Fault Tolerance

Ken Birman

Lorenzo Alvisi’s Byzantine twin

TOO many Seminal COnceptS wants you to use 2f+1 replicas

* Process pairs, primary-backup * Checkpoints, Message Logging
e 2PC and 3PC, Quorums B * Byzantine Agreement
e Atomic Transactions "SF e Gossip protocols

e State machine replication |

e Virtual synchrony model *
e RAID storage solutions

e Zookeeper e’

Theory ... Skepticism

e Consensus OW: consensus i

* FLP llﬁil + oracle E * CATOCS

-

Replication
Gossip BF

OS Infrastructure and Tool

 Too much for 25 minutes...
e Focus on state machine replication with crash failures

Fault-Tolerance via Replication: Rich History

e Early debate about the question itself

e Some believed that the OS layer is the wrong place to
offer strong properties...

e Today that debate has reemerged:

e Some believe that the cloud can’t afford strong properties!

Theory

Basic questions

* What sort of system are we talking about?

* What do we mean by “failure”?

* What does “tolerating” mean?

Thinking of Fault-Tolerance in terms of Safety

e Consistent State: A system-specific invariant: Pred(S)

S is fault-tolerant if:
S maintains/restores Pred(S) even if something fails

 Normally, we also have timeliness requirements.

Principles from the theory side...

e FLP: Protocols strong enough to solve asynchronous consensus
cannot guarantee liveness (progress under all conditions).

* If running a highly available database with network partition,
conflicting transactions induce inconsistencies (CAP theorem).

* Need 3f+1 replicas to overcome Byzantine faults

Systems

Principles from the systems side...

* Make core elements as simple as possible
* Pare down, optimize the critical path
e Captures something fundamental about systems. Bsutler

* Generalized End-to-End argument:
e Let the application layer pick its own models.
 Limit core systems to fast, flexible building blocks.

B. Lampson. Hints for computer system design. ACM Operating Systems Rev. 1983.
J. Saltzer/D. Reed/D. Clark. End-To-End Arguments in System Design. 1984.

Gray: How do systems really fail?

e Studied Tandem’s “non-stop” platforms im Gray
Failures caused by bugs, user mistakes, poor designs.
Few hardware failures, and nothing malicious.

e Jim’s advice? Focus our efforts on the real needs

J. Gray. Why Do Computers Stop and What Can Be Done About It? SOSP, 1985.
11

Tensions

Why aren’t existing OS mechanisms adequate?

s fault-tolerance / consistency too complex or costly?

Do the needed mechanisms enable or impose models?

12

Do we need fault-tolerant replication?

* Not just for making systems tolerant of failures
* Cloud computing: Provision lots of servers
e Performance-limiting for many machine-learning systems

* So we agree, hopefully: replication is awesome!

e But is there a core OS mechanism here?

13

It comes down to performance and scalability

e As systems researchers, abstracted properties are...
e Useful when designing and testing
 VValuable tools for explaining behavior to users
* Not obstacles: “Impossible” problems don’t scare us...

e Performance is a more fundamental challenge
e Can fault-tolerance mechanisms be fast?

Existing core OS support: Inadequate

* |P multicast just doesn’t work...
e Amazon AWS disables IPMC and tunnels over TCP

* TCP is the main option, but it has some issues:
e No support for reliable transfer to multiple receivers
e Uncoordinated model for breaking connections on failure
e Byte stream model is mismatched to RDMA

... Higher-level replication primitives?

e |sis: In 1985 used state machine replication on objects

e Core innovation was its group membership model, which
integrates membership dynamics with ordered multicast.

e Durability tools: help application persist its state

e Paxos': Implements state machine replication (1990)
e A durable database of events (not an ordered multicast)
e Runs in “quasi-static” groups.

“*Homework: First version of Paxos protocol?

Delays on the critical path: Isis

Original Isis Tookit: * Oracle
State machine replication of e Uses quorums
user-defined objects. Refactor (‘87) e Outputs “Views”
Durability was optional. e Bisimulates Paxos

e Critical Path

Paxos: Many optimizations, often via e Asynchronous, pipelined
transformations like the Isis ones * Flush when view changes
e Only pay for properties used
But Paxos theory and formal

methodology are very clean, elegant... Virtual Synchrony: Model + menu of choices

[Note: CATOCS controversy arose here...]

How does one speed such systems up? e

e Start with simple, easily analyzed solution... Study the code

* The critical paths often embody inefficiencies, like requesting
total order for actions already in order, or that commute.

e Often, synchronous events can be asynchronously pipelined

e Restructure critical paths to leverage your insights
e Hopefully, the correctness argument still holds...

Pattern shared by Isis, Paxos, Zookeeper, Chain Replication, Zyzzyva, many others...

... Real systems informed by sound theory

e |sis: Widely adopted during the 1995-2005 period
* French ATC system, US Navy AEGIS, NYSE...

* Paxos: Very wide uptake 2005-now
* Locking, file replication, HA databases...
e Clean methodology and theory appeal to designers
e Corfu is the purest Paxos solution: robust logging

CATOCS: A case against consistent replication

* Too complex

PSR Dave Cheriton
* Violates End-to-End by imposing
model on the user

* No matter what form of update order
is supported, user won’t like it Dale Skeen

e Ordering is just too slow, won’t scale

20

So were CATOCS claims true?

e Early replication solutions really were too slow.
e Later ones were faster, but more complex.

e But CATOCS analysis of ordering was dubious.

* Yet... what about that missing low-level building block?
e ...apuzzle (we’ll come back to it later)

Chain replication

The “consensus” family...

e Can transform one to another... optimizations driven by
desired properties.

* For me, durability remains puzzling

* |s the goal durability of the application, or of its “state”?

22

... a few winners:

» State Machine Replication, Paxos, ACID transactions 7Pt

Tools

* Chubby, Zookeeper, Corfu

Real Systems

* Primary + Warm backup... Chain Replication

23

Servers: 3-5 nodes A cloud-hosted service could
run on 5,000 nodes in each of
dozens of data centers

Meanwhile, along came a cloud!

.. Cloud rebellion: “Just say no!”

Werner Vogels

» State Machine Replication, Paxos, ACID transactions 7Pt

Tools

* Chubby, Zookeeper, Corfu

Real Systems

* Primary + Warm backup... Chain Replication

e Dynamo: Eventual consistency (BASE), NoSQL KVS

25

Is consistency just too costly?

Eric Brewer

* CAP: Two of {Consistency, Availability, Partition-Tolerance}
e Widely cited by systems that cache or replicate data
* Relaxed consistency eliminates blocking on the critical path

e CAP theorem: proved for a WAN partition of an H/A database

* BASE (eBay, Amazon)

e Start with a transactional design, but then weaken atomicity
e Eventually sense inconsistencies and repair them

... but does CAP+BASE work?

» CAP folk theorem: “don’t even try to achieve consistency.”

... meaning what?
e “Anything goes”? “Bring it on?”

* Einstein: “A thing should be as simple as possible,
but not simpler.”

27

... but does CAP+BASE work?

L Y . . V.

 CAP + BASE are successful for a reason:

* In the applications that dominate today’s
cloud, stale cache reads have negative utility
but don’t cause safety violations.

* In effect a redefinition, not a rejection, of consistency

28

A fascinating co-evolution

* The cloud fits the need; the applications fit the cloud. " Edsger Dijkstra
At first, fault-tolerance wasn’t given much thought.

e JimGray: “Why do systems fail?”
e Today: Why don’t CAP+BASE systems fail?
e Could we apply Dijkstra’s theory of “self-stabilization” to BASE?

Dijkstra: Self-stabilizing systems in spite of distributed control, CACM 17 (11): 1974.
29

Future Shock: Disruption is coming

e Life and safety-critical cloud computmg
 Smart power grid, homes, cities
e Self-driving cars
* Cloud-hosted banking, medical care

* Weakened consistency won’t suffice for these uses.

30

Homework (due date: SOSP 2017)

e Start with a clean slate (but do learn from the past)

* Embrace a modern architecture

* Cloud-scale systems...
e Multicore servers with NVRAM storage

e RDMA (like Tesla’s “insane speed” button).

* Propose a new approach to cloud-scale consistency

Future Cloud...

* The O/S has been an obstacle... even embraced inconsistency.
e The future cloud should embrace consistency.

* Key: Elegance, speed, support real needs of real developers

* Need a core OS building block that works, integrated with
developer tools and IDEs that are easy to use.

32

	Fault Tolerance
	Too many seminal concepts
	Slide Number 3
	Fault-Tolerance via Replication: Rich History
	Slide Number 5
	Basic questions
	Thinking of Fault-Tolerance in terms of Safety
	Principles from the theory side…
	Slide Number 9
	Principles from the systems side…
	Gray: How do systems really fail?
	Tensions
	Do we need fault-tolerant replication?
	It comes down to performance and scalability
	Existing core OS support: Inadequate
	… Higher-level replication primitives?
	Delays on the critical path: Isis
	How does one speed such systems up?
	… Real systems informed by sound theory
	CATOCS: A case against consistent replication
	So were CATOCS claims true?
	The “consensus” family…
	… a few winners:
	Meanwhile, along came a cloud!
	… Cloud rebellion: “Just say no!”
	Is consistency just too costly?
	… but does CAP+BASE work?
	… but does CAP+BASE work?
	A fascinating co-evolution
	Future Shock: Disruption is coming
	Homework (due date: SOSP 2017)
	Future Cloud…

