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In this paper we study the problem of designing scheduling strategies when the demand on 
the system is known and waiting time requirements are pre-specified. This important synthesis 
problem has received little attention in the literature, and contrasts with the common analytical 
approach to the study of computer service systems. This latter approach contributes only in- 
directly to the problem of finding satisfactory scheduling rules when the desired (or required) 
response-time performance is specifiable in advance. 

Briefly, the model studied assumes a Poisson system with M (priority) classes of jobs. 
For each class a desired mean waiting time is assumed known in advance. Making use of a well- 
known conservation law, our main result is a constructive decision procedure for deciding the 
existence of a preemptive scheduling rule providing the desired waiting time performance, and if 
one exists, describing one such rule. Our assumptions are discussed and indications are made of 
how they can be weakened for particular cases. 
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I. Introduction 

Broadly speaking, the performance of a computer 
system is determined by the hardware (its speed, 
capacity, etc.), the demand (job types, arrival 
patterns, etc.) and by the scheduling strategy em- 
ployed (the order in which jobs are executed). A 
typical study of system performance can be sum- 
marized as trying to answer the question: Given the 
hardware and demand characteristics and the sched- 
uling strategy, what are the values of certain 
measures of performance? However, while the hard- 
ware and demand characteristics can be regarded as 
fixed in the sense that the system management has 
little or no control over them, the scheduling 
strategy is variable. One can serve requests ac- 
cording to FIFO, LIF0, Round-Robin, Preemptive and 
Non-Preemptive priority, Processor-Sharing and in- 
numerably many other scheduling rules. It is im- 
portant, therefore, to be able to answer the ques- 
tion: Given the hardware and demand characteris- 
tics and the values of certain measures of perfor- 
mance, what scheduling strategy should be employed 
in order to achieve these values? 

Posed like this, the problem has received 
little attention. A special case in which the 
choice of strategy was restricted to a family of 
foreground-background disciplines was studied by 
Michel and Coffman [i]. 

This paper deals with systems in which the de- 
mand contains jobs of several different types, or 

classes (all arriving in Poisson streams and having 
exponentially distributed lengths) and performance 
is measurec by the average response times for the 
various job types. The choice of scheduling strate- 
gy is, for all practical purposes, unrestricted. 
Our main result is a theorem giving a necessary and 
sufficient condition for the existence of a sched- 
ullng strategy which satisfies a given performance 
requirement. It turns out that there is a "univer- 
sal' family of scheduling strategies such that if a 
performance requirement can be satisfied at all, it 
can be satisfied by a strategy from this family. 
We shall give an algorithm which, given a perfor- 
mance requirement, will either find a scheduling 
strategy to satisfy it, or will determine that no 
such strategy exists. Furthermore, the strategies 
so found are fairly simple and easy to implement. 

II. Description of the Model 

We think of the computer as a single server 
giving service to jobs of M different classes. 
Jobs of class i arrive in a Poisson stream with 
rate %. and have execution times distributed ex- 

l 
ponentially with parameter ~i (i=l,2,...,M). The 

traffic intensity for class i is Oi= %i/Ni and the 

total traffic intensity is p= 01+... +0 M. Let the 

steady-state expected response time (time spent in 
the system) for jobs of class i be W. (i=1,2, .... M). 

l 
The system performance will be measured by the vec- 

187 



tor W= 4Wi,W2,...,W M) whose value depends on the 

scheduling strategy. The problem, as stated in the 
introduction, is: 

Given a performance requirement W and the 

parameters %i and U i (i=l,2,...,M), determine 

whether W can be realized and if so, find a 

9chedulin B strategy that realizes it. 

We shall narrow slightly the scope of this 
problem by excluding from consideration (a), stra- 
tegies which allow the server to he idle while 
there are jobs in the system and (b), strategies 
which make use of, and influence, the remaining 
processing time of jobs in the system. (For example, 
the Shortest-Remaining-Processing-Time discipline 
will not be considered as a candidate for realizing 
W). The reasons for (a) are obvious; those for 4b) 
will become apparent shortly. We can say at this 
point, however, that a real-life strategy is very 
unlikely to be of the type mentioned in (b) because 
job execution times are not usually known in ad- 
vance. 

For any strategy which is not of type (a) or 
45), the following relation holds : 

M M 
V i ~ (~ I~?) (1) i=10iWi = l-p where V = ~ i=l z z " 

This is known as Kleinrock's conservation law. 
Its proof is not difficult and we shall outline it 
here for completeness (see [2]). 

When jobs arrive in Poisson streams, the ex- 
pected load on the system (the sum of the remaining 
processing times of all jobs in the system) at a 
random point of time in the steady-state is a con- 
stant which does not depend on the scheduling 
strategy, provided that strategies of type (a) are 
not allowed. The value of that constant must be 
V/(i-0) as can be verified from the FIFO strategy. 
On the other hand, if the strategy is not of type 
(b), the expected remaining processing time of any 
class i job in the system is i/U i regardless of 

how much service it has received already (the 
memoryless property of the exponential distribu- 
tion). The average number of class i jobs in the 
system is, according to Little's theorem, %.W.. 

1 1 

Hence the expected load on the system is equal to 

01WI+ 02W 2 +... + 0MW M. Comparing the two ex- 

pressions gives (i). 

Hereafter we shall talk simply of 'scheduling 
strategies' meaning strategies not of type (a) or 
(b). Performance vectors whose elements satisfy 
41) will be called 'feasible'. Being feasible is 
clearly a necessary but not a sufficient condition 
for a performance vector to be achievable by some 
scheduling strategy. 

Note that the conservation law implies , for 
instance, that a scheduling strategy which realizes 
M-I of the elements of a feasible performance vec- 
tor must also realize the Mth element. If M=i 
4just one job class) then all scheduling strategies 
yield the same average response time. 

III. Results 

Our aim now is twofold: first, to find a 
necessary and sufficient condition for a performance 
vector to be achievable by some scheduling strategy 
and second, to devise an effective algorithm which 
will check the condition and determine the strategy. 
Before proceeding with the general case, however, we 
shall illustrate our ideas on the special case when 
there are only two job classes. 

Special case~ M=2. Consider the average response 
time of class 1 jobs, Wi, in the steady-state. The 
lowest value that W 1 can possibly take, call it 
wmin 1 , is achieved when class 1 jobs do not suffer 

any delays due to the presence in the system of 
class 2 jobs, i.e., when class 1 jobs have preemp- 
tive priority over class 2 jobs. If they do have 
preemptive priority, the scheduling rule for class 
i jobs among themselves does not matter, so one 
might as well choose FIFO. Thus the classic pre- 
emptive priority discipline results in W I reaching 

its lowest possible value, --T in. Because of the 

conservation law, it also results in W 2 reaching 

highest possible value, ~2 ax. its 

Similarly, the discipline which gives class 2 
jobs preemptive priority over class i jobs (and 
FIFO among themselves) results in W 2 reaching its 

lowest possible value, ~2 in, and W I reaching its 

highest possible value, ~i ax. 

If we think of performance vectors as points 
on the W I × W 2 plane, the feasible vectors lie on 

. min .max. 
a straight line through the two points (w I ,w 2 ) 

7 -- ~2 in)" Denote these points by P(i,2) and (W x, and 

P(2,1) respectively ('1,2' and '2,1' refer to 
the priority ordering). Let H be the line segment 
between P(i,2) and P(2,1): WeH if, and only if, 
it can be expressed as 

W = eP(l,2) + (i-~)P(2,1); 0~I. (2) 

In order that a performance vector W be 
realizable by some scheduling strategy it is neces- 
sary and sufficient that W e H. The necessity of 
the condition is evident: --if W# H then either 
is not feasible or it is feasible but at least one 
of the inequalities 

wm in < wm ax 
i -Wi-< i ; i=1,2 

is violated. In neither case can there be a strate- 
gy realizing W. To show the sufficiency, consider 
the following family of schedulingstrategies. 

Divide time into consecutive intervals labeled 
I 1 and 12 alternately and let class 1 jobs have 

preemptive priority during If-intervals , while class 

2 jobs are given preemptive priority during I2-1n- 

tervals. Suppose that the average lengths L 1 and 

L 2 of the I 1 and I2-intervals are allowed to in- 

crease indefinitely, keeping their ratio constant. 
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Then, in the long run, the system will be able to 
reach steady-state within each interval, so that the 
value of _W will be P(I,2) during ll-intervals 

and P(2,1) during 12-intervals. Hence the perfor- 

mance vector of this 'mixed' strategy is given by 
W=eP(i,2)+ (l-e)P(2,1), where c~ is the proportion 
of time occupied by ll-lntervals: e=Li/(Li+L2 ). 

Clearly, every W e H can be realized by a strategy 
of this type. 

Thus, given a performance vector _W, we at- 
tempt to solve (2) with respect to ~. If there is 
no solution, or if the solution lies outside the 
range 0 _<c~ _< i, W is impossible to realize. Other- 
wise the obtained value of ~ can be used to con- 
struct a mixed strategy realizing -W. 

It should be pointed out that the above sched- 
uling strategies, with their ever increasing swings 
from one discipline to another, are not very suit- 
able for practical applications. In practice one 
would choose some finite average lengths for the 
I I and 12-intervals. For every L I it is possible 

to find L 2 so as to realize any _WE H. Solving 

(2) and using L 2 = (i-~)Li/c~ gives a good approxi- 

matlon if L 1 is large compared to the average 

interarrlval and execution times. An exact solution 
is much more difficult to obtain. The model with 
finite values for L I and L 2 (assuming that L I 

and L 2 are distributed exponentially) is analyzed 

in [4]. 

At the other extreme, when L 1 and L 2 are 

allowed to shrink to zero (keeping their ratio con- 
stant), we have a family of scheduling strategies 
where the processor is shared between the top 
class 1 job and the top class 2 job in the system 
in a given proportion. Again every E E H can be 
realized by a strategy from the family. 

In choosing L 1 and L 2 one should consider 

the trade-off between switching overhead (when 
they are small) and high variance of -W (when they 
are large). This is a difficult problem and we 
have no ready solution for it. 

General case: M > 2. Here too, the preemptive 
priority disciplines play a special role. There 
are M! such disciplines, one for each assignment 
of priorities to the M job classes. Denote by 
P(i, 2,... ,M),... ,P(M,M-i,... ,i) the performance 
vectors of these strategies (listing the priority 
permutations in lexicographical order, say). 

The feasible performance vectors lie on an M- 
dimensional hyperplane which passes through the 
points P(i,2 .... ,M) .... ,P(M,M-i,... ,I). Let H be 
the convex hull defined by these points: WgH if, 
and only if, there exist M points Pi'P2 '''''PM 

from the set P(I,2, .... M) .... ,P(M,M-I,...,I) and 
M numbers el'C~2'" " " '~M satisfying c~ i _> 0 

(i=i,2 .... ,M) and el+C~2 + ... +~M=i, such that 

M 
w = Z ~.P.. (3) 
-- i=lll 

Denote by H* the set of all -W which are the 
performance vectors of scheduling strategies. We 
have the following result. 

Theorem H* E H. In other words, a performance vector 
W is achievable by some scheduling strategy if and 
only if WEH. 

Proof: We shall demonstrate that (i) H* is a con- 
vex set, (2) the performance vectors of all preemp- 
tive priority disciplines are extreme polnts in H 
and (3) H* has no other extreme points. Since 
every convex'set is the convex hull of its extreme 
points, (I), (2) and (3) imply that H* is the con- 
vex hull defined by P(i,2 .... ,M),...,P(M,M-i, .... i); 
hence H* and H are the same set. 

Claim (i). We have to show that if -Wi e H* and 

W2 e H* then a-wl + (i-~)W2 e H* for all values of 

satisfying 0 ~ e s i. 

Proof: Since W1 and -W2 belong to H*, there 

exist strategies S 1 and S 2 which realize them. 

Then, using the procedure described in the last 
section, we can construct a mixed strategy S (con- 
sisting of operating S I and S 2 alternately) 

whose performance vector is ~-Wi + (l-e)-w2 , where 

is the proportion of time that S I is operated. 

Hence eW I+ (i-~)W 2 eH* for all 0~s i. [] 

Claim (2). This property says that none of the 
points P(i,2,...,M),...,P(M,M-i,...,i) can be ex- 
pressed in the form ~_WI+ (l-e)E2 , where 0 <~< I, 

~leH*' -W2eH* and Wl~-W2. 

Proof: Suppose that P(i,2, .... M), for example 
(the argument applies equally well to all other 
points), can be expressed in the above form. Let 
S 1 and S 2 be the strategies which realize ~l 

and -W2" There exists a mixed strategy S which 

uses S 1 and S 2 alternately and whose performance 

vector is ~Ei + (i-~)-W2, i.e., exactly the same as 

P(i,2,...,M). S, being equivalent to the preemptive 
priority discipline which gives class 1 jobs top 
priority, produces the lowest average response time 
for class 1 jobs that they can possibly have. This 
means that both S 1 and S 2 give class 1 jobs this 

lowest possible average response time, i.e., they 
both give class 1 jobs top preemptive priority. 
Given that this is the case, S gives class 2 jobs 
the lowest average response time they can possibly 
have, which means that both S 1 and S 2 give class 

2 jobs second top preemptive priority. Repeating 
this argument M-2 more times we see that 

-Wi =E2 = P(i,2 ..... M). 

Claim (3). Here we have to prove that any point W 
which is not one of P(i,2,...,M),...,P(M,M-i,...,T) 
can be expressed in the form W= aW l+ (i-~)-W 2 where 

0~i, -WiEH*, -W2EH * and -Wi#-W2 • 

Proof: Let S he the strategy which realizes 
W= (Wi,W 2 ..... WM). Since S is not one of the 

preemptive priority disciplines, there is at least 
one pair of job classes, say class 1 and class 2, 
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such that class 1 jobs may be present in the system 
when a class 2 job is being served and class 2 jobs 
may be present in the system when a class 1 job is 
being served. Construct a scheduling strategy S 1 

which follows the actions of S exactly, except 
for the instances of time when S would have served 
a class 1 or a class 2 job. At those instances S 1 

works according to the following algorithm: if S 
would have served a class 1 job and there are class 
2 Jobs in the system, serve a class 2 job instead; 
if S would have served a class 2 job and there is 
not one in the system then serve one of the class 1 
jobs that S would have served earlier; otherwise 
do as S would have done. It is easy to see that 

devotes precisely the same periods of time to 
~e service of class i and class 2 jobs as S; only 
within those periods S I gives class 2 jobs pre- 
emptive priority over cIass 1 jobs, whereas S does 
not. Since the actions of S 1 with respect to jobs 
of classes 3,4,...,M are the same as those of S 
and occur at exactly the same moments of time, the 
average response times for classes 3,4,...,M are 
the same under both strategies. However, class 1 
jobs wait more, on the average, under S 1 than 
under S, while class 2 jobs wait less. Thus if 
W = (W (1),W (i), ,W (i)) is the performance vec- 
--i 1 2 "'" M 1 1 
tor of Si, we have Wi(1) >W I, W2( ) <W 2, Wi( ) =W i 

(i=3,4 ..... M). 

In a similar fashion, a strategy S^ with 
Z 

(2) (2) (2) 
performance vector W 9= (W I ,W 9 ,...,W M ) can 

be constructed, such--~hat -Wi(2)~ W I, W2(2Y > W 2, 

W. (2) =W. (i=3,4 ..... M). 
i ! 

Let S' be a mixed strategy consisting of 
operating $4 and S 2 alternately for long in- 

1 tervals of tlme. The performance vector 
W' = (Wi,W~ ..... W~) of S' is given by 

~' =~i + (I-~)~2 where ~ is the proportion of 

time that S 1 is operated. Clearly Wit = Wi 

(i=3,4 .... ,M) for all values of a. Furthermore, 
W~<W 1 when ~=0 and W i>W I when ~= I; 

' =W 1 for some 0<~<i. For that therefore W 1 

' -W 2 because of value of ~ we must have also W 2- 

the conservation law. W has now been expressed 
in the desired form, wit--h ~i e H*, ~2 g H* and 

~1 #~2" [] 

This completes the proof of the theorem. We 
have established that every achievable performance 
vector is of the type (3) and can therefore be 
realized by a mixed scheduling strategy consisting 
of operating in rotation the M preemptive priority 
disciplines whose performance vectors appear in the 
right-hand side of (3). The problem now is, given 
the performance vector, how do we find these disci- 
plines? Tyring all combinations of M out of the 
M! points P(i,2, .... M) .... ,P(M,M-i .... ,i) in order 
to discover whether one of these combinations satis- 
fies (3) is obviously undesirable for arbitrary 
m>3. 

Let us rename the performance vectors of the 
preemptive priority disciplines Pi,P2,...,PM! and 

reformulate the problem as follows: Find 

negative numbers Gl,a2,...,C~M!, all but 

which are equal to zero, such that 

M! M! 

Z c~. = i and Z a.P. = W 
i= I i i=l 1 i -- 

M! non- 
M of 

We have here M+i linear constraints, M of which 
are independent (the vectors P. and W have only 

M-i independent elements because of the conserva- 
tion law), to which we wish to find a non-negative 
solution such that at most M of the variables are 
non-zero. This is the well-known 'initial basis' 
problem in linear programming. It can be solved by 
introducing M artificial variables B 0 and 

~= (Bi,B2, .... BM_ I) and solving the linear program 

M-i 

min (B 0 + iZiBi).= (4) 

subject to the constraints 

M! M! 

B 0 + I a. = i and B + Z ~iPi=W 
i= 1 i -- i= 1 -- 

(using only the first M-i elements of P. and 
i 

W_). An initial basis for (4) is obtained by setting 
a.=0 (i=l,2,...,M!), B0=i, B=W. If in the solu- 
i 

tion to (4) we have B 0 = 0 and _B = 0 (which means 

that M of the c~. are non-zero) then an ex- 
1 

pression of W in the form (3) has been found. 
Otherwise we ~onclude • that _W~H and therefore it 
cannot be realized at all. The procedure for sol- 
ving (4) should be slightly different from the nor- 
mal simplex method because of the 'very long and 
narrow' shape of the constraint matrix. Instead of 
keeping the whole matrix in storage, one would pre- 
fer to generate its columns one at the time and, 
one would hope to find a solution without needing 
all M! + 1 of them. For example, when trying to 
decide which column should be replaced in the basis, 
one can stop searching as soon as the first column 
which reduces the object function has been found, 
rather than look for the column which yields the 
biggest reduction. If such a policy is adopted, 
the order in which the priority disciplines are 
listed becomes important. It seems a good idea to 
put P(i,2,.,.,M), P(2,3,...,M,I),...,P(M,i,2,..., 
M-i) at the beginning of the list because these 
performance vectors correspond to strategies where 
every job class is given every priority, and it is 
not unlikely that they a]one will provide a solu- 
tion. 

The remarks made at the end of the previous 
section apply here too, Having determined the M 
priority disciplines from which the mixed strategy 
realizing W is to be constructed, these will in 
practice be operated in rotation for finite inter- 
vals of time rather than infinitely long ones. A 
good approximation will be obtained if the lengths 
of the intervals (calculated from the values of 
~i) are large compared with the interarrival and 

execution times. 
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Priority Processor-Sharing strategies (Klein- 
rock [3]) giving jobs of different classes different 
fractions of the processor can also be used to 
realize any W £ H (this is because the preemptive 
priority disciplines are limiting cases of these 
strategies). Unfortunately there are no reliable 
analytical results for their performance vectors. 

IV. Discussion 

We have shown that a performance requirement 
stated in terms of the average response times of M 
job classes can be satisfied (if it can be satis- 
fied at all) by a mixed scheduling strategy in- 
volving not more than M preemptive priority disci- 
plines. These mixed strategies are conceptually 
very simple and would pose no implementation prob- 
lems. The difficulty lies in deciding for how long 
to operate each preemptive priority discipline 
within the mix so as (a), to avoid excessive switch- 
ing overheads and large variations in the response 
times and (b), to achieve good approximation to the 
required performance. Bearing in mind the complexi- 
ty of the analytical problem, it seems that the 
answer in a practical situation would be best ob- 
tained by simulation. 

Finally, a few words about the assumptions of 
the model. The most restrictive of these were the 
Poisson input and the exponential service times as- 
sumptions. Both were needed for the sole purpose 
of ensuring the validity of Kleinrock's conservation 
law. The results presented here will apply to any 
situation where some general conservation law of 
the form 

f(Wi,W 2 ..... W M) = const (i') 

is in force. In particular, they apply in the case 
when inputs are Poisson, service times have general 
distributions and all jobs are served to completion: 
(i) holds in this case, with a different value for 
V. Thus if we are prepared to disallow strategies 
which interrupt the execution of jobs, we can drop 
the exponential service times restriction. The 
role of the preemptive priority disciplines will 
be played by the non-preemptive priority disci- 
plines. 
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