. I '
IWAIT I IWAIT

Figure i: Page and Processor Use History

R E A L T I M E

2

Algorithm R = 3000 R = I0000

me mf Nf from (8) Program
Type* Parameter 0 d O d

A i0 2.53 2.26 1.93

A 50 3.82 2.69 2.58

A i00 4.91 3.18 3.14

A 300 7.07 4.84 3.74

A 500 7.99 5.01 2.74

B i0 5.46 4.86 5.03

B 50 7.28 6.88 6.72

B i00 8.76 8.22 8.20

B 500 15.61 14.28 14.12

.0039 .580 .0012 1.928

.0057 .472 .0017 1.566

.0078 .408 .0024 1.348

.0159 .306 .0048 1.005

.0174 .291 .0053 .952

.0148 .329 .0045 1.085

.0272 .253 .0083 .827

.0354 .233 .0109 .755

.0877 .164 .0280 .510

A i0 2.48 1.93 1.99

A 50 3.46 2.32 2.22

A I00 4.00 2.57 1.94

A 300 5.09 3.00 1.37

A 500 5.71 3.02 0.68

B i0 5.63 5.03 5.04

B 50 6.88 6.24 6.27

B i00 7.75 7.09 7.11

B 500 10.68 9.98 9.88

*A = Working Set (actual behavior) - Parameter = window size
B = Page Fault Frequency (modeled behavior) - Parameter = width

deletion.

Table I:

.0034 .570 .0010

.0067 .349 .0020

.0088 .293 .0026

.0130 .232 .0040

.0142 .216 .0043

.0349 .145 .0107

.0593 .106 .0185

.0819 .087 .0261

.1880 .054 .0649

of critical interval for page

Representative Values for Demands with M = i000

1.893

1.154

.968

761

705

470

337

273

154

that the unimodal approximation is quite good in
most cases.

For J > i, the result can be expressed in
closed form:

J %-~2o.2
E ~(mj-XOj2)e mj 3

~=j=l "

J h emj~-12~ 2
J

j=l ~j

Bryant's results [4] suggest that a bimodal
approximation will be more exact for certain pro-
grams; that approximation has not been tested
against actual data.

(9)

Balancing the System

Let M be the total memory size. Then the
process requires the memory fraction

= - (io)
M

It uses the processor fraction
1

0 = l+fR (Ii)

Under system balance the addition of either pro-
cessor capacity or memory capacity will not
increase the system throughout, except by second-
order effects due to statistical variations. For
the system to be balanced [5], we desire

= p (12)

or

M = ~e + fR~f (13)

If all processes in the system are
statistically identical, the system will be
balanced when the degree of multiprogramming D
is [12]*.

1 1
D i +fR (14)

O
When the processes are not statistically identical,
we must modify the previous argument, as follows.

Let 0i and ~ be the fractional processor th
demand and-the fractional memory demand by the j
process in a set of k processes. Define the
demand ratio dj for process j to be

dj = ~ i < j < k (15) pj' - _

Selecting an Algorithm

Real job mixes contain processes with
differing demand ratios. Furthermore, these ratios
depend upon the memory management algorithm in
use. The system designer can select a memory
management algorithm based on the distributions
of demand ratios it produces from a given distri-
bution of program types. To select an algorithm,
plot the histogram of the demand ratios produced
by the distribution of processes running under

* This argument ignoresqueueingeffects, because it
considers only the average behavior. See [9,10] for
detailed discussions of relatedqueueing effects.

Case a:

Case b: ~I

Case C: ~l

Case d: ~[

)4

~d

)d

)d

Figure 2: Representative
Demand Histograms

a potential management algorithm, Some possible ~
demand histogram shapes are shown in Figure 2.
Let ~ and o~(j) be the mean and variance of the
demand histogram for management algorithm J.

Now, impose a partial ordering on the manage-
ment algorithms as follows: Let i ~ j denote
that algorithm i is better than algorithm J, Then

i ~ j if a) d~£ d~ and Od(1) =o (J)

or b) d~= d(J) and oR(i) ~ o~(j)

or c) d ~ d~ and o~(i) ~ O~(j)

In case a) ° the two algorithms have the same
variance but one is better because its mean is
lower. Thus the algorithm producing the histo-
gram in Fig. 2a is better than the algorithm pro-
ducing the histogram in Fig. 2b. In case5) the means
are the same but one algorithm gives a lower
variance, which is more desirable because it will
be less likely that the system is badly unbalanced
due to the instantaneous job mix. Thus the
algorithm producing the histogram in Fig. 2c is
better than the algorithm producing the histogram
in Fig. 2d. In case c) one algorithm is clearly
better than the other on both criteria.

The major advantage of the partial ordering
proposed is that the paging algorithm selection is
based on the interactions between individual pro-
cesses and the management algorithm; interactions
among processes need not be considered. Unfor-
tunately these interactions must be considered (by

queueing approximations [9,10], for example) when
the partial ordering criteria do not select an
algorithm.

Given an algorithm (or set of algorithm para-
meters), the designer can determine the required
paging memory size either from the average demand

or from that demand which covers a specified
percentage of the processes in the labe mix. (See
[7] for a discussion of balancing considering the
detailed demand distributions). For example, if
the histogram of d were approximately normal, then
the choice M' = C6+ Od)M would allow most mixes
to execute without encountering a memory space
bottleneck too often.

Summary

Conventional measures of paging algorithm
performance do not account for the actual demands
on the processor and memory. The demand ratio
not only reflects the actual demands but also
permits system balancing. The designer can select
a memory management algorithm on the basis of the
demand distribution it produces in conjunction with
the assumed job mix statistics. A detailed
analysis of trace tapes is needed to determine
typical demand distributions.

AcknowledBments

This work was supported in part by the Office
of Computing Activities of the National Science
Foundation through grant GJ-32504. I wish to
acknowledge helpful discussions with Arvind,
D. Grit, and M. Riad in connection with our paging
studies, and with E. Sadeh particularly in
reference to the content of this paper.
P. J. Denning and the referees provided comments
that improved the presentation.

References

i. Arvlnd, "Experimental Data from Four Trace
Tapes from CDC 6600", Tech. Report.
NSF-OCA-GJ-32504-4, Elec. Eng. Dept., univ.
of Minn., Minneapolis, Jan. 1974.

2. Arvlnd, "Models for the CompariSon of Memory
Management Algorithms", Ph.D. Thesis, Univ.
of Minn., October 1973.

3. Baskett, F., et al, "Open, Closed, and Mixed
Networks of Queues with Different Classes of
Customers", JACM 22, 2, 248-260, April, 1975.

4. Bryant, P., "Predicting Working Set Sizes",
IBM Jour~ R and D 19, 3, 221-229, May 1975.

5. Buzen, J. P., "Optimizing the Degree of
Multiprogramming in Demand Paging Systems",
Proc. IEEE-CS Conf. IEEE Publ. no. 71-C41-C,
pp. 139-140, Sept. 1971.

6. Coffman, E. G., Jr., and Denning, P. J.,
Operatln~ Systems Theory, Prentlce-Hall, 1973.

7. Denning, P. J., "Equipment Configuration in
Balanced Computer Systems", IEEE Trans. on
Computers C-18, ii, 1008-1012, Nov. 1969.

8. Denning, P. J., "Virtual Memory", Computing
Surveys ~, 3, 153-190, Sept. 1970.

9. Denning, P. J., and Graham, G. S., "Multi-
programmed Memory Management", Proc. IEEE
63, 6, 924-939, June 1975.

i0. Muntz, R. R., "Analytic Modeling of Inter-
active Systems", Proc. IEEE 63, 946-953,
June 1975.

ii. Sadeh, E., "An Analysis of the Page Fault
Frequency Algorlth~', Ph.D. Thesis, Univ.
of Minn., April 1975.

12. Sager, G. R., "Symbiotic Scheduling", Proc.
Second Texas Conf. on Computer Systems, pp.
9-1 - 9-6, Nov. 1973.

