
Why Application Errors Drain Battery Easily?
A Study of Memory Leaks in Smartphone Apps

Mingyuan Xia, Wenbo He, Xue Liu
McGill University, Canada

mingyuan.xia@mail.mcgill.ca
{wenbohe,xueliu}@cs.mcgill.ca

Jie Liu
Microsoft Research Redmond

jie.liu@microsoft.com

ABSTRACT
Mobile operating systems embrace new mechanisms
that reduce energy consumption for common usage
scenarios. The background app design is a repre-
sentative implemented in all major mobile OSes.
The OS keeps apps that are not currently inter-
acting with the user in memory to avoid repeated
app loading. This mechanism improves responsive-
ness and reduces the energy consumption when the
user switches apps. However, we demonstrate that
application errors, in particular memory leaks that
cause system memory pressure, can easily cripple
this mechanism. In this paper, we conduct experi-
ments on real Android smartphones to 1) evaluate
how the background app design improves respon-
siveness and saves energy; 2) characterize memory
leaks in Android apps and outline its energy im-
pact; 3) propose design improvements to retrofit the
mechanism against memory leaks.

1. INTRODUCTION
According to the J.D. Power and Associates sur-

vey involving 7,000 smartphone customers [1], bat-
tery life has become a critical factor for user satisfac-
tion. The energy-saving requirement has given rise
to new innovations in mobile operating systems [13]
and energy APIs [8] for apps. While proven to save
energy for common mobile usage scenarios, these
designs also arouse new application errors that cause
abnormal energy drains [9]. In this paper, we make
a step to answer the question: how a typical appli-
cation error like memory leak impacts OS energy-
saving mechanisms?

Most mobile OS inventions are driven by the ob-
servation of usage patterns. In particular, smart-
phone usage observes short app interaction time and
frequent switches between different apps. Accord-
ing to a smartphone trace study [10, 12], 80% of mo-
bile app usage ends within one minute. This short
interaction time naturally requires short app load-
ing time. Facing this demand, a mobile OS launches

applications once and keeps them in the memory as
long as possible. At any time, several background
apps stay in memory while only one foreground app
is interacting with the user. When the user switches
apps, the OS can probably wake a background app
and avoid loading it from scratch. According to our
measurement, keeping apps in the background can
reduce 60% to 90% of the overall app loading time
and significantly prolong battery life.

To keep more apps in memory, individual apps
should limit its memory usage. Hence, memory
leaks that incur memory pressure can prevent the
OS from keeping background apps. Consequently,
lots of normal apps need to be reloaded over and
over as long as only a few apps are leaking memory.
To better understand memory leaks in smartphone
apps, we study real world bug reports from Google
Code and identify the memory objects that cause
most memory leaks in Android apps and root causes
for these bugs. Based on this knowledge, we pro-
pose to effectively tolerate memory leaks at runtime
with low overhead by vetting most leaked objects on
most likely leaking code paths.

Although memory leaks have been studied in the
context of software and performance bugs [2, 6, 7,
5], our contribution is to how this kind of bugs
causes battery draining problem (i.e., energy bugs)
on smartphones, as extending battery life is first-
class priority in mobile devices. We study mem-
ory leaks in the smartphone context to understand
the root cause and design targeted and effective
workarounds. Our study reveals new usage sce-
narios (such as screen rotation) that can trigger
memory leaks and propose an approach that tackles
these scenarios.

The remainder of this paper is organized as fol-
lows. Section 2 evaluates the background app de-
sign. Section 3 characterizes real-world memory
leaks and relate these bugs to background apps and
energy. Section 4 presents the related work and Sec-
tion 5 concludes.



Least Recently 
Used

Most Recently 
Used

Kill Running appBackground app cache

Figure 1: The fix-sized background app queue
sorted in LRU order.

2. BACKGROUND APPLICATION CACHE
In this section, we explain background app mech-

anism, the important mobile operating system de-
sign that reduces app loading. We conduct several
experiments on real smartphones to show how this
mechanism saves loading time and energy.

2.1 Overview
On smartphones, loading an app normally involves

several time- and energy-consuming phases (e.g.,
loading the executable content from storage, estab-
lishing initial network connections, etc). To im-
prove app switch experience, all major mobile op-
erating systems (iOS, Android, Windows Phone,
BlackBerry) keep some non-running apps in mem-
ory. Next time these apps are launched again, the
OS can wake the background app and reuse the old
process (along with the executable code, file han-
dlers, application data cache, etc).

Swapping Policy To avoid using too much mem-
ory, mobile OSes keep a fix-sized background app
queue, as shown in Figure 1. Apps in this queue
are sorted in LRU order and the (only) foreground
app is always the most recently used one. Every
time a new app is to be launched, the OS will check
f it is present in the queue. If present, the OS will
wake the background app and adjust the LRU se-
quence. Otherwise, the OS will replace the least
recently used app with the app to be launched. In
this case, launching app will involve app loading.

Although the queue is fixed in size, memory hun-
gry background apps can still use up all system
memory. Thus an Out-Of-Memory Killer (OOM)
is introduced to kill background apps in LRU order
when the system is about to running out of mem-
ory. As a result, the more memory individual back-
ground app uses, the fewer apps can stay in the
cache.

2.2 Energy Impact
Experiments. If the app to be launched is in

the background, this mechanism can save signifi-
cant loading time (and thus energy). To evaluate
the effectiveness of this mechanism, we conduct our

0 5 10 15 20

Beach Buggy Blitz
Cut the rope free

Perfect Piano
Temple run

Talking Tom 2
Angry Birds

Hill Climb
Archery

Facebook
Pinterest
Instgram

Twitter
Songza
Zedge

Shazam
MXPlayer

Skype
Adobe Reader

BBC News
Evernote
Youtube
Camera

Gmail

Game

Social

Audio/Video

Others

Built−in

Time

 

 

Loading from scratch Loading as background app

Figure 2: Compare the time for loading an app from
scratch and waking a background app.

experiments on a Samsung Galaxy Nexus S(i9100)
smartphone installed with Android 4.03. Figure 2
lists the launching time for popular apps of repre-
sentative categories. We monitor the CPU usage,
IO activity and other resource usage (such as sen-
sors) during app loading.

When loading, the app process (along with some
helper processes such as the System UI process) oc-
cupies most CPU time. During this period, the
screen backlight is on and causes the major energy
consumption [4]. In addition, various IOs related
to energy consuming components [4] also contribute
notable consumption.

Storage IO. Loading an app incurs storage IOs
to read app code and data. This typically involves
several MB IO traffic (depending on the app size).
According to our measurement, the IOs required to
load an app are generally one or two orders of mag-
nitude more than waking a background app. Par-
ticularly, as shown in Figure 2, games load much
slower than other apps since they mostly contain
large graphics data.

Network activity. Most network-based apps es-
tablish network connections on loading and reuse
these connections afterwards. When an app be-
comes a background app, network connection states
stay in memory and can be used on next launch. If
the app has to be loaded from scratch, it requires
extra TCP handshake and network activities to ini-
tialize the connections. For example, the skype app
performs several rounds of coordinations with the
server when loading. But once connected, the app
only uses the network on demand.

Application data cache. Apps cache data (such
as bitmap) in memory to reduce expensive IOs. When



Android (project name: android)
18273, 37607, 34731, 39821, 39819, 39818,
21189, 29306, 22794, 20724, 15170, 40552,
28524, 21965, 25442, 17903, 17015, 18001, 29884

Exotic Apps
Project name Issue ID

anttek 2
mapview-overlay-manager 21
mapsforge 72
eyes-free 100
osmdroid 265
android-rcs-ims-stack 107
roboguice 102
mconf 251
robotium 331
libgdx 460
adwhirl 71
gmaps-api-issues 4766

Table 1: A list of memory leak bug reports. Avail-
able at http://code.google.com/p/<project_

name>/issues/detail?id=<issue_id>.

waking a background app, all the cached contents
in memory can reused. On the contrary, a newly
loaded app typically needs to issue IOs to fill this
data cache. The most notable example is the built-
in web browser. When kept in the background, the
browser keeps all loaded web pages in memory. So
by waking the background browser, the user can
continue browsing without network activities. How-
ever, a newly launched browser needs to load the
page and pictures. As a result, loading an app trig-
gers IOs to fill application cache, which in turns
drains the battery.

Overall. We conduct stress tests to reveal how
these extra IOs from app loading impact battery
life. In this experiment, apps are randomly launched
until the battery is exhausted. We compare the bat-
tery lifetime when the background app mechanism
is turned on/off1. The results show that the smart-
phone can last around twice longer if the OS can
keep background apps. We attribute the reduced
battery life to the combination of expensive IO op-
erations described above.

3. MEMORY LEAKS IN APPS
The OS reduces energy consumed by app loading

by keeping as many background apps as possible.
However, given limited system memory, the more

1On Android set Setting→Developer
Options→Background process limit to zero to dis-
able the mechanism

Activity 
45% 

View 
7% Listener 

6% 

Other 
10% 

non-
framework 

objects 
32% 

(a) Framework (five kinds)
and non-framework objects.

Native 
objects 

20% 

Thread 
30% Any object 

20% 

User 
defined 
objects 

30% 

(b) Breakdown of non-
framework objects.

Figure 3: Breakdown of leaked objects.

memory each app uses, the fewer background apps
exist. In this section, we show that app memory
leaks can cripple this mechanism and cause severe
battery drain. To understand these bugs, we char-
acterize real leak bugs in Android apps from Google
Code. Then, we propose effective workarounds based
on the knowledge gained from the characterization.

3.1 Bug reports
We collect 31 bug reports (shown in Table 1) from

projects hosted by Google Code. 60% of the bugs
are found in app programming framework, libraries
and built-in apps of the Android OS. The rest 40%
are found in developers’ apps. The studied apps
fall into representative categories found in real app
market. Some bugs found in gaming engines and
testing frameworks can potentially affect a lot more
apps. We study these existing bugs to understand
three important facts: 1) what objects cause most
memory leaks; 2) what are the common pitfalls that
lead to memory leak; 3) how memory leaks affect
background apps and energy consumption.

3.2 Objects with Most Memory Leaks
First, we want to identify what objects are most

likely to be leaked, which helps to develop targeted
methods. Figure 3 presents the distribution where
objects from the Android programming framework
are mostly leaked.

Activity and framework objects. Activity is
the most leaked object in the Android OS as well as
exotic apps. An activity is a programming compo-
nent that manages the resources used by a window.
When the associated window is exited, onDestroy
method of the activity is called. onDestroy is sup-
posed to remove all reference to the activity to al-
low it to be garbage collected afterwards. However,
since lots of objects keep reference to the activity
for system services, carelessly keeping the reference
of a destroyed activity leaks its memory. Futher-

http://code.google.com/p/android/issues/detail?id=18273
http://code.google.com/p/android/issues/detail?id=37607
http://code.google.com/p/android/issues/detail?id=34731
http://code.google.com/p/android/issues/detail?id=39821
http://code.google.com/p/android/issues/detail?id=39819
http://code.google.com/p/android/issues/detail?id=39818
http://code.google.com/p/android/issues/detail?id=21189
http://code.google.com/p/android/issues/detail?id=29306
http://code.google.com/p/android/issues/detail?id=22794
http://code.google.com/p/android/issues/detail?id=20724
http://code.google.com/p/android/issues/detail?id=15170
http://code.google.com/p/android/issues/detail?id=40552
http://code.google.com/p/android/issues/detail?id=28524
http://code.google.com/p/android/issues/detail?id=21965
http://code.google.com/p/android/issues/detail?id=25442
http://code.google.com/p/android/issues/detail?id=17903
http://code.google.com/p/android/issues/detail?id=17015
http://code.google.com/p/android/issues/detail?id=18001
http://code.google.com/p/android/issues/detail?id=29884
https://code.google.com/p/anttek/issues/detail?id=2
https://code.google.com/p/mapview-overlay-manager/issues/detail?id=21
http://code.google.com/p/mapsforge/issues/detail?id=72
http://code.google.com/p/eyes-free/issues/detail?id=100
http://code.google.com/p/osmdroid/issues/detail?id=265
http://code.google.com/p/android-rcs-ims-stack/issues/detail?id=107
http://code.google.com/p/roboguice/issues/detail?id=102
http://code.google.com/p/mconf/issues/detail?id=251
http://code.google.com/p/robotium/issues/detail?id=331
http://code.google.com/p/libgdx/issues/detail?id=460
http://code.google.com/p/adwhirl/issues/detail?id=71
http://code.google.com/p/gmaps-api-issues/issues/detail?id=4766
http://code.google.com/p/<project_name>/issues/detail?id=<issue_id>
http://code.google.com/p/<project_name>/issues/detail?id=<issue_id>


launch and exit

complex code pattern

call specific function

rotate screen

0 2 4 6 8 10 12

Number of reports 

Figure 4: The breakdown of memory leak triggers.

more, most framework objects (such as Views and
Listeners) indirectly reference the activity instance.
So if any of those framework objects is leaked, the
activity is also leaked.

Non-framework objects. Non-Android objects
account for only 32% of the leaked objects. Un-
like the situation for desktop applications [2], user-
defined objects are not the major source of memory
leaks (only 10%). This suggests that developers are
more likely to misunderstand the life cycle of An-
droid components.

From these observations, we conclude that a leak
detector can focus more on activity instances. More
specifically, the detector can report leak if an activ-
ity instance still exists while it should be recycled
on current app state.

3.3 Leak Trigger
We identify that memory leaks are triggered by a

few straightforward user interactions, as shown in
Figure 4. These interactions normally stress cer-
tain app code paths which contain common pro-
gramming pitfalls.

Launch and exit. Launching and exiting an app
involve the life cycle methods of the main activity.
When starting, the activity starts other program
components, possibly working in an asynchronous
way to acquire resources. On exit, the activity is
supposed to release all the resources used by these
asynchronous components (some might not finished
yet). Failing to do so will lead to memory leaks.
Previous literature [9] reports that apps that re-
quire locking hardware in high power mode can en-
counter malloc-without-free-like bugs. We find out
that these bugs also leak considerable memory (due
to leaking the activity instance).

Screen rotation. This simple user interaction
can happen anytime during the activity execution.
In response, the current running activity will be de-
stroyed and a new instance will be created. During
this procedure, certain program state objects from
the old activity can be transferred to the new activ-
ity. However, if these state objects reference the old

activity, the new activity will then indirectly keep
the old one alive. To avoid memory leaks in this sce-
nario, the programmers need to scrub the state ob-
jects being transferred. However, since screen rota-
tion happens asynchronously, the state objects may
contain some temporary objects that still hold the
reference to old activity instance.

Calling a specific function. Some memory
leaks only involve one function. Usually, after call-
ing the function, the parameter objects will be ref-
erenced by some global variable and become not
garbage collectable. The development document
has recommended to use weak reference to allow
JVM to recycle objects within global container. How-
ever this idiom is not commonly used (especially in
exotic apps) or sometimes not properly used.

3.4 Energy Impact
Every time the user launches a leaking app, it

leaks memory and becomes the most recently used
app in the background app cache. Consequently,
the leaking app keeps occupying memory until all
other less recently used background apps are killed.
In such case, the operating system is more likely
to encounter memory pressure and kill some back-
ground apps. All the killed normal apps will have
to be reloaded when the user launches them again,
which incurs app loading overhead and energy con-
sumption.

In short, leaking apps force the OS to waste time
and energy reloading normal apps. The background
app cache extends the life time of leaking apps and
amplifies these bad effects.

3.5 Reinforcement
As a leaking app will become a long-term pain as

long as it is launched once, we propose to retrofit
the swapping policy to reduce the length of leaking
effects. Our method aims to incur minimal runtime
overhead as well as limited energy consumption.
Our approach contains two modules: a lightweight
leak detector telling which app is leaking memory
and a priority adjustment module that prioritizes
killing leaking apps.

Online leak detector. Existing leak detectors
intend to detect all memory leaks. However, these
approaches incur notable overhead (2x-100x run-
time slowdown and 2x-10x memory footprint), which
makes them only applicable during app develop-
ment phase. We propose to monitor only activity
instances, the most leaked objects according to our
prior study. For an app being monitored, our detec-
tor records all live activities in the sequence of cre-
ation time. Then the detector calculates the mem-



ory used by long-living activity instances. If that
exceeds a threshold, the app in question is marked
as a potential leaker.

Background app priority adjustment. When
a new app is launched, the mobile OS needs to up-
date the background app queue. Instead of doing
the LRU replacement, our adjustment module pri-
oritizes killing leaking apps by adjusting its position
in the background app cache. As a result, memory
leaking apps will have a higher probability to be
killed in face of memory shortage.

Performance Overhead. Since our detector
only keeps track of activities, the memory footprint
is proportionally to the number of live activities.
Normal apps with only a few live activities will
observe low memory overhead. The priority ad-
justment module calculates priority when replacing
background apps, which is an O(n) list scanning.
Overall, this detector can focus on most leaked ob-
jects while the adjustment module can prevent leak-
ing apps from affecting other apps with an accept-
able runtime overhead and memory footprint.

4. RELATED WORK
Energy bugs. Mobile OSes introduce new mech-

anisms to improve energy efficiency. Unfortunately,
these designs also give rise to energy bugs [8], a type
of programming errors that cause abnormal battery
drain. Specifically, no-sleep bugs[9] causes heavy
battery drain due to misuse of wakelock, a new en-
ergy API proposed by Android. Our work also in-
vestigate mobile OS energy-saving mechanisms. We
evaluate the background app cache and show its
effectiveness, as validated by other literature [13].
Meanwhile we show these new mechanism are some-
how fragile in face of traditional programming er-
rors, which now can lead to energy problems.

Leak detection and tolerance. Most mem-
ory leak detectors [2, 6, 7, 5] for desktop appli-
cations work in development phase and intend to
report all potential leaked objects. Other runtime
approaches [3, 11] aim to tolerate memory leak by
swapping leaked object to secondary storage. How-
ever, storage IOs consume notable energy, which
makes these existing approaches less applicable on
smartphones. Facing these limitations, we propose
our lightweight and targeted detector targeting only
based on our characterization knowledge.

5. CONCLUSIONS
Battery life is a critical factor for user satisfac-

tion of modern smartphones. In this paper, we
first show how background app cache avoids re-
peated app loading and saves energy. Then we

show that memory leaks can cause excessive mem-
ory consumption and cripple this mechanism. Our
characterization study of real bugs shows that most
bugs leak activity, the core Android app compo-
nent. Also simple app state change such as fre-
quently switching and screen rotation can trigger
memory leak. Based on these observations, we de-
sign a lightweight leak detector that focuses on ac-
tivity leak and a priority adjustment module to pri-
oritize killing leaking apps.

6. ACKNOWLEDGEMENT
This work was supported in part by the NSERC

Discovery Grant 341823. The authors also want to
thank anonymous reviewer for their feedbacks and
Yi Gao for discussions during the preliminary stage
of the project.

7. REFERENCES
[1] J.d. power and associates reports: Smartphone

battery life has become a significant drain on
customer satisfaction and loyalty.
https://pictures.dealer.com/jdpower/
166f0d180a0d02b7014443191870cdac.pdf.

[2] Bond, M. D., and McKinley, K. S. Bell:
bit-encoding online memory leak detection. In
ASPLOS’06.

[3] Bond, M. D., and McKinley, K. S. Tolerating
memory leaks. In OOPSLA ’08.

[4] Carroll, A., and Heiser, G. An analysis of
power consumption in a smartphone. In USENIX
ATC’10.

[5] Hauswirth, M., and Chilimbi, T. M.
Low-overhead memory leak detection using
adaptive statistical profiling. In ASPLOS’04.

[6] Jump, M., and McKinley, K. S. Cork: dynamic
memory leak detection for garbage-collected
languages. In POPL ’07.

[7] Mitchell, N., and Sevitsky, G. Leakbot: An
automated and lightweight tool for diagnosing
memory leaks in large java applications. In
ECOOP’03.

[8] Pathak, A., Hu, Y. C., and Zhang, M.
Bootstrapping energy debugging on smartphones:
a first look at energy bugs in mobile devices. In
HotNets’11.

[9] Pathak, A., Jindal, A., Hu, Y. C., and
Midkiff, S. P. What is keeping my phone
awake?: characterizing and detecting no-sleep
energy bugs in smartphone apps. In MobiSys ’12.

[10] Shepard, C., Rahmati, A., Tossell, C.,
Zhong, L., and Kortum, P. Livelab: measuring
wireless networks and smartphone users in the
field. SIGMETRICS Perform. Eval. Rev. (2011).

[11] Tang, Y., Gao, Q., and Qin, F. Leaksurvivor:
towards safely tolerating memory leaks for
garbage-collected languages. In USENIX ATC’08.

[12] Wang, Z., Lin, F. X., Zhong, L., and
Chishtie, M. How far can client-only solutions go
for mobile browser speed? In WWW ’12.

[13] Yan, T., Chu, D., Ganesan, D., Kansal, A.,
and Liu, J. Fast app launching for mobile devices
using predictive user context. In MobiSys ’12.

https://pictures.dealer.com/jdpower/166f0d180a0d02b7014443191870cdac.pdf
https://pictures.dealer.com/jdpower/166f0d180a0d02b7014443191870cdac.pdf

	Introduction
	Background Application Cache
	Overview
	Energy Impact

	Memory Leaks in Apps
	Bug reports
	Objects with Most Memory Leaks
	Leak Trigger
	Energy Impact
	Reinforcement

	Related work
	Conclusions
	Acknowledgement
	References

