
A Mechanism for Information Control in Parallel Systems

Richard P. Reitman
Syracuse University

Abstract.

Denning and Denning have shown how the
information security of sequential programs can be
certified by a compile-time mechanism [3]. This
paper extends their work by presenting a mechanism
for certifying parallel programs. The mechanism
is shown to be consistent with an axiomatic
description of information transmission.
Kevwords and Phrases: information security,
information control, concurrency, synchronization,
axiomatic logic, consistency.

C R categories: 4.32, 4.35, 5.21, 5.24.

1.0 INTRODUCTION

A secure computer system must protect the
information it contains. In particular, the
transmission of sensitive information must be
controlled. In order to develop practical
information security mechanisms, assumptions must
be made concerning the type of information
transmission that is observable within the system
[6]. A common assumption is based on the notion
that a programming language defines the set of
possible program actions; only those flows of
information that can be specified in the
programming language are considered [3,8,10].
Accordingly, other flows, such as those that arise
from the occurrence of page faults, disk head
movement, and program execution time, are
considered covert [7], and are disregarded.

Since a program's text specifies all flows
that can result from program execution,
information security can be assured by prohibiting
the execution of any program that specifies an
undesirable flow of information. A program is
said to be certified if it has been shown that the
program specifies only acceptable flows of
information.

This research was supported in part by NSF grant
MCS 79-05003.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACM 0-89791-009-5/79/1200/0055 $00.75

A deductive flow logic that can be used for
program certification is presented in [I]. The
logic is used to produce flow proofs that capture
the flows that arise in both sequential and
parallel programs. No practical mechanism based
on this theoretical method has been developed to
date.

Practical mechanisms have been obtained for
systems in which the security classifications of
objects are static. One of the more general
certification mechanisms for static systems has
been proposed by Denning and Denning [3]. This
mechanism is applicable only to sequential
programs that are guaranteed to terminate for all
inputs.

The paper is organized as follows. Section
two presents the basic concepts necessary to
develop information control mechanisms. Section
three, which outlines the flow logic, reenforces
some of the basic concepts and lays the
theoretical foundation needed for section five.
Section four discusses the Dennings' mechanism and
presents the main result of the paper, the
extension of this mechanism to parallel programs.
In section five the relationship between flow
proofs and the extended mechanism is - shown.
Section six presents conclusions and areas for
future research.

This paper is a synthesis of the work of [3]
and [I]. In particular, the mechanism of [3] is
extended to parallel programs using the ideas
developed in [1]. The extension to parallel
programs is an important one, since it is in
parallel systems that issues of security are of
greatest concern. The correctness of the new
mechanism, as well as its relative strength, is
demonstrated by proving that a program can be
certified using the new mechanism if and only if a
flow proof of a restricted form can be developed
for the program.

2.0 BASIC CONCEPTS

In this section, the basic concepts needed
for the construction of security mechanisms are
presented. The discussion of classification
schemes closely follows that of [2]. The
transmission of information through program
execution has been investigated by many
researchers [1,3,4,6]. The notion of an
information state and of certifying policies in
terms of this state is described in [10].

55

A simple programming language is used
throughout the remainder of the paper to specify
the set of legal programs. The statements in this
language are:

Assignment
Alternation
Iteration
Composition
Concurrency
Synchronization

x := e

i__~f e then $1 else $2
while e d__QoS
begin $1; ...; Sn eBd
cobe~in $1 II ... II Sn coend
wait(sem)
signal(sem)

By definition, the wait and signal operations
on semaphores are indivisable. In addition, each
assignment and expression must be executed or
evaluated as an indivisable action. As discussed
in [9], this requirement may be eliminated if
every expression and assignment statement makes at
most one reference to a variable that can be
changed in another process. In this case, the
only requirements are that each wait, signal, and
memory reference be an indivisable action.

2.1 Classification Of Information

Program variables contain information. To
measure the relative sensitivity of this
information a security classification scheme is
used. The scheme partitions information into a
finite set of equivalence classes and imposes a
partial ordering on these classes.

Definition !.
Given a finite set C and a complete partial

order ~ on C, a security classification scheme is
the complete lattice (C,~). High and low are used
to denote the maximum and minimum elements of C;
@ and @ are used to denote the least upper bound
and greatest lower bound operators respectively.

Every program variable and expression is
associated-~with an information security class.
The association between variables and security
classes is defined by an information state; this
state varies dynamically during program execution.

Definition 2.
Given a security classification scheme (C,~)

and a set of program variables, an information
state is a total mapping from the program
variables to elements of C. The ~lass of a
program variable v, denoted X, is ~ne element of C
associated with v by the information state. The
notion of class is extended to expressions by
specifying that the class of a constant is low and
that the class of el OD e2 is el ~ e2, where op is
any arithmetic or Boolean operator.

2.2 Flows Of Information

The assignment of an expression to a variable
changes the information that is stored in the
variable. The new information contained in the
variable has two sources. First, there is a
direct flow of information from the expression to
the variable. Second, if the assignment is

conditionally executed an indirect flow of
information occurs.

Indirect flows are either local or global in

nature. An indirect flow is said to be local if
it is confined to the body of the statment in
which the flow is specified. For example, the
statement

i ff x : 0 then y :: 0 else y :: I

transmits information concerning x to the variable
y, but not to other variables that are modified
elsewhere in the program. This is true because
the Boolean condition of the i_ff only affects the
execution of the associated then and else parts.

When the effect of an indirect flow is not
limited to the body of the statement in which it
is generated, the flow is called global. Global
flows result from loops and synchronization. For
example, the program fragment

while x : 0 d__oo y :: O;
Z := I

transmits information about x to both y and z.
Note that information about x can be inferred by
examining z since the assignment z := I is
executed if and only if x is not equal to zero.

Global flows of information are also produced
by parallel programming language constructs. In
the simple language of section two, the wait
statement for semaphores can produce a global
flow. Since the wait statement allows a process
to conditionally block, every statement after the
wait is executed if and only if a signal was
received. For example, the statement

cobegin
i ff x = 0 then signal(sem)

b~gin wait(sem); y := 0 end
coend

transmits information from x to y, since y is set
to zero only if x is zero. Although it is
possible for the above program to deadlock (it
will if x is not equal to zero), global flows in
parallel programs arise not from the possibility
of deadlock, but from the synchronization of
independent computations. There are programs that
cannot deadlock yet transmit information through
process synchronization [I].

2.3 Policies And Certification

Information flows between variables as a
result of program execution. An information
policy is used to indicate which of these flows
are acceptable. In particular, the information
policy specifies both the set of acceptable
information states and the places in the program
where this requirement must be satisfied. A
program is said to be certified with respect to a
policy if and only if it has been shown that every
state produced by the program satisfies the
policy.

56

3.0 THE FLOW LOGIC

In [1,10] a deductive logic for reasoning
about information flow is introduced. The logic
is similar to ones for functional correctness
[5,9], except that it deals with classifications
rather than with values. Assertions denote
restrictions on the information state; proof
rules specify the effect of program execution upon
this state. The logical statement {P} S {Q}
indicates that if the initial information state
satisfies assertion P and statement S terminates,
then the final information state satisfies
assertion Q. By applying the axioms and rules of
the logic, flow proofs of particular logical
statements can be produced.

Policy requirements are stated as assertions
in the logic. A program is certified by showing
that the policy is true at the appropriate places
in the flow proof of the program.

3.1 Notation

Assertions in the flow logic may contain the
certification variables local and ~lobal; these
variables correspond to the two types of indirect
information flow. The variable local captures
indirect flows within a statement; local
increases when a conditional statement is entered
and decreases when it is exited. The variable
global captures indirect flows between statements
that arise from sequencing. Intuitively, it
records the information that can be gained by
inferring the progress made in executing a
composition statement. Thus, global increases
when a conditionally terminating statement is
encountered and never decreases.

The notation {V,L,G} partitions a flow
assertion into three parts. V is an assertion
about the information state that does not refer to
either local or global. L and G are assertions of
the form local < 1 and global ~ g respectively,
where 1 and g refer to neither local nor global.

Syntactic substitution and logical derivation
are also needed in the flow logic. P[x <- e]
denotes the assertion P with every occurrence of
the symbol x syntactically replaced by e. P I- Q
indicates that using lattice theory and
propositional logic Q can be derived from P.
Rules of inference in the flow logic are presented
as

A

B

where A is the hypothesis and B is the conclusion.

3.2 Proof Rules

This section presents the axioms and proof
rules of the flow logic and relates them to the
more operational discussion of information flow
presented in section two. The axioms and rules
are summarized in Figure I. A more detailed

exposition of the logic can be found in [1].

The flow axiom for the assignment statement
indicates that the assigned variable receives
information from both the expression and
certification variables. No new indirect flows
are produced.

Alternation statements generate a local flow
of information from the Boolean expression to the
body of the then and else parts. This flow is
captured in the flow logic by the certification
variable loc~l. Accordingly, any proof of the
alternation statement must reflect that within the
then and else parts local has been increased by
the class of the booloean e. The requirement
V,L,G I- L'[local <- local @ g] does this.

There are three aspects of iteration
statements that affect information flow. First,
since the body S is repeatedly executed, the
assertion {V,L',G} must be invariant over the
execution of S. Second, the proof of S must take
account of the local flow from the Boolean
expression e. This is done in a manner analogous
to that used for alternation. Third, there is a
global flow from e to any statement whose
execution is contingent on the termination of the
loop. This flow is captured by the requirement
V,L,G I- G'[global <- global ~ local ~ e]. Note
that local is included since the loop could be
nested within an alternation statement.

The rules for composition and consequence are
identical to those found in functional
correctness. No additional flows need be captured
by these rules. Note that the rule for
composition captures the interdependence of
program statements. In particular, the rule
indicates that the flow from one statement is
transmitted to the next.

The flow rule for concurrent execution is
based on the corresponding rule for functional
correctness [9]; a proof of a cobegin statement
can be constructed from the proofs of its
components only if these proofs are
interference-free. The definition of
non-interfering flow proofs differs slightly from
its correctness counterpart since indirect flows
in one process do not affect indirect flows in
another process.

A semaphore operation is similar to an
assignment that increments or decrements a program
variable; the semaphore receives additional
information due to local and global flows. In
addition, a global flow of information due to
conditional delay is produced by the wait
statement. Accordingly, the axioms for wait and
signal are very similar to the axiom for
assignment except that the execution of a wait may
increase global.

57

Assignment

Alternation

Iteration

Composition

Consequence

Concurrent
Execution

Semaphores

Figure I
The Information Flow Logic

{P[~ <- ~@ local@ ~lobal]} x :: e {P}

[V,L',G} $I {V',L',G'}, {V,L',G} $2 {V',L',G'},
V,L,G I- L'[local <- local(~g]
.

{V,L,G} if e then $I else $2 {V',L,G'}

{V,L',G} S {V,L',G},
V,L,G ~- L'[local <- local ~],
V,L,G Z- G'[global <- global • local 04]
.

{V,L,G} while e do S {V,L,G'}

{P0} $I (PI] {Pn-1} Sn {Pn}
.

{PO} begin $I; ...; Sn end {Pn}

{P'} S {Q'}, P Z-P', O I-Q'
.

{P} S {Q}

{Vi,L,G} Si {Vi',L,G'}, I < i < n are interference-free

{VI,...,Vn,L,G] cobe~in $1 II ... II Sn coend {VI',...,Vn',L,G'}

{P[sem <- sem • locala ~lobal]} signal(sem) {P}

{P[sem <- sem~localO~lobal, wait(sem) {F}
global <- se___~m~local~global]}

4.0 A MECHANISM FOR STATIC SYSTEMS

This section summarizes the information
control mechanism of Denning and Denning [3] and
describes an extension to this mechanism. The
Concurrent Flow Mechanism (CFM) captures flows
that arise from process synchronization and
conditional non-termlnatlon. An example in which
CFM is used to certify a parallel program is also
presented.

4.1 The Dennings' Mechanism

Denning and Denning [3] have developed a
mechanism for certifying programs when the
classification of variables is constant. In this
mechanism each variable is statically bound to an
acceptable security classification. No program
that specifies a violation of this binding is
certified.

Definition ~.
Given a security classification (C,!) and a

program statement S, a static binding sbind for S
is a total mapping from the variables, constants,
and expressions in S to security classes in C.
The static binding of a variable v is denoted by
sbind(v), the binding of a constant is low, and
the binding of el OD e2 is sbind(el) ~ sbind(e2), m

The mechanism uses simple checks that are
performed during compilation to ensure security.
Local indirect flows are captured as follows. For
each program statement S, mod(S) is the greatest
lower bound of all the variables modified in S.
If e is an expression whose value controls the
execution of S, S is certified only if
sbind(e) ~ mod(S). This ensures that flows from e
to variables modified by S are permissable.

Global flows are disregarded by the Dennings'
mechanism. This shortcoming is caused by the view
that the relationships among statements are
completely captured by nesting. The proposed
extension alleviates this problem by considering
the relationships due to statement sequencing.

*The Dennings' original notation has been changed
to distinguish between static bindings and current
classifications.

58

4.2 The Concurrent Flow Mechanism (CFM)

The Denning mechanism can be extended to
capture flows due to conditional termination and
synchronization. First, the classification scheme
is extended to include a new smallest element,
nil. Next, the function flow(S) is defined.
Flow(S) is nil if no global flow is produced by S;
otherwise flow(S) is the least upper bound of the
global flows produced by S. Finally, the function

• cert(S) is defined to indicate whether a program S
violates a given static binding. These concepts
are formally defined as follows:

Definition ~.

Given a classification scheme (C',!'), the
extended classification scheme (C,!) associated
with (C',!') is defined by:

C = C' U {nil}, where nil is not in C', and
x ! y if and only if either

a. x,y in C' and x !' y, or
b. x,y in C and x = nil.

Definition ~.
Let (C,!) be an extended classification

scheme, S be a program statement, and sbind be a
static binding for S, then

a. mod(S) is the greatest lower bound of the
bindings of variables potentially modified
by S,

b. flow(S) is the least upper bound of the
global flows produced by S, and

c. cert(S) is true if and only if there is no
flow of information specified by S that
violates sbind.

S is certified with respect to sbind if and only
if eert(S) is true. The appropriate mod, flow,
and cert for the simple language of section two
are given in Figure 2.

Cert(S) is true only if every component of S
is certified. Additional checks are needed for
some statements. The checks for assignment and
alternation are the same as those originally

proposed in [3]. The new check for iteration
ensures that no statement in a body of a loop can
cause an illegal global flow to a variable
modified elsewhere in the loop. This check
catches the flow from sem to y in the statement

Figure 2
The Concurrent Flow Mechanism

Statement S

x :: e

Certification Functions

mod(S) = sbind(x)
flow(S) = nil
eert(S) = sbind(e) ~ sbind(x)

i_~f e mod(S) =
then $I flow(S) =
else $2

cert(S) :

while e mod(S) :
do $I flow(S) :

cert(S) :

begin mod(S) :
$1; ...; Sn flow(S) =
en__~d cert(S) =

cobegin mod(S) :
$I II ... II Sn flow(S) =
coend cert(S) =

wait(sem)

signal(sem)

mod(Sl)~mod(S2)
i__~f flow(St) = flow(S2) = nil

then nil
else flow(S1) ~ flow(S2) ~sbind(e)

cert(S1) and cert(S2) and sbind(e) ~ mod(S)

mod(S1)
flow(St) ~ sbind(e)
eert(S1) and flow(S) ~ mod(S)

mod(S1) ~... ~ mod(Sn)
flow(S1) ~ ... ~ flow(Sn)
eert(Si) and eert(Sj) and flow(Sj) ~ mod(Si) (1<_j<i~n)

mod(S1) ~...~ mod(Sn)
flow(S1) ~... ~flow(Sn)
cert(S1) and ... and cert(Sn)

mod(S) = sbind(sem)
flow(S) = sbind(sem)
cert(S) : true

mod(S) = sbind(sem)
flow(S) = nil
cert(S) = true

59

while true d_~o

be~in
y :: y + I;
wait(sem)

end

Note that y is incremented more than once only if
the wait statement completes. The new check
ensures that sbind(sem) ~ sbind(y).

The new security check for composition
ensures that global flows are acceptable. Using
this check the composition of two statements can
be certified only if the global flow of the first
is no more sensitive than any variable modified by
the second. In particular, the statement

begin wait(sem); y := I end

can be certified only if sbind(sem) ~ sbind(y).
Note that parallel composition, unlike sequential
composition, does not require an additional
certification check since each component statement
is executed independently (concurrently executed
statements interact through global variables and
synchronization primitives).

4.3 An Example

This section examines a program that
transmits information through process
synchronization. Although the Dennings' mechanism
cannot be applied, CFM can be used to certify the
program. The example parallel program is
presented in Figure 3.

The program transmits information from x to y
by ordering process execution. The semaphore
modify controls whether m is set to one before or
after the assignment y := m. The semaphores
modified, read and done ensure that only one
process is active at any time. The program has
the same effect on x and y as the statement:

begin
m := O;
i__ff X : 0

then begin m := I; y := m end
else begin y := m; m := 1 end

end

Sequential execution has been enforced for
simplicity and to guarantee the flow of
information from x to y. If the extra semaphores
were eliminated parallel execution could occur but
the flow from x to y would depend on the relative
execution speed of the processes. Although in
this case the flow would not always occur, it
could occur and would be considered by CFM.

Note that the program of Figure 3 cannot
deadlock and that the final values of the
semaphores are the same as their initial values.
Therefore, by placing each process in a loop and
testing a different bit of x on each iteration an
arbitrary amount of information could be
transmitted.

Figure 3

Information Flow Using Synchronization

var x, y, m : integer;
modify, modified,
read, done : semaphore initially(O);

cobegin
begin

m := 0;

i__[fx ~ 0
then be~in

signal(modify);
wait(modified)

end;

signal(read);
wait(done);

i__[fx : 0
then begin

signal(modify);
wait(modified)

end;

wait(done)
end

begin
wait(modify);
m := I;
signal(modified)

end

begin
wait(read);

y := m;
signal(done)

end
coend

Some of the conditions necessary for CFM
certification of this program are as follows.
First, the if statement is certified only if
sbind(x) ~ sbind(modify). Second, certification
of the second process is possible only if
sbind(modify) ~ sbind(m), since the assignment to
m occurs after the statement wait(modified).
Third, certification of y := m means that
sbind(m) ~ sbind(y). These conditons imply
sbind(x) ~ sbind(y). Note that eliminating the
semaphores modified, read, and done would not
eliminate this requirement.

5.0 THE RELATIONSHIP OF THE TWO APPROACHES

This section investigates the relationship
between the information flow logic and the
Concurrent Flow Mechanism. It is shown that a
program can be certified using CFM if and only if
a flow proof of a restricted form exists. This
means that CFM is consistent with the axiomatic
description of information transmission. It also
indicates that there are programs that can be
certified using the flow logic that cannot be
certified using CFM.

60

5.1 Consistency

In order to compare the two approaches, a
correspondence between flow assertions and static
bindings is needed. A natural correspondence is
to associate with a static binding the flow
assertion that prohibits the current
classification of a variable from exceeding its
static binding.

Definition 6.
Given a security classification scheme (C,~)

and a static binding sbind, the policy assertion
corresponding to sbind is the conjunction of all
terms of the form v < sbind(v), where v is a
variable.

CFM is consistent with the flow logic only if
for every program certified with respect to a
static binding sbind there exists a flow proof
that shows that the policy assertion corresponding
to sbind is always true. Definition seven
precisely states this requirement on flow proofs.

Definition ~.
Given a security

a policy assertion I
a program statement S
l,g and g" in C and a

classification scheme (C,~),
is completely invariant over
if and only if there exist
flow proof of

{I, local < i, global ~ g}
S

{I, local < i, global ~ g"}

such that for any statement S' in S, the
pre-condition of S' is {I,local < l',global ~ g'},
where I' and g' are elements of C. The above
proof is called a completely invariant flow proof
for I.

CFM is consistent with the flow logic if a
completely invariant policy assertion is necessary
for certification. Theorem I states that CFM is
consistent and indicates how to develop the
completely invariant flow proof; the proof of
this theorem is given in the Appendix.

Theorem !-
Suppose (C,~) is an extended classification

scheme, S is a program statement, sbind is a
static binding for the variables in S, and I is
the policy assertion corresponding to sbind. S is
certified with respect to sbind only if I is
completely invariant over S. In particular, for
any i and g in C such that l~g ~ mod(S) there
exists a completely invariant flow proof of

{I, local < i, global ! g}
S

{I, local < i, global ! g~l~)flow(S)}

5.2 Reiative Strength

There are programs that do not violate their
binding but cannot be certified using the
Concurrent Flow Mechanism. For example, the
program

begin x := 0; y := x end

cannot be certified with respect to the binding
sbind(x) = high, sbind(y) = low by CFM. However,
a flow proof of

{x ! high, X ! low, local ! low, global ! low}
x := 0;

{x ! low, X ~ low, local ! low, global ! low}
y := x

{x ! low, X ! low, local ! low, global ~ low}

can be produced. This shows that the policy is
never violated by the program. The power of the
flow logic is in part its ability to prove
intermediate restrictions that are stronger than
the policy assertion. In fact, if a flow proof
never strengthens the policy assertion CFM
certification is possible. Theorem 2 states this
precisely; its proof is given in the Appendix.

Theorem 2.
Suppose (C,~) is an extended classification

scheme, S is a program statement, sbind is a
static binding for the variables in S, and I is
the policy assertion corresponding to sbind. If I
is completely invariant over S, then S can be
certified with respect to sbind.

Note that together Theorem I and Theorem 2
imply that CFM certification is possible if and
only if the policy assertion is completely
invariant.

6.0 CONCLUSION

This paper has presented a new mechanism for
certifying the information security of programs.
This mechanism, CFM, extends the work of Denning
and Denning [3] to programming languages that can
specify concurrent execution and process
synchronization, and also handles conditional
termination. The increase in power has been
achieved without the loss of computational
efficiency; both mechanisms can be computed in
time proportional to the length of the program,
once the program has been parsed. In addition, it
has been shown that the set of programs that can
be certified using CFM corresponds exactly to the
set of programs for which a restricted form of
flow proof exists.

Although CFM is an attractive mechanism when
the classifications of objects is fixed, it does
not address all information security concerns.
Practical mechanisms are needed to ensure
information security when object classifications
can change dynamically. In addition, program
certification is meaningful only if programming
language implementations are consistent with the
model of information flow used in the mechanisms.

61

Acknowledgements.

This research has benefited greatly from
discussions with Greg Andrews, Carl Hauser, and
Nancy McCracken. The comments of Greg Andrews,
Anita Jones, and the reviewers helped strengthen
the presentation.

Bibliography

I. Andrews, G.R. and Reitman, R.P. An axiomatic
approach to information flow in parallel
programs, to appear in ACM Trans. o__~n Pro~.
Languages and Systems.

2. Denning, D.E. A lattice model of secure
information flow. Comm. ACM 19,5 (May 1976),
236-243.

3. Denning, D.E. and Denning, P.J.
Certification of programs for secure
information flow. Comm. ACM 20, 7 (July
1977), 504-513.

4. Fenton, J.S. Memoryless subsystems.
Computer Journal 17, 2 (May 1974), 143-147.

5. Hoare, C.A.R. An axiomatic basis for
computer programming. Comn~. AC~ 12, 10
(Oct. 1969), 576-581.

6. Jones, A.K. and Lipton, R.J. The enforcement
of security policies for computation. Proc.
Fifth Symp. on Onerating System Principles
(Nov. 1975), 197-206.

7. Lampson, B.W. A note on the confinement
problem. Comm. ACM 16, 10 (Oct. 1973),
613-615.

8. London, T.B. The semantics of information
flow. Ph.D. Thesis, Cornell University,
January 1977.

9. Owicki, S. and Gries, D. An axiomatic proof
technique for parallel programs I. Acta
Informatica ~ (1976), 319-340.

10. Reitman, R.P. and Andrews, G.R. Certifying
information flow properties of programs: an
axiomatic approach. PrQc. Sixth Symp. o_D_n
Principles of Programming Languages (Jan.
1979), 283-290.

Appendix

Proofs of Theorem I and Theorem 2

Theorem I.
Suppose (C,!) is an extended classification

scheme, S is a program statement, sbind is a
static binding for the variables in S, and I is
the policy assertion corresponding to sbind. S is
certified with respect to sbind only if I is
completely invariant over S. In particular, for
any 1 and g in C such that l~g ! mod(S) there
exists a completely invariant flow proof of

{I, local ! I, global ~ g}
S

{I, local < i, global ! g~l~ flow(S)}

Proof.
It is assumed that cert(S) is true and that 1 and
g are class constants such that l~g ! mod(S).
The proof of the theorem is by induction on the
size of the parse tree for S.

Basis.
Let P denote I, local ! i, global ~ g.

S = x := e. The assumption implies that
sbind(e)~ 1 ~ g ~ sbind(x). By definition
P I- e < sbind(e), so that P l-
e~l~g ~ sbind(x). Since the only term in
P that refers to x is x~ sbind(x), the
assignment flow axiom can be applie~ to
construct the desired proof.

S = signal(sem). The proof follows the same line
of reasoning used for assignment.

S = wait(sem). P I- sem~l~g ~ sbind(sem) can
be shown using an argument similar to that
employed for the assignment statement. Since
flow(S) is sbind(sem), the axiom for the wait
statement can be used to construct the desired
flow proof.

Inductive Argument.
Suppose the theorem is true for any statement
smaller than S.

S : if e then $I else $2. The assumption implies
that l~g~sbind(e) ~ mod(S). Since $I and
$2 are structurally smaller than S and mod(S)
is mod(S1) ~mod(S2), proofs of

{I, local < l~sbind(e), global ~ g}
Si (i = I or 2)

{I, local < i, global ~ ~g~sbind(e~flow(Si)}

exist. By applying the rule for alternation a
proof of

{I, local ! i, global ! g}
S

{I, local ~ i,
global ~gOl~bind(e~low(Sl~Oflow(S2)}

can be produced. When flow(S) is not nil the
above proof suffices. Otherwise a flow proof
showing that global ! g is preserved by S
exists, since flow(S) is nil only if no global
flows are produced by S (the proof of this is
left to the reader).

62

S : while e d__oo $I. The assumption implies that
flow(S1) ~ sbind(e) ~ mod(S). Since $I is
structurally smaller than S, a proof showing
that

{I, local ! 10sbind(e),
global ~ g~l~sbind(e) ~flow(S1)}

is invariant over $I exists. By applying the
while rule the desired proof of S can be
obtained.

S : be~in $I; ... ;Sn end. The assumption implies
that flow(Sj) ~ mod(Si) (l<j<i_<n). Since each
Si is smaller than S, proofs of

{I,local<l.global<~l~low(S1~..~flow(Si-1)}
Si (1~i~n)

{I,loeal<l,global<~low(S1)~..~low(Si)}

exist. By applying the rule for composition
the desired proof can be constructed.

S : cobe~in $I I~ ... II Sn coend. The assumption
and the inductive hypothesis imply that proofs
of

{I, local ~ i, global ! g}
Si (l!i_<n)

{I, local ~ i, ~lobal ~ g~l~flow(Si)}

exist. Since these proofs are completely
invariant, they are also interference-free.
Recall that flow(Si) ~ flow(S). Thus by using
the flow rules for implication and parallel
execution the desired proof for S can be
produced.

The following lemma is used in the proof of
Theorem 2.

Lemma.
Let (C,!) be an extended classification

scheme, S be a program statement and sbind be a
static binding for S. Suppose a proof of

{V, local < i, global ! g}
S

{V', local < i, ~lobal ~ g'}

exists. If V, local < i, global ! g is satisfied,
then

a. l~g ~ mod(S), and
b. g~flow(S) ! g'.

Proof. The proof is by induction on the size of
the parse tree for S and by case analysis. The
details are left to the reader.

Theorem 2.
Suppose (C,~) is an extended classification

scheme, S is a program statement, sbind is a
static binding for the variables in S, and I is
the policy assertion corresponding to sbind. If I
is completely invariant over S, then S can be
certified with respect to sbind.

Proof.
Let P denote the assertion I, local ~ I,
global ~ g. It is assumed that a proof of {P} S
{I, local ~ i, global ~ g"} exists. The proof of
the theorem is by induction on the size of the
parse tree for S.

Basis.
S = x := e. Since the assignment axiom can be

successfully applied and P contains the term
x < sbind(x), P I- e < sbind(x). The only
constraint on ~ by P is ~ ~ sbind(e), so that

= sbind(e) is possible. Therefore
sbind(e) ~ sbind(x) and cert(S) is true.

S = signal(sem). Cert(S) is true by definition.

S = wait(sem). Cert(S) is true by definition.

Inductive Argument.
Suppose the theorem
smaller than S.

is true for any statement

S = if e then $I else $2. By the inductive
hypothesis, cert(S1) and cert(S2) are true.
Let {I, local < i', global ~ g'} be the
pre-condition of $1 and S2 in the proof of S.
The rule for alternation can be successfully
applied; therefore P I- g~ i'. Since g =
sbind(e) is possible, sbind(e) ~ i'. The
lemma, when applied to $1 and $2, implies that
i' is bounded above by both mod(S1) and
mod(S2). Therefore sbind(e) ~ mod(S) and
eert(S) is true.

S = while e do $I. By the inductive hypothesis,
cert(S1) is true and an assertion of the form
{I, local ~ i', global ~ g'} is invariant over
the execution of $I. Since the while rule was
applied and e = sbind(e) is possible,
P I- sbind(e) ~ i'. The lemma implies
i' ~ g' ~ mod(S1) and flow(S1) ~ g'.
Therefore flow(S1)~sbind(e) ~ mod(Sl), so
that cert(S) is true.

S = begin $1; ...; Sn end. By the inductive
hypothesis, for every i between 1 and n,
cert(Si) is true and a proof of

{I, local < l, global ~ gi}
Si

{I, local < i, global ~ gi+1}

exists. The lemma, when applied to Si-1 and
Si, implies that gi-1 ~ flow(Si-1) ~ gi
mod(Si). Therefore, for every j less than i,
flow(Sj) ~ mod(Si) and cert(S) is true.

S : cobegin $I II ... 11Sn coend. By the
inductive hypothesis, each component statement
is certified. Therefore, cert(S) is true.

63

