
The Integration of Virtual Memory Management
and Interprocess Communicat ion in Accent

[Abstract]

Robert Fitzgerald and Richard F. Rashid
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

All communication-oriented operating systems share the

problem of getting data from one process to another. System

designers have traditionally chosen one of two alternatives:

I. processes pass data by reference

2. processes exchange messages to pass data by value

By.value mess~ge systems typically require that message data

be physically copied. Not surprisingly, data copying costs can

dominate the performance of by-value message systems [2]. Such

systems often limit the maximum size of a message, forcing large

data transfers to be performed in sew~ro.I message operations

[3, 6].

In systems that allow by.reference sharing of memory, proce.~ses

may either share access to specific memory areas or entire

address spaces. Me~ages are used only for synchronization and

to transfer small amounts of data, such as pointers to shared

memory. Communication between processes within a THOTH

team [3] is an example of this approach.

By-reference sharing of data is much cheaper than copying for

large data transfers on a ~ingle machine, but can seriously

compromic.o sy;;tcm roli~bi!ity and secur;ty. Several capability-

based systems [4, 5, 9] have partially addressed this problem by

passing memory access capabilities in messages. However, these

systems do not address the probl,.~ms of unintended or

unsynchronized access to shored da~a. It is also difficult and

expensive tc extend a bv-referonce me.mary access scheme

transparer~tly into a network envircnment [G].

In 1981, we began to impternent Accent, a communication-

oriented operating system kernel designed to supper;: the needs of

a large network of person3! c(~mputers. One of the Accehlt desion

gna!s was that its cnmmunicatim~ ab3~rnctiens be tr:~nspm'ently

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

¢) 1985 A C M - 0 - 8 9 7 9 1 - 174- I- 12 /85-0013 $ 0 0 . 7 5

extensible into the network environment. We therefore chose to

pass all data between processes by-value in messages. At the

same time, experience with previous operating systems, notably

Rochester's RIG system [6], led us to seek an alternative to data

copying for large messages.

Our approach was to combine virtual memory management and

interprocess communication in such a way that large data

transfers could use memory mapping techniques rather than data

copying. By.value semantics are preserved by transferring large

amounts of message data with copy-on.write memory mapping, so

that both the sending and receiving process have their own logical

(if not disjoint physical) copy of the data.

Our hypothesis was that copy.on.write data would, in fact,

seldom be written. By postponing data copy operations unttl they

are actually necessary, we hoped to provide the cost advantages

of by-reference memory mapping for interprocess communication

with the clean semantics of by-value data copying. Lazy

evaluation is also heavily used in the management of process

maps and allocation of virtual memory backing store.

It has now been more than four years since we began to

implement Accent as part of tSe CMU SPICE project. Accent I is

now (September 1985) running on a network of approximately 200

personal computers at CMU and is marketed commercially by

PERQ Systems Corp. and Advent Ltd. with an installed base of

over 1000 systems.

In addition to network operating system functions such as

distributed process and file management, window management

and mail systems, several applications have been built using

Accent's primitives. These include research systems for

distributed signal processing, distributed speech understanding

and distributed transaction processing. Four separate

programming environments have been built .- CommonLisp,

Pascal, C and Ada -- including language support for an object-

oriented remote procedure call facility. A commercial version of

UNIX System V has even been built as an application on top of the

Accent kernel.

1Accent i~ ~ trademark of CarnP.uio-Me/Ion. Univorsily,

13

The successful use of Accent for a wide variety of distributed

applications at CMU and elsewhere has shown that interprocess

communication and virtual memory management can indeed be

combined to form workable primitives for the design and
implementation of a network operating system. In order to judge

the effectiveness of the design and implementation of Accent's
communication abstractions, we measured its performance both

on a series of message-oriented benchmarks and in normal
operation.

Our measurements have demonstrated that these mechanisms

can also be used to deliver single machine performance

comparable to that of more traditional operating system designs.
More than 61 percent of total time during a large-scale system
generation task was delivered to processes in user state. The

performance of kernel-intensive process creation and destruction
opurations i5 comparable to that of Unix4.1bsd on a VAX 11/760,

after normalizing for differences in processor speed. Accent file

reading performance is directly comparable to that of Unix4.1bsd.

Our measurements also confirm our hypothesis that the cost of

copy-on-write memory management is nearly identical to that of

by.reference memory mapping. The overall contribution of COpy.

on-write faulting to total system costa is extremely small. Less

than 0.01 percent of total time during a system generation task
was spent handling copy-on.write faults.

Lazy eval~lation of memory map and backing store operations

proved to be valuable. Of the physical pages for which allocation

of backing store was postponed during the system generation

task, fewer than 1 percent were ultimately recorded in process
maps and backed on disk.

We found that in Accent, unlike more traditional message
systems, the cost of simple message passing was much less
important than the cost of virtual memory operations. These costs

were dramatically apparent in our measurements of the system

generation task and of process creation and destruction.
Ironically, far more care was taken in the Accent implementation

to streamline simple IPC operations than to minimize virtual
memory management costs.

The basic design of the Accent virtual memory system appears

sound. Our measurements show that the costs of manipulating
the Accent process map data structure to allocate, free and copy

mapped regions are fundamentally small and grow slowly with the
size of the affected memory area.

Unfortunately, we found that the cost of actually taking a fault
(,3.4 milliseconds) or remapping a physical page of memory (800
microseconds in our original implementation) can easily dominate

the costs of any process map manil:ftJlations. We have recently

addressed these costs by moving some of the most expensive

operations into microcode. Accent uses the flexibility of the

PERQ's writable control store to overcome its speed deficiencies
in the same way that other systems might use assembly language,

The effects of page size are important. Most system costs

depend more strongly on the number of pages in a region than on

the number of bytes in it. For largely historical reasons, Accent

uses a 512.byte page. This small page size causes significantly

more remapping of physical memory and more faulting operations

than would occur with larger pages and reduces the effectiveness
of address translation caches by reducing the size of the address

range covered.by a single cache entry. It also dramatically
increases the costs of kernel data structures. The small disk page

size often implies a large overhead to transfer a small amount of

data. Experience with Unix systems [1, 7] indicates that the

benefits of a larger page size would probably outweigh the costs
of increased internal fragmentation.

Overall, the Accent implementation has satisfied its original

goals. It provides an existence proof that a communication kernel
with a few basic primitives can provide effective support for a

large body of software. It has also demonstrated that a usable

system can be built with its memory management and interprocess

communication primitives and that these primitives can be
implemented efficiently.

References

1. Babaoglu, O. and W. Joy. Converting a Swap.Based System to
do Paging in an Architecture Lacking Page-Referenced Bits.
In Prec. 8th SOSP, ACM, December, 1961, pp. 78-86.

2. Ball, J.E., E. Burke, I. Gertner, K.A. Lantz and R.F. Rashid.
Perspectives on Message-Based Distributed CompLeting. In
Prec. 1979 Networking Symposium, IEEE, December, 1979,
pp. 46.51.

3. Cheriton, D.R., M.A. Malcolm, L.S. Melen and G,R. Sager.
"Thoth, a Portable Real.Time Operating System". CACM 22, 2
(February 1979), 105.115.

4. Kahn, K.C. et al. iMAX: A Multiprocessor Operating System For
an Object-Based Computer. In Prec. 8th SOSP, ACM,
December, 1981, pp. 127-136.

5. Jones, A.K., R.J. Chansler, I.E. Durham, K. Schwans and
S. Vegdahl. StarOS, a Multiprocessor Operating System for
the Support of Task Forces. In Prec. 7th SOSP, ACM,
December, 1979, pp. 117-129.

6. Lantz, K.A., K.D. Gradischnig, J.A. Feldman and R.F. Rashid.
"Rochester's Intelligent Gateway". Computer 15, 10 (October
1982), 54-68.

7. McKusick, M.K., W.N. Joy, S.L. Leach and R.S. Fabry. "A Fast
File System for UNIX". ACM Transactions on Computer
Systems 2, 3 (August 1984), 181-197.

8. Specter, A.Z. Mu/tiprocessing Architectures for Local
Computer Networks. Ph.D. Thesis, Stanford, 1981.

9. Wulf, W.A., R. Levin and S.P. Harbison. Hydra/C.mmp: An
Experimental Computer System. McGraw.Hill, 1981.

14

