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The designer of a virtual memory system can obtain accurate estimates of the average 
memory requirements of programs running in the system by weighting the average allocation 
during execution intervals with the average allocation during page waiting intervals. We show 
how to combine the averages, how to use the measure to determine the size of primary memory 
while achieving system balance between memory and processor demands, and how to partially order 
the performance of paging algorithms. 
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Introduction 

Systems designers introduce virtual memory 
to decrease software costs and to reduce the main 
memory requirements [6,8]. Previous analysts have 
considered a process's memory requirement as the 
(~irtual-time) average of the space used during 
the execution intervals of that process. They 
trade this space requirement against the corre- 
sponding page fault frequency. The virtual-time 
average does not match the real-time average when 
the allocation varies dynamically. The real-time 
average is the average over the entire time that 
the process is resident in the memory. The 
designer can use the real-time average to rank 
page replacement algorithms and to determine the 
size of main memory such that the processor and 
memory demands will be matched. 

Other investigators [9,10] have used 
queueing networks for performance studies. 
Queueing models require restrictions on the ser- 
vice time distributions (at least they must 
have rational Laplace transforms); these require 
approximations to the actual situation. Models 
with different classes of customers[3] should be 
better approximations, but to exactly model the 
paging environment many states would be needed, 
and they would have to be aggregated before com- 
puting the solutions. The analyst would have to 
use simulations to verify the solutions. 

Time Requirements 

A process in a paging system cannot use one 
contiguous block of processor time because the 
process requires input/output and page swapping 
activity. For this analysis we ignore input/output 
activity. 

Conventional paging algorithm performance anal- 
yses have determined the page fault frequency f: the 
fractional number of memory references that name 
a page not currently stored in primary memory. 
If there is one memory reference per time unit, 
the execution of a process will cause fT page 
faults, where T is the total execution time of 
the process. 

Let R be the (assumed constant) time required 
to handle a page fault, including swapping the 
new page. Then the total system residence time* 
is T(i + fR); during that interval the process 
will have utilized the processor for time T, so 
its fractional use of the processor's capacity is 

i 
O = l+fR (i) 

Note that 0 depends on many factors, including the 
memory management algorithm since that determines 
f. Note also that scheduling waits may cause 
the process to remain longer in the system, using 
a smaller fraction of the processor's capacity. 
Because analysts may approximate the.latter effect 
by increasing the value of R, the following 
developments ignore scheduling waits. 

Space Requirements 

Some paging algorithms (e.g., fixed-partition 
LRU) assign "fixed" partitions of memory to each 
process when it is created. If the partition 
size** ism, the process uses m pages during its 
entire system residence time, and therefore its 
space requirement is m. 

* The real time interval during which memory 
space is allocated to the process. 

** All space measures are in units of page frames. 



Most paging algorithms (e.g., working set) 
allow dynamic allocations; the instantaneous 
memory allocation to each process is determined by 
complex interactions among many factors including 
the referencing pattern and the management algo = 
rithm. In most, but not all, management algorithms 
the allocation changes only at page fault times. 

Therefore, each interval of constant alloca- 
tion begins (Fig. i) with a page fetch of length 
R followed by a wait for CPU time (assumed to be 
zero), followed by an execution interval termi- 
nating in a page fault, a scheduler interrupt, or 
job completion (since we ignored input/output 
activity). Since we assume that the space allo- 
cation changes only at page faults, scheduler 
interrupts do not affect the space allocation for 
this process. 

Conventional analyses of paging algorithms 
determine the average allocation in virtual time. 
These virtual-time averages are not the same as 
the real-time averages because they do not include 
the average allocation during page waits, which 
requires considering the correlation between the 
size of the memory allocation and the length of 
the execution interval before the page fault. 

To analyze this effect, consider a single 
process in the system. Let p(i) be the fractional 
amount of virtual time that the memory allocation 
for that process is i pages, and let h(i) be the 
fraction of references that cause page faults 
among all reference attempts while the process 
has been allocated i pages. The (virtual-time) 
average allocation during execution intervals is 

e = Ziip(i) (2) 

To compute the allocation averaged over all 
page fault waiting intervals, count the number of page 
faults and the numbers of times that the allocation is 
i when the fault occurs. The total number of page 
faults with allocation i is Tp(i)h(i) since h(i) is 
conditioned upon the allocation being i, and Tp(i) is 
the number of reference attempts while the allocation 
is i. Summing over all i, we obtain the total number 
of faults F = {Tp(i)h(i). Now the cumulative alloca- 
tion at page faults times is TZip(i)h(i), assuming 
that the allocation during fault processing is,the 
same as the allocation during the next execution 
interval. By associating the waiting period preceding 
each execution interval with the fault at the end of 
the interval, we obtain the expression for the average 
allocation at page fault times: 

{ip(i)h(i) 

~f = Zp(i)h(i) (3) 
i 

The allocation averaged in ~eal time is 

+ fRmf 
- e 
m = 

i+ fR 
(4) 

Conventional performance analyses derive me, 
but m is the measure of the memory requirement for 
each process. The error depends on the speed 
ratio R and the difference between ~e and mf. 
Whenever the page fault frequency is a monoto- 
nically decreasing function of the memory alloca- 
tion (which is true for all stack algorithms [6]), 
page faults tend to occur more frequently when 
the allocation is smaller. This observation is 
the basis for a formal proof (omitted here~ that 
~f < me" Since m is a weighted average of mf and 
me, then N < me" An approximation to this effect 
is given by the following argument. 

Assume an exponential behavior for the page 
fault frequency as a function of the memory 
allocation: 

h(i) = %e -%i (5) 

Assume the distribution of p(i) to be the 
weighted sum of normal distributions [4]: 

_ (i-mj)2 

p(i) 1 J 5 2OJ 2 J 
= Z e , with Z p. = i (6) 

j=l°j j=l 3 

Now approximate the summations in (3) by integrals: 

_ (x-mj)2 

J 20. 2 
Z Pj~ Fxe-~Xe 3 dx 

j = l ~ .  2 ~  ~ - =  
mf = J ( 7 )  

_ (x-mj)2 

J P ~  2°'23 
Z e-lXe dx 

j=l O.¢z~ -~ 
3 

where we have taken liberties with the lower limits 
to obtain approximate solutions*. Integrating, we 
have, for J = i, 

- ~o 2 [(8) 
Nf = N e e 

Table i show this approximation compared with the 
actual behavior of the working set algorithm [i~2] 
and with the modeled behavior of the page fault 
frequency algorithm [ii]. Columns 4 and 5 show 
* For realistic parameters, mj > 2Oj, and the 
areas under the negative regions will not be 
significant. 
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Figure i: Page and Processor Use History 
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Algorithm R = 3000 R = I0000 

me mf Nf from (8) Program 
Type* Parameter 0 d O d 

A i0 2.53 2.26 1.93 

A 50 3.82 2.69 2.58 

A i00 4.91 3.18 3.14 

A 300 7.07 4.84 3.74 

A 500 7.99 5.01 2.74 

B i0 5.46 4.86 5.03 

B 50 7.28 6.88 6.72 

B i00 8.76 8.22 8.20 

B 500 15.61 14.28 14.12 

.0039 .580 .0012 1.928 

.0057 .472 .0017 1.566 

.0078 .408 .0024 1.348 

.0159 .306 .0048 1.005 

.0174 .291 .0053 .952 

.0148 .329 .0045 1.085 

.0272 .253 .0083 .827 

.0354 .233 .0109 .755 

.0877 .164 .0280 .510 

A i0 2.48 1.93 1.99 

A 50 3.46 2.32 2.22 

A I00 4.00 2.57 1.94 

A 300 5.09 3.00 1.37 

A 500 5.71 3.02 0.68 

B i0 5.63 5.03 5.04 

B 50 6.88 6.24 6.27 

B i00 7.75 7.09 7.11 

B 500 10.68 9.98 9.88 

*A = Working Set (actual behavior) - Parameter = window size 
B = Page Fault Frequency (modeled behavior) - Parameter = width 

deletion. 

Table I: 

.0034 .570 .0010 

.0067 .349 .0020 

.0088 .293 .0026 

.0130 .232 .0040 

.0142 .216 .0043 

.0349 .145 .0107 

.0593 .106 .0185 

.0819 .087 .0261 

.1880 .054 .0649 

of critical interval for page 

Representative Values for Demands with M = i000 

1.893 

1.154 

.968 

761 

705 

470 

337 

273 

154 

that the unimodal approximation is quite good in 
most cases. 

For J > i, the result can be expressed in 
closed form: 

J %-~2o.2 
E ~(mj-XOj2)e mj 3 

~=j=l " 

J h emj~-12~ 2 
J 

j=l ~j 

Bryant's results [4] suggest that a bimodal 
approximation will be more exact for certain pro- 
grams; that approximation has not been tested 
against actual data. 

(9) 

Balancing the System 

Let M be the total memory size. Then the 
process requires the memory fraction 

= - (io) 
M 

It uses the processor fraction 
1 

0 = l+fR (Ii) 

Under system balance the addition of either pro- 
cessor capacity or memory capacity will not 
increase the system throughout, except by second- 
order effects due to statistical variations. For 
the system to be balanced [5], we desire 

= p (12) 

or 

M = ~e + fR~f (13) 

If all processes in the system are 
statistically identical, the system will be 
balanced when the degree of multiprogramming D 
is [12]*. 

1 1 
D ..... i +fR (14) 

O 
When the processes are not statistically identical, 
we must modify the previous argument, as follows. 

Let 0i and ~ be the fractional processor th 
demand and-the fractional memory demand by the j 
process in a set of k processes. Define the 
demand ratio dj for process j to be 

dj = ~ i < j < k (15) pj' - _ 

Selecting an Algorithm 

Real job mixes contain processes with 
differing demand ratios. Furthermore, these ratios 
depend upon the memory management algorithm in 
use. The system designer can select a memory 
management algorithm based on the distributions 
of demand ratios it produces from a given distri- 
bution of program types. To select an algorithm, 
plot the histogram of the demand ratios produced 
by the distribution of processes running under 

* This argument ignoresqueueingeffects, because it 
considers only the average behavior. See [9,10] for 
detailed discussions of relatedqueueing effects. 
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Figure 2: Representative 
Demand Histograms 

a potential management algorithm, Some possible ~ 
demand histogram shapes are shown in Figure 2. 
Let ~ and o~(j) be the mean and variance of the 
demand histogram for management algorithm J. 

Now, impose a partial ordering on the manage- 
ment algorithms as follows: Let i ~ j denote 
that algorithm i is better than algorithm J, Then 

i ~ j if a) d~£ d~ and Od(1) =o (J) 

or b) d~= d(J) and oR(i) ~ o~(j) 

or c) d ~  d~ and o~(i) ~ O~(j) 

In case a) ° the two algorithms have the same 
variance but one is better because its mean is 
lower. Thus the algorithm producing the histo- 
gram in Fig. 2a is better than the algorithm pro- 
ducing the histogram in Fig. 2b. In case5) the means 
are the same but one algorithm gives a lower 
variance, which is more desirable because it will 
be less likely that the system is badly unbalanced 
due to the instantaneous job mix. Thus the 
algorithm producing the histogram in Fig. 2c is 
better than the algorithm producing the histogram 
in Fig. 2d. In case c) one algorithm is clearly 
better than the other on both criteria. 

The major advantage of the partial ordering 
proposed is that the paging algorithm selection is 
based on the interactions between individual pro- 
cesses and the management algorithm; interactions 
among processes need not be considered. Unfor- 
tunately these interactions must be considered (by 

queueing approximations [9,10], for example) when 
the partial ordering criteria do not select an 
algorithm. 

Given an algorithm (or set of algorithm para- 
meters), the designer can determine the required 
paging memory size either from the average demand 

or from that demand which covers a specified 
percentage of the processes in the labe mix. (See 
[7] for a discussion of balancing considering the 
detailed demand distributions). For example, if 
the histogram of d were approximately normal, then 
the choice M' = C6+ Od)M would allow most mixes 
to execute without encountering a memory space 
bottleneck too often. 

Summary 

Conventional measures of paging algorithm 
performance do not account for the actual demands 
on the processor and memory. The demand ratio 
not only reflects the actual demands but also 
permits system balancing. The designer can select 
a memory management algorithm on the basis of the 
demand distribution it produces in conjunction with 
the assumed job mix statistics. A detailed 
analysis of trace tapes is needed to determine 
typical demand distributions. 
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