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Abstract. 

Denning and Denning have shown how the 
information security of sequential programs can be 
certified by a compile-time mechanism [3]. This 
paper extends their work by presenting a mechanism 
for certifying parallel programs. The mechanism 
is shown to be consistent with an axiomatic 
description of information transmission. 
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1.0 INTRODUCTION 

A secure computer system must protect the 
information it contains. In particular, the 
transmission of sensitive information must be 
controlled. In order to develop practical 
information security mechanisms, assumptions must 
be made concerning the type of information 
transmission that is observable within the system 
[6]. A common assumption is based on the notion 
that a programming language defines the set of 
possible program actions; only those flows of 
information that can be specified in the 
programming language are considered [3,8,10]. 
Accordingly, other flows, such as those that arise 
from the occurrence of page faults, disk head 
movement, and program execution time, are 
considered covert [7], and are disregarded. 

Since a program's text specifies all flows 
that can result from program execution, 
information security can be assured by prohibiting 
the execution of any program that specifies an 
undesirable flow of information. A program is 
said to be certified if it has been shown that the 
program specifies only acceptable flows of 
information. 
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A deductive flow logic that can be used for 
program certification is presented in [I]. The 
logic is used to produce flow proofs that capture 
the flows that arise in both sequential and 
parallel programs. No practical mechanism based 
on this theoretical method has been developed to 
date. 

Practical mechanisms have been obtained for 
systems in which the security classifications of 
objects are static. One of the more general 
certification mechanisms for static systems has 
been proposed by Denning and Denning [3]. This 
mechanism is applicable only to sequential 
programs that are guaranteed to terminate for all 
inputs. 

The paper is organized as follows. Section 
two presents the basic concepts necessary to 
develop information control mechanisms. Section 
three, which outlines the flow logic, reenforces 
some of the basic concepts and lays the 
theoretical foundation needed for section five. 
Section four discusses the Dennings' mechanism and 
presents the main result of the paper, the 
extension of this mechanism to parallel programs. 
In section five the relationship between flow 
proofs and the extended mechanism is - shown. 
Section six presents conclusions and areas for 
future research. 

This paper is a synthesis of the work of [3] 
and [I]. In particular, the mechanism of [3] is 
extended to parallel programs using the ideas 
developed in [1]. The extension to parallel 
programs is an important one, since it is in 
parallel systems that issues of security are of 
greatest concern. The correctness of the new 
mechanism, as well as its relative strength, is 
demonstrated by proving that a program can be 
certified using the new mechanism if and only if a 
flow proof of a restricted form can be developed 
for the program. 

2.0 BASIC CONCEPTS 

In this section, the basic concepts needed 
for the construction of security mechanisms are 
presented. The discussion of classification 
schemes closely follows that of [2]. The 
transmission of information through program 
execution has been investigated by many 
researchers [1,3,4,6]. The notion of an 
information state and of certifying policies in 
terms of this state is described in [10]. 
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A simple programming language is used 
throughout the remainder of the paper to specify 
the set of legal programs. The statements in this 
language are: 

Assignment 
Alternation 
Iteration 
Composition 
Concurrency 
Synchronization 

x := e 

i__~f e then $1 else $2 
while e d__QoS 
begin $1; ...; Sn eBd 
cobe~in $1 II ... II Sn coend 
wait(sem) 
signal(sem) 

By definition, the wait and signal operations 
on semaphores are indivisable. In addition, each 
assignment and expression must be executed or 
evaluated as an indivisable action. As discussed 
in [9], this requirement may be eliminated if 
every expression and assignment statement makes at 
most one reference to a variable that can be 
changed in another process. In this case, the 
only requirements are that each wait, signal, and 
memory reference be an indivisable action. 

2.1 Classification Of Information 

Program variables contain information. To 
measure the relative sensitivity of this 
information a security classification scheme is 
used. The scheme partitions information into a 
finite set of equivalence classes and imposes a 
partial ordering on these classes. 

Definition !. 
Given a finite set C and a complete partial 

order ~ on C, a security classification scheme is 
the complete lattice (C,~). High and low are used 
to denote the maximum and minimum elements of C; 
@ and @ are used to denote the least upper bound 
and greatest lower bound operators respectively. 

Every program variable and expression is 
associated-~with an information security class. 
The association between variables and security 
classes is defined by an information state; this 
state varies dynamically during program execution. 

Definition 2. 
Given a security classification scheme (C,~) 

and a set of program variables, an information 
state is a total mapping from the program 
variables to elements of C. The ~lass of a 
program variable v, denoted X, is ~ne element of C 
associated with v by the information state. The 
notion of class is extended to expressions by 
specifying that the class of a constant is low and 
that the class of el OD e2 is el ~ e2, where op is 
any arithmetic or Boolean operator. 

2.2 Flows Of Information 

The assignment of an expression to a variable 
changes the information that is stored in the 
variable. The new information contained in the 
variable has two sources. First, there is a 
direct flow of information from the expression to 
the variable. Second, if the assignment is 

conditionally executed an indirect flow of 
information occurs. 

Indirect flows are either local or global in 

nature. An indirect flow is said to be local if 
it is confined to the body of the statment in 
which the flow is specified. For example, the 
statement 

i ff x : 0 then y :: 0 else y :: I 

transmits information concerning x to the variable 
y, but not to other variables that are modified 
elsewhere in the program. This is true because 
the Boolean condition of the i_ff only affects the 
execution of the associated then and else parts. 

When the effect of an indirect flow is not 
limited to the body of the statement in which it 
is generated, the flow is called global. Global 
flows result from loops and synchronization. For 
example, the program fragment 

while x : 0 d__oo y :: O; 
Z := I 

transmits information about x to both y and z. 
Note that information about x can be inferred by 
examining z since the assignment z := I is 
executed if and only if x is not equal to zero. 

Global flows of information are also produced 
by parallel programming language constructs. In 
the simple language of section two, the wait 
statement for semaphores can produce a global 
flow. Since the wait statement allows a process 
to conditionally block, every statement after the 
wait is executed if and only if a signal was 
received. For example, the statement 

cobegin 
i ff x = 0 then signal(sem) 

b~gin wait(sem); y := 0 end 
coend 

transmits information from x to y, since y is set 
to zero only if x is zero. Although it is 
possible for the above program to deadlock (it 
will if x is not equal to zero), global flows in 
parallel programs arise not from the possibility 
of deadlock, but from the synchronization of 
independent computations. There are programs that 
cannot deadlock yet transmit information through 
process synchronization [I]. 

2.3 Policies And Certification 

Information flows between variables as a 
result of program execution. An information 
policy is used to indicate which of these flows 
are acceptable. In particular, the information 
policy specifies both the set of acceptable 
information states and the places in the program 
where this requirement must be satisfied. A 
program is said to be certified with respect to a 
policy if and only if it has been shown that every 
state produced by the program satisfies the 
policy. 
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3.0 THE FLOW LOGIC 

In [1,10] a deductive logic for reasoning 
about information flow is introduced. The logic 
is similar to ones for functional correctness 
[5,9], except that it deals with classifications 
rather than with values. Assertions denote 
restrictions on the information state; proof 
rules specify the effect of program execution upon 
this state. The logical statement {P} S {Q} 
indicates that if the initial information state 
satisfies assertion P and statement S terminates, 
then the final information state satisfies 
assertion Q. By applying the axioms and rules of 
the logic, flow proofs of particular logical 
statements can be produced. 

Policy requirements are stated as assertions 
in the logic. A program is certified by showing 
that the policy is true at the appropriate places 
in the flow proof of the program. 

3.1 Notation 

Assertions in the flow logic may contain the 
certification variables local and ~lobal; these 
variables correspond to the two types of indirect 
information flow. The variable local captures 
indirect flows within a statement; local 
increases when a conditional statement is entered 
and decreases when it is exited. The variable 
global captures indirect flows between statements 
that arise from sequencing. Intuitively, it 
records the information that can be gained by 
inferring the progress made in executing a 
composition statement. Thus, global increases 
when a conditionally terminating statement is 
encountered and never decreases. 

The notation {V,L,G} partitions a flow 
assertion into three parts. V is an assertion 
about the information state that does not refer to 
either local or global. L and G are assertions of 
the form local < 1 and global ~ g respectively, 
where 1 and g refer to neither local nor global. 

Syntactic substitution and logical derivation 
are also needed in the flow logic. P[x <- e] 
denotes the assertion P with every occurrence of 
the symbol x syntactically replaced by e. P I- Q 
indicates that using lattice theory and 
propositional logic Q can be derived from P. 
Rules of inference in the flow logic are presented 
as 

A 

B 

where A is the hypothesis and B is the conclusion. 

3.2 Proof Rules 

This section presents the axioms and proof 
rules of the flow logic and relates them to the 
more operational discussion of information flow 
presented in section two. The axioms and rules 
are summarized in Figure I. A more detailed 

exposition of the logic can be found in [1]. 

The flow axiom for the assignment statement 
indicates that the assigned variable receives 
information from both the expression and 
certification variables. No new indirect flows 
are produced. 

Alternation statements generate a local flow 
of information from the Boolean expression to the 
body of the then and else parts. This flow is 
captured in the flow logic by the certification 
variable loc~l. Accordingly, any proof of the 
alternation statement must reflect that within the 
then and else parts local has been increased by 
the class of the booloean e. The requirement 
V,L,G I- L'[local <- local @ g] does this. 

There are three aspects of iteration 
statements that affect information flow. First, 
since the body S is repeatedly executed, the 
assertion {V,L',G} must be invariant over the 
execution of S. Second, the proof of S must take 
account of the local flow from the Boolean 
expression e. This is done in a manner analogous 
to that used for alternation. Third, there is a 
global flow from e to any statement whose 
execution is contingent on the termination of the 
loop. This flow is captured by the requirement 
V,L,G I- G'[global <- global ~ local ~ e]. Note 
that local is included since the loop could be 
nested within an alternation statement. 

The rules for composition and consequence are 
identical to those found in functional 
correctness. No additional flows need be captured 
by these rules. Note that the rule for 
composition captures the interdependence of 
program statements. In particular, the rule 
indicates that the flow from one statement is 
transmitted to the next. 

The flow rule for concurrent execution is 
based on the corresponding rule for functional 
correctness [9]; a proof of a cobegin statement 
can be constructed from the proofs of its 
components only if these proofs are 
interference-free. The definition of 
non-interfering flow proofs differs slightly from 
its correctness counterpart since indirect flows 
in one process do not affect indirect flows in 
another process. 

A semaphore operation is similar to an 
assignment that increments or decrements a program 
variable; the semaphore receives additional 
information due to local and global flows. In 
addition, a global flow of information due to 
conditional delay is produced by the wait 
statement. Accordingly, the axioms for wait and 
signal are very similar to the axiom for 
assignment except that the execution of a wait may 
increase global. 
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Assignment 

Alternation 

Iteration 

Composition 

Consequence 

Concurrent 
Execution 

Semaphores 

Figure I 
The Information Flow Logic 

{P[~ <- ~@ local@ ~lobal]} x :: e {P} 

[V,L',G} $I {V',L',G'}, {V,L',G} $2 {V',L',G'}, 
V,L,G I- L'[local <- local(~g] 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

{V,L,G} if e then $I else $2 {V',L,G'} 

{V,L',G} S {V,L',G}, 
V,L,G ~- L'[local <- local ~], 
V,L,G Z- G'[global <- global • local 04] 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

{V,L,G} while e do S {V,L,G'} 

{P0} $I (PI] ..... {Pn-1} Sn {Pn} 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

{PO} begin $I; ...; Sn end {Pn} 

{P'} S {Q'}, P Z-P', O I-Q' 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

{P} S {Q} 

{Vi,L,G} Si {Vi',L,G'}, I < i < n are interference-free 

{VI,...,Vn,L,G] cobe~in $1 II ... II Sn coend {VI',...,Vn',L,G'} 

{P[sem <- sem • locala ~lobal]} signal(sem) {P} 

{P[sem <- sem~localO~lobal, wait(sem) {F} 
global <- se___~m~local~global]} 

4.0 A MECHANISM FOR STATIC SYSTEMS 

This section summarizes the information 
control mechanism of Denning and Denning [3] and 
describes an extension to this mechanism. The 
Concurrent Flow Mechanism (CFM) captures flows 
that arise from process synchronization and 
conditional non-termlnatlon. An example in which 
CFM is used to certify a parallel program is also 
presented. 

4.1 The Dennings' Mechanism 

Denning and Denning [3] have developed a 
mechanism for certifying programs when the 
classification of variables is constant. In this 
mechanism each variable is statically bound to an 
acceptable security classification. No program 
that specifies a violation of this binding is 
certified. 

Definition ~. 
Given a security classification (C,!) and a 

program statement S, a static binding sbind for S 
is a total mapping from the variables, constants, 
and expressions in S to security classes in C. 
The static binding of a variable v is denoted by 
sbind(v), the binding of a constant is low, and 
the binding of el OD e2 is sbind(el) ~ sbind(e2), m 

The mechanism uses simple checks that are 
performed during compilation to ensure security. 
Local indirect flows are captured as follows. For 
each program statement S, mod(S) is the greatest 
lower bound of all the variables modified in S. 
If e is an expression whose value controls the 
execution of S, S is certified only if 
sbind(e) ~ mod(S). This ensures that flows from e 
to variables modified by S are permissable. 

Global flows are disregarded by the Dennings' 
mechanism. This shortcoming is caused by the view 
that the relationships among statements are 
completely captured by nesting. The proposed 
extension alleviates this problem by considering 
the relationships due to statement sequencing. 

*The Dennings' original notation has been changed 
to distinguish between static bindings and current 
classifications. 
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4.2 The Concurrent Flow Mechanism (CFM) 

The Denning mechanism can be extended to 
capture flows due to conditional termination and 
synchronization. First, the classification scheme 
is extended to include a new smallest element, 
nil. Next, the function flow(S) is defined. 
Flow(S) is nil if no global flow is produced by S; 
otherwise flow(S) is the least upper bound of the 
global flows produced by S. Finally, the function 

• cert(S) is defined to indicate whether a program S 
violates a given static binding. These concepts 
are formally defined as follows: 

Definition ~. 

Given a classification scheme (C',!'), the 
extended classification scheme (C,!) associated 
with (C',!') is defined by: 

C = C' U {nil}, where nil is not in C', and 
x ! y if and only if either 

a. x,y in C' and x !' y, or 
b. x,y in C and x = nil. 

Definition ~. 
Let (C,!) be an extended classification 

scheme, S be a program statement, and sbind be a 
static binding for S, then 

a. mod(S) is the greatest lower bound of the 
bindings of variables potentially modified 
by S, 

b. flow(S) is the least upper bound of the 
global flows produced by S, and 

c. cert(S) is true if and only if there is no 
flow of information specified by S that 
violates sbind. 

S is certified with respect to sbind if and only 
if eert(S) is true. The appropriate mod, flow, 
and cert for the simple language of section two 
are given in Figure 2. 

Cert(S) is true only if every component of S 
is certified. Additional checks are needed for 
some statements. The checks for assignment and 
alternation are the same as those originally 

proposed in [3]. The new check for iteration 
ensures that no statement in a body of a loop can 
cause an illegal global flow to a variable 
modified elsewhere in the loop. This check 
catches the flow from sem to y in the statement 

Figure 2 
The Concurrent Flow Mechanism 

Statement S 

x :: e 

Certification Functions 

mod(S) = sbind(x) 
flow(S) = nil 
eert(S) = sbind(e) ~ sbind(x) 

i_~f e mod(S) = 
then $I flow(S) = 
else $2 

cert(S) : 

while e mod(S) : 
do $I flow(S) : 

cert(S) : 

begin mod(S) : 
$1; ...; Sn flow(S) = 
en__~d cert(S) = 

cobegin mod(S) : 
$I II ... II Sn flow(S) = 
coend cert(S) = 

wait(sem) 

signal(sem) 

mod(Sl)~mod(S2) 
i__~f flow(St) = flow(S2) = nil 

then nil 
else flow(S1) ~ flow(S2) ~sbind(e) 

cert(S1) and cert(S2) and sbind(e) ~ mod(S) 

mod(S1) 
flow(St) ~ sbind(e) 
eert(S1) and flow(S) ~ mod(S) 

mod(S1) ~... ~ mod(Sn) 
flow(S1) ~ ... ~ flow(Sn) 
eert(Si) and eert(Sj) and flow(Sj) ~ mod(Si) (1<_j<i~n) 

mod(S1) ~...~ mod(Sn) 
flow(S1) ~... ~flow(Sn) 
cert(S1) and ... and cert(Sn) 

mod(S) = sbind(sem) 
flow(S) = sbind(sem) 
cert(S) : true 

mod(S) = sbind(sem) 
flow(S) = nil 
cert(S) = true 
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while true d_~o 

be~in 
y :: y + I; 
wait(sem) 

end 

Note that y is incremented more than once only if 
the wait statement completes. The new check 
ensures that sbind(sem) ~ sbind(y). 

The new security check for composition 
ensures that global flows are acceptable. Using 
this check the composition of two statements can 
be certified only if the global flow of the first 
is no more sensitive than any variable modified by 
the second. In particular, the statement 

begin wait(sem); y := I end 

can be certified only if sbind(sem) ~ sbind(y). 
Note that parallel composition, unlike sequential 
composition, does not require an additional 
certification check since each component statement 
is executed independently (concurrently executed 
statements interact through global variables and 
synchronization primitives). 

4.3 An Example 

This section examines a program that 
transmits information through process 
synchronization. Although the Dennings' mechanism 
cannot be applied, CFM can be used to certify the 
program. The example parallel program is 
presented in Figure 3. 

The program transmits information from x to y 
by ordering process execution. The semaphore 
modify controls whether m is set to one before or 
after the assignment y := m. The semaphores 
modified, read and done ensure that only one 
process is active at any time. The program has 
the same effect on x and y as the statement: 

begin 
m := O; 
i__ff X : 0 

then begin m := I; y := m end 
else begin y := m; m := 1 end 

end 

Sequential execution has been enforced for 
simplicity and to guarantee the flow of 
information from x to y. If the extra semaphores 
were eliminated parallel execution could occur but 
the flow from x to y would depend on the relative 
execution speed of the processes. Although in 
this case the flow would not always occur, it 
could occur and would be considered by CFM. 

Note that the program of Figure 3 cannot 
deadlock and that the final values of the 
semaphores are the same as their initial values. 
Therefore, by placing each process in a loop and 
testing a different bit of x on each iteration an 
arbitrary amount of information could be 
transmitted. 

Figure 3 

Information Flow Using Synchronization 

var x, y, m : integer; 
modify, modified, 
read, done : semaphore initially(O); 

cobegin 
begin 

m := 0; 

i__[fx ~ 0 
then be~in 

signal(modify); 
wait(modified) 

end; 

signal(read); 
wait(done); 

i__[fx : 0 
then begin 

signal(modify); 
wait(modified) 

end; 

wait(done) 
end 

begin 
wait(modify); 
m := I; 
signal(modified) 

end 

begin 
wait(read); 

y := m; 
signal(done) 

end 
coend 

Some of the conditions necessary for CFM 
certification of this program are as follows. 
First, the if statement is certified only if 
sbind(x) ~ sbind(modify). Second, certification 
of the second process is possible only if 
sbind(modify) ~ sbind(m), since the assignment to 
m occurs after the statement wait(modified). 
Third, certification of y := m means that 
sbind(m) ~ sbind(y). These conditons imply 
sbind(x) ~ sbind(y). Note that eliminating the 
semaphores modified, read, and done would not 
eliminate this requirement. 

5.0 THE RELATIONSHIP OF THE TWO APPROACHES 

This section investigates the relationship 
between the information flow logic and the 
Concurrent Flow Mechanism. It is shown that a 
program can be certified using CFM if and only if 
a flow proof of a restricted form exists. This 
means that CFM is consistent with the axiomatic 
description of information transmission. It also 
indicates that there are programs that can be 
certified using the flow logic that cannot be 
certified using CFM. 
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5.1 Consistency 

In order to compare the two approaches, a 
correspondence between flow assertions and static 
bindings is needed. A natural correspondence is 
to associate with a static binding the flow 
assertion that prohibits the current 
classification of a variable from exceeding its 
static binding. 

Definition 6. 
Given a security classification scheme (C,~) 

and a static binding sbind, the policy assertion 
corresponding to sbind is the conjunction of all 
terms of the form v < sbind(v), where v is a 
variable. 

CFM is consistent with the flow logic only if 
for every program certified with respect to a 
static binding sbind there exists a flow proof 
that shows that the policy assertion corresponding 
to sbind is always true. Definition seven 
precisely states this requirement on flow proofs. 

Definition ~. 
Given a security 

a policy assertion I 
a program statement S 
l,g and g" in C and a 

classification scheme (C,~), 
is completely invariant over 
if and only if there exist 
flow proof of 

{I, local < i, global ~ g} 
S 

{I, local < i, global ~ g"} 

such that for any statement S' in S, the 
pre-condition of S' is {I,local < l',global ~ g'}, 
where I' and g' are elements of C. The above 
proof is called a completely invariant flow proof 
for I. 

CFM is consistent with the flow logic if a 
completely invariant policy assertion is necessary 
for certification. Theorem I states that CFM is 
consistent and indicates how to develop the 
completely invariant flow proof; the proof of 
this theorem is given in the Appendix. 

Theorem !- 
Suppose (C,~) is an extended classification 

scheme, S is a program statement, sbind is a 
static binding for the variables in S, and I is 
the policy assertion corresponding to sbind. S is 
certified with respect to sbind only if I is 
completely invariant over S. In particular, for 
any i and g in C such that l~g ~ mod(S) there 
exists a completely invariant flow proof of 

{I, local < i, global ! g} 
S 

{I, local < i, global ! g~l~)flow(S)} 

5.2 Reiative Strength 

There are programs that do not violate their 
binding but cannot be certified using the 
Concurrent Flow Mechanism. For example, the 
program 

begin x := 0; y := x end 

cannot be certified with respect to the binding 
sbind(x) = high, sbind(y) = low by CFM. However, 
a flow proof of 

{x ! high, X ! low, local ! low, global ! low} 
x := 0; 

{x ! low, X ~ low, local ! low, global ! low} 
y := x 

{x ! low, X ! low, local ! low, global ~ low} 

can be produced. This shows that the policy is 
never violated by the program. The power of the 
flow logic is in part its ability to prove 
intermediate restrictions that are stronger than 
the policy assertion. In fact, if a flow proof 
never strengthens the policy assertion CFM 
certification is possible. Theorem 2 states this 
precisely; its proof is given in the Appendix. 

Theorem 2. 
Suppose (C,~) is an extended classification 

scheme, S is a program statement, sbind is a 
static binding for the variables in S, and I is 
the policy assertion corresponding to sbind. If I 
is completely invariant over S, then S can be 
certified with respect to sbind. 

Note that together Theorem I and Theorem 2 
imply that CFM certification is possible if and 
only if the policy assertion is completely 
invariant. 

6.0 CONCLUSION 

This paper has presented a new mechanism for 
certifying the information security of programs. 
This mechanism, CFM, extends the work of Denning 
and Denning [3] to programming languages that can 
specify concurrent execution and process 
synchronization, and also handles conditional 
termination. The increase in power has been 
achieved without the loss of computational 
efficiency; both mechanisms can be computed in 
time proportional to the length of the program, 
once the program has been parsed. In addition, it 
has been shown that the set of programs that can 
be certified using CFM corresponds exactly to the 
set of programs for which a restricted form of 
flow proof exists. 

Although CFM is an attractive mechanism when 
the classifications of objects is fixed, it does 
not address all information security concerns. 
Practical mechanisms are needed to ensure 
information security when object classifications 
can change dynamically. In addition, program 
certification is meaningful only if programming 
language implementations are consistent with the 
model of information flow used in the mechanisms. 
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Appendix 

Proofs of Theorem I and Theorem 2 

Theorem I. 
Suppose (C,!) is an extended classification 

scheme, S is a program statement, sbind is a 
static binding for the variables in S, and I is 
the policy assertion corresponding to sbind. S is 
certified with respect to sbind only if I is 
completely invariant over S. In particular, for 
any 1 and g in C such that l~g ! mod(S) there 
exists a completely invariant flow proof of 

{I, local ! I, global ~ g} 
S 

{I, local < i, global ! g~l~ flow(S)} 

Proof. 
It is assumed that cert(S) is true and that 1 and 
g are class constants such that l~g ! mod(S). 
The proof of the theorem is by induction on the 
size of the parse tree for S. 

Basis. 
Let P denote I, local ! i, global ~ g. 

S = x := e. The assumption implies that 
sbind(e)~ 1 ~ g ~ sbind(x). By definition 
P I- e < sbind(e), so that P l- 
e~l~g ~ sbind(x). Since the only term in 
P that refers to x is x~ sbind(x), the 
assignment flow axiom can be applie~ to 
construct the desired proof. 

S = signal(sem). The proof follows the same line 
of reasoning used for assignment. 

S = wait(sem). P I- sem~l~g ~ sbind(sem) can 
be shown using an argument similar to that 
employed for the assignment statement. Since 
flow(S) is sbind(sem), the axiom for the wait 
statement can be used to construct the desired 
flow proof. 

Inductive Argument. 
Suppose the theorem is true for any statement 
smaller than S. 

S : if e then $I else $2. The assumption implies 
that l~g~sbind(e) ~ mod(S). Since $I and 
$2 are structurally smaller than S and mod(S) 
is mod(S1) ~mod(S2), proofs of 

{I, local < l~sbind(e), global ~ g} 
Si (i = I or 2) 

{I, local < i, global ~ ~g~sbind(e~flow(Si)} 

exist. By applying the rule for alternation a 
proof of 

{I, local ! i, global ! g} 
S 

{I, local ~ i, 
global ~gOl~bind(e~low(Sl~Oflow(S2)} 

can be produced. When flow(S) is not nil the 
above proof suffices. Otherwise a flow proof 
showing that global ! g is preserved by S 
exists, since flow(S) is nil only if no global 
flows are produced by S (the proof of this is 
left to the reader). 
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S : while e d__oo $I. The assumption implies that 
flow(S1) ~ sbind(e) ~ mod(S). Since $I is 
structurally smaller than S, a proof showing 
that 

{I, local ! 10sbind(e), 
global ~ g~l~sbind(e) ~flow(S1)} 

is invariant over $I exists. By applying the 
while rule the desired proof of S can be 
obtained. 

S : be~in $I; ... ;Sn end. The assumption implies 
that flow(Sj) ~ mod(Si) (l<j<i_<n). Since each 
Si is smaller than S, proofs of 

{I,local<l.global<~l~low(S1~..~flow(Si-1)} 
Si (1~i~n) 

{I,loeal<l,global<~low(S1)~..~low(Si)} 

exist. By applying the rule for composition 
the desired proof can be constructed. 

S : cobe~in $I I~ ... II Sn coend. The assumption 
and the inductive hypothesis imply that proofs 
of 

{I, local ~ i, global ! g} 
Si (l!i_<n) 

{I, local ~ i, ~lobal ~ g~l~flow(Si)} 

exist. Since these proofs are completely 
invariant, they are also interference-free. 
Recall that flow(Si) ~ flow(S). Thus by using 
the flow rules for implication and parallel 
execution the desired proof for S can be 
produced. 

The following lemma is used in the proof of 
Theorem 2. 

Lemma. 
Let (C,!) be an extended classification 

scheme, S be a program statement and sbind be a 
static binding for S. Suppose a proof of 

{V, local < i, global ! g} 
S 

{V', local < i, ~lobal ~ g'} 

exists. If V, local < i, global ! g is satisfied, 
then 

a. l~g ~ mod(S), and 
b. g~flow(S) ! g'. 

Proof. The proof is by induction on the size of 
the parse tree for S and by case analysis. The 
details are left to the reader. 

Theorem 2. 
Suppose (C,~) is an extended classification 

scheme, S is a program statement, sbind is a 
static binding for the variables in S, and I is 
the policy assertion corresponding to sbind. If I 
is completely invariant over S, then S can be 
certified with respect to sbind. 

Proof. 
Let P denote the assertion I, local ~ I, 
global ~ g. It is assumed that a proof of {P} S 
{I, local ~ i, global ~ g"} exists. The proof of 
the theorem is by induction on the size of the 
parse tree for S. 

Basis. 
S = x := e. Since the assignment axiom can be 

successfully applied and P contains the term 
x < sbind(x), P I- e < sbind(x). The only 
constraint on ~ by P is ~ ~ sbind(e), so that 

= sbind(e) is possible. Therefore 
sbind(e) ~ sbind(x) and cert(S) is true. 

S = signal(sem). Cert(S) is true by definition. 

S = wait(sem). Cert(S) is true by definition. 

Inductive Argument. 
Suppose the theorem 
smaller than S. 

is true for any statement 

S = if e then $I else $2. By the inductive 
hypothesis, cert(S1) and cert(S2) are true. 
Let {I, local < i', global ~ g'} be the 
pre-condition of $1 and S2 in the proof of S. 
The rule for alternation can be successfully 
applied; therefore P I- g~ i'. Since g = 
sbind(e) is possible, sbind(e) ~ i'. The 
lemma, when applied to $1 and $2, implies that 
i' is bounded above by both mod(S1) and 
mod(S2). Therefore sbind(e) ~ mod(S) and 
eert(S) is true. 

S = while e do $I. By the inductive hypothesis, 
cert(S1) is true and an assertion of the form 
{I, local ~ i', global ~ g'} is invariant over 
the execution of $I. Since the while rule was 
applied and e = sbind(e) is possible, 
P I- sbind(e) ~ i'. The lemma implies 
i' ~ g' ~ mod(S1) and flow(S1) ~ g'. 
Therefore flow(S1)~sbind(e) ~ mod(Sl), so 
that cert(S) is true. 

S = begin $1; ...; Sn end. By the inductive 
hypothesis, for every i between 1 and n, 
cert(Si) is true and a proof of 

{I, local < l, global ~ gi} 
Si 

{I, local < i, global ~ gi+1} 

exists. The lemma, when applied to Si-1 and 
Si, implies that gi-1 ~ flow(Si-1) ~ gi 
mod(Si). Therefore, for every j less than i, 
flow(Sj) ~ mod(Si) and cert(S) is true. 

S : cobegin $I II ... 11Sn coend. By the 
inductive hypothesis, each component statement 
is certified. Therefore, cert(S) is true. 
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