
CloudVisor: Retrofitting Protection of Virtual Machines in
Multi-tenant Cloud with Nested Virtualization

Fengzhe Zhang, Jin Chen, Haibo Chen and Binyu Zang
Parallel Processing Institute

Fudan University
{fzzhang, chenjin, hbchen, byzang}@fudan.edu.cn

ABSTRACT
Multi-tenant cloud, which usually leases resources in the form of

virtual machines, has been commercially available for years. Un-

fortunately, with the adoption of commodity virtualized infrastruc-

tures, software stacks in typical multi-tenant clouds are non-trivially

large and complex, and thus are prone to compromise or abuse from

adversaries including the cloud operators, which may lead to leak-

age of security-sensitive data.

In this paper, we propose a transparent, backward-compatible ap-

proach that protects the privacy and integrity of customers’ virtual

machines on commodity virtualized infrastructures, even facing a

total compromise of the virtual machine monitor (VMM) and the

management VM. The key of our approach is the separation of the

resource management from security protection in the virtualization

layer. A tiny security monitor is introduced underneath the com-

modity VMM using nested virtualization and provides protection

to the hosted VMs. As a result, our approach allows virtualization

software (e.g., VMM, management VM and tools) to handle com-

plex tasks of managing leased VMs for the cloud, without breaking

security of users’ data inside the VMs.

We have implemented a prototype by leveraging commercially-

available hardware support for virtualization. The prototype sys-

tem, called CloudVisor, comprises only 5.5K LOCs and supports

the Xen VMM with multiple Linux and Windows as the guest OSes.

Performance evaluation shows that CloudVisor incurs moderate slow-

down for I/O intensive applications and very small slowdown for

other applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Security, Performance

Keywords

Multi-tenant Cloud, Virtual Machine Security, Nested Virtualiza-

tion

1. INTRODUCTION
Multi-tenant cloud has advantages of providing elastic and scal-

able computing resources and freeing users from the cumbersome

tasks such as configuring, managing and maintaining IT resources.

For example, Amazon’s Elastic Compute Cloud (EC2) [6] platform

provides flexible and resizable computing resources in the form of

Xen-based VMs for a number of usage scenarios, including ap-

plication hosting, content delivering, e-commerce and web host-

ing [6].

However, multi-tenant cloud also redefines the threat model of

computing and raises new security challenges: the security of cus-

tomers’ sensitive data will be a key concern if being put into a third-

party multi-tenant cloud. Unfortunately, current multi-tenant cloud

platforms adopting commodity virtualization infrastructures usu-

ally provide limited assurance for the security of tenants’ sensitive

data. Many cloud providers only provide “security on your own”

guarantee to users’ content [8].

There are mainly two reasons for the poor security guarantee pro-

vided in current clouds. First, many cloud platforms usually adopt

off-the-shelf virtualized infrastructures for the purpose of easing

deployment and lowering costs. However, this also introduces the

probability of security compromises of leased VMs from the virtu-

alization stack. This is because, the trusted computing base (TCB)

for commodity virtualized infrastructures, which includes both the

Virtual Machine Monitor (VMM) and the management VM, is in the

scale of several millions LOCs. Thus, the stack is prone to intru-

sions and “jail-breaks”. For example, by December 2010, there

have been 35 and 32 reported vulnerabilities from CVE [2] for

VMware and Xen respectively.

Second, tenants from competitive companies or even the cloud

operators themselves may be potential adversaries, which might

stealthily make unauthorized access to unencrypted sensitive data.

For example, a report assessing security risks of cloud computing

from Gartner states that, one biggest challenge of cloud computing

is “invisibly access unencrypted data in its facility” [26]. Google

also recently fired two employees for breaching user privacy [63].

To ameliorate this problem, previous efforts have attempted to

completely remove the virtualization layer [31], building a new

micro-kernel like VMM [60], or protecting a VMM’s control-flow

integrity [68]. However, these approaches mostly only protect

VMMs from attacks from a malicious guest VM, without consider-

203

andrew
Text Box
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
SOSP '11, October 23-26, 2011, Cascais, Portugal.
Copyright © 2011 ACM 978-1-4503-0977-6/11/10 ... $10.00.

ation of preventing an operator with control of management tools

and control VM from tampering with or stealing users’ confidential

data, especially external storage such as virtual disks. Further, they

require changes to the core parts of a VMM [68] or even a complete

reconstruction of VMMs [31, 60], thus may pose a notable barrier

for adoption in commercially-successful virtualized cloud.

In this paper, we propose an alternative approach that protects

leased virtual machines in a multi-tenant cloud. Our approach

uses the concept of nested virtualization [23, 13] and introduces

a tiny security monitor called CloudVisor underneath a mostly

unmodified commodity VMM. Unlike previous approaches that

incorporate nested virtualization functionality into a commodity

VMM [13] for the purpose of multiple-level virtualization, Cloud-

Visor decouples the functionality of nested virtualization from a

commodity VMM and makes itself very lightweight in only sup-

porting one VMM.

CloudVisor is responsible for protecting privacy and integrity of

resources owned by VMs, while the VMM is still in charge of al-

locating and managing resources for VMs atop. Such a separa-

tion between security protection and resource management allows

CloudVisor and the VMM to be independently designed, verified

and evolved. As the essential protection logic for VM resources is

quite fixed, CloudVisor can be small enough to verify its security

properties (e.g., using formal verification methods [34]).

CloudVisor interposes interactions between a VMM and its guest

VMs for privacy protection and integrity checking. To protect

memory owned by a VM, CloudVisor tracks memory pages of a

VM and encrypts page content upon unauthorized mappings from

the VMM and other VMs. The privacy of Disk I/O data is pro-

tected using whole virtual disk encryption: disk I/O between VMM

and guest VMs are intercepted and encrypted on disk write and de-

crypted on disk read. To defend against tampering with encrypted

pages and persistent storage data, CloudVisor uses the MD5 hash

algorithm and Merkle tree [42] to do integrity checking of disk data

during decryption.

In the software stack, only CloudVisor is within the trusted com-

puting base, while other software such as the VMM and the man-

agement VM are untrusted. The integrity of CloudVisor can be en-

sured using the authenticated boot provided by the trusted platform

module (TPM) [66]. To simplify the development and deployment

of CloudVisor, we leverage Intel Trusted eXecution Technology

(TXT) [27], which allows launching and measuring the CloudVi-

sor after the platform has been initialized. In this way, CloudVisor

is freed from most hardware initialization work.

We have designed and implemented a prototype system, based on

commercially-available hardware support for virtualization, includ-

ing ISA virtualization (i.e., VT-x [45]), MMU virtualization (i.e.,

EPT), I/O virtualization (e.g., IOMMU [5], SR-IOV [18]) and dy-

namic platform measurement (e.g., Intel Trusted eXecution Tech-

nology [27]). CloudVisor comprises around 5.5K LOCs and sup-

ports running mostly unmodified1 Xen VMM with multiple Linux

and Windows as guest OSes. Our performance evaluation using a

range of benchmarks shows that CloudVisor incurs moderate slow-

down for I/O intensive applications (ranging from 4.5% to 54.5%)

and very small slowdown for other applications (ranging from 0.1%

to 16.8%) compared to vanilla Xen.

1An optional patch with about 100 LOCs to reduce unnecessary
VM exits, similar to the optimization in Turtles [13].

In summary, this paper makes the following contributions:

• The case of using nested virtualization to separate secu-

rity protection from resource management of virtualization,

which is backward-compatible with commercial virtualiza-

tion stack and significantly reduces the TCB size from mil-

lions lines of code to only several thousand lines of code.

• A set of protection techniques that provide whole VM pro-

tection against adversaries who are even with full control of

a VMM and the management VM.

• A prototype implementation that leverages existing hardware

support for virtualization, which is demonstrated with low

performance overhead.

The rest of this paper is organized as follows. The next section

identifies threats to virtualized multi-tenant cloud and describes the

threat model under CloudVisor. Section 3 first discusses our de-

sign goals, and then describes our approaches as well as the over-

all architecture of CloudVisor. Section 4, 5 and 6 describe how

CloudVisor secures CPU states, memory pages and disk storages

accordingly. The implementation issues and status are discussed in

section 7. We then present performance evaluation results in sec-

tion 8, and discuss the current limitation and possible future work

in section 9. Finally, section 10 relates CloudVisor with other liter-

atures and section 11 concludes this paper.

2. MOTIVATION AND THREAT MODEL
This section first identifies the attack surface of a virtualized multi-

tenant cloud and then discusses the threat model under CloudVisor.

2.1 Attack Surface of Virtualization Layer

VMM

Hardware

Management
VM Kernel

G
u
e
s
t

V
M

G
u
e
s
t

V
M

G
u
e
s
t

V
MOperator

Management
Tools

attacking
surface

attack

3

2

1

Figure 1: Typical virtualized architecture and attack surface in

multiple tenant cloud.

Virtualization [24] has a good engagement with cloud computing

due to its features in server consolidation, power saving and eased

management. Many cloud providers have used virtualization in its

cloud infrastructure and leasing resources to users in the form of

virtual machine (a form of “Infrastructure as a Service” cloud),

such as Amazon EC2 [6], Eucalyptus [46], FlexiScale [20] Nim-

bus [64] and RackSpace Cloud [62].

Virtualization might have both positive [16] and negative [22] im-

pacts on the security and trustworthiness of the cloud. On the pos-

itive side, many “out-of-the-box” security techniques could now

be implemented in the virtualization layers, making them more re-

silient to attacks to the VM [16]. On the negative side, commodity

204

virtualization software stack is usually huge and most of them are

within the trusted computing base.

Figure 1 depicts the typical (hostless) architecture of virtualization

and the attack surface in a multi-tenant cloud. As tenant VMs are

usually managed by the management tools via over-powerful priv-

ileged interfaces to the VMM, they could be arbitrarily inspected

and tampered with by not only the VMM but also the manage-

ment tools in the management VM. In principle, operators should

be granted with only the least privilege and will not be able to tam-

per with tenant VMs. In practice, however, operators are usually

granted with access rights more than they should have, as it is usu-

ally difficult to define the proper privilege precisely [35]. Conse-

quently, improperly granting access rights to users’ data could eas-

ily put users’ data under threat (i.e., attack surface 3). For example,

a cloud operator might leverage the internal maintenance interface

to dump a VM’s memory image for offline analysis, stealthily mi-

grate/clone a VM to a shadow place for replaying, or even copy

away all VM’s virtual disks.

Worse even, as more and more functionalities being integrated into

the virtualization layer such as live migration, security monitoring

and snapshot, the TCB, which includes VMM, management VM

and management tools, is exploding in both size and complexity.

For example, the TCB size for Xen, including the VMM, manage-

ment VM and tools has been steadily increasing across each major

release, as shown in Table 1. An adversary could mount attacks to

the virtualization layer by exploiting the inside security vulnerabili-

ties (attack surface 1 and 2). Here, we deliberately separate internal

(surface 3) and external attacks (surface 1 and 2) as in typical data-

center there are usually physically separated network for internal

operators and for external accesses. Usually, internal attacks are

much more powerful and easy to mount if a cloud operator tends to

be malicious.

However, most previous efforts only aim at protecting against at-

tack surface 1 and 2 by securing [60, 68] or removing [31] the vir-

tualization layer, without defending attackers leveraging attack sur-

face 3. For example, they cannot defend against attacks leveraging

legal maintenance operations such as dump/clone/migrate a VM or

virtual disks. Further, they require a reconstruction of the cloud

software stack. To this end, it is critical to provide multi-tenant

cloud with an approach that defending against attackers penetrated

through the three attack surfaces from tampering with tenant VMs,

yet with a small trusted computing base, which motivates the de-

sign and implementation of CloudVisor.

VMM Dom0 Kernel Tools TCB

Xen 2.0 45K 4,136K 26K 4,207K

Xen 3.0 121K 4,807K 143K 5,071K

Xen 4.0 270K 7,560K 647K 8,477K

Table 1: TCB of Xen virtualization layer (by Lines of Code,

counted by sloccount).

2.2 Assumptions and Threat Models
Adversaries: Given that there are multiple attack surfaces in a

multi-tenant cloud, we consider both local adversaries and remote

adversaries and assume that they have full control over the VM

management stack including the commodity hypervisor, the man-

agement VM and tools. An adversary may leverage the powerful

management interfaces to try to dump a tenant VM’s memory, steal

the VM’s virtual disks, or even inject code to the VM.

Assumptions: We assume the cloud provider itself does not in-

tend to be malicious or with the goal of tampering with or steal-

ing its tenant’s sensitive information. Instead, the threat may come

from the intentional or unintentional mis-operations from its oper-

ators [26, 63]. Hence, we assume there will be no internal physical

attacks such as placing probes into the buses and freezing all main

memory and reading out the data. Actually, typical data-centers

usually have strict control of physical accesses as well as surveil-

lance cameras to monitor and log such accesses. However, as the

disk storage might be easily accessible by operators through the

VM management stack or even physical maintenance (such as disk

replacements), we assume that the external disk storage is not trust-

worthy.

Security Guarantees: The goal of CloudVisor is to prevent the

malicious VM management stack from inspecting or modifying a

tenant’s VM states, thus providing both secrecy and integrity to

a VM’s states, including CPU states, memory pages and disk I/O

data. CloudVisor guarantees that all accesses not from a VM it-

self (e.g., the VMM, other VMs), such as DMA, memory dumping

and I/O data, can only see the encrypted version of that VM’s data.

Upon illegal tampering with a VM’s states, CloudVisor uses cryp-

tographic approaches to verify the integrity, ordering and freshness

of a VM’s data and fail-stops a VM upon tampering.

A malicious VMM cannot issue arbitrary control transfers from the

VMM to a tenant’ VM. Instead, all control transfers between the

VMM and a VM can only be done through a well-defined entry

and exit points, which will be mediated by CloudVisor. The VMM

cannot fake an execution context to let a VM run upon. Actually,

a VM’s execution context is securely saved and restored by Cloud-

Visor during a control transfer.

With platform measurement techniques such as Intel Trusted eX-

ecution Technology and TPM, CloudVisor allows cloud tenants to

assure that their VMs are running “as is” on machines protected by

CloudVisor. Hence, attackers cannot alter the booting environment

or fool a tenant’s VM to run in a wrong execution mode such as a

para-virtualized mode and a different paging mode, which will be

detected and refused by CloudVisor.

Non-Security Goals: As a tenant’s VM still uses services provided

by the VMM and its management VM and tools, CloudVisor cannot

guarantee availability and execution correctness of a tenant’s VM.

However, we believe this is not an issue for multi-tenant cloud, as

the primary goal of cloud providers is featuring utility-style com-

puting resources to users with certain service-level agreement. Pro-

viding degraded or even wrong services will be easily discovered

by customers and the misbehaving provider or operator will soon

be dumped out of the market.

CloudVisor does not guard against side-channel attacks in the

cloud [49], which may be hard to deploy and have very limited

bandwidth to leak information. However, CloudVisor does lever-

age advanced hardware features like AES instructions in recent

CPUs [4] to prevent leakage of crypto keys [56]. Further, many

security-critical applications such as OpenSSL have builtin mecha-

nism to defend against side-channel attacks.

CloudVisor also provides no protection to interactions of a VM

with its outside environments. Hence, the security of a tenant’s VM

is ultimately limited by the VM itself. For example, an adversary

may still be able to subvert a VM by exploiting security vulnerabil-

205

ities inside the VM. This can be usually mitigated by leveraging the

traditional security-enhancing mechanisms for applications and op-

erating systems. CloudVisor does guarantee that, adversaries con-

trolling a subverted VM or even having subverted the management

software or the VMM, cannot further break the security protection

by CloudVisor to other VMs in the same machine.

3. GOALS AND APPROACHES
This section first illustrates the design goals of CloudVisor, and

then describes approaches to achieving the goals. Finally, we

present the overall architecture of CloudVisor.

3.1 Design Consideration
The primary goal of CloudVisor is to provide transparent security

protection to a whole VM under existing virtualized platforms, yet

with minimal trusted computing base:

Whole-VM protection: We choose the protection granularity at

the VM level for three considerations. First, many cloud platforms

such as Amazon EC2 choose to provide tenants with resources in

the form of VMs (i.e., Infrastructure as a Service). Second, the VM

is with a simple and clean abstraction and the interactions between

a VM and the VMM are well-defined, compared to those between

a process and an operating system, which usually is with several

hundreds to thousands of APIs with complex and subtle semantics

(e.g., ioctl). Finally, protection at the VM level is transparent to

guest OS above. By contrast, providing protection at the process

level (e.g., CHAOS [15, 14], Overshadow [17] and SP
3 [71]) is

usually closely coupled with a specific type of operating system and

requires non-trivial efforts when being ported to other operating

systems.

Non-intrusive with Commodity VMMs: It is important to design

a security-enhancing approach to working non-intrusively with ex-

isting commercially-available virtualization stack. Hence, Cloud-

Visor should require minimal changes to both the VMM and the

management software. This could enable rapid integration and de-

ployment of CloudVisor to existing cloud infrastructure. Further,

CloudVisor can then be separately designed and verified, and be

orthogonal to the evolvement of the VMM and management soft-

ware.

Minimized TCB: Prior experiences show that a smaller code size

usually indicates more trustworthy software [21, 58]. Hence, the

TCB size for CloudVisor should be minimal so that CloudVisor

could be verified for correctness. For example, recent formal ver-

ification effort [34] has shown its success in a general-purpose OS

kernel with 8,700 LOCs.

3.2 Approach Overview
Unlike traditional virtualization systems, CloudVisor excludes a

VMM and the management VM out of the TCB. Instead, Cloud-

Visor executes in the most privileged mode of a machine and mon-

itors the execution of and interactions between the VMM and the

hosted VMs, both of which execute in less privileged modes. As

the resources of a VM mainly comprise of CPU, memory and I/O

devices, CloudVisor is designed to protect such resources accord-

ingly (as shown in Table 2):

Transparent Interposition using Nested Virtualization: To

make CloudVisor transparent with existing virtualization stack, we

use nested virtualization [23, 13] to give the illusion that a VMM

Category Protecting Approaches

CPU

states

Interpose control transfers between VMM and VM

Conceal CPU states from the VMM

Memory

pages

Interpose address translation from guest

physical address to host physical address

Persistent

data

Transparent whole VM image encryption

Decrypt/encrypt I/O data in CloudVisor

Bootstrap
Intel TXT to late launch CloudVisor

Hash of CloudVisor is stored in TPM

Table 2: Methodologies to protect a tenant VM.

still controls all resources of VMs. To achieve this, CloudVisor

interposes all control transfer events between the VMM and its

VMs (section 4). Upon interposition, CloudVisor does necessary

transformation and protection, and forwards the (virtualized) events

to the VMM to handle. For example, upon an interrupt and depend-

ing on the context, CloudVisor will save general-purpose registers

and only provide necessary ones to the VMM, to limit information

being exposed to the VMM.

VM-based Memory Ownership Tracking: To protect a VM’s

memory from inspection by the VMM and the management VM,

CloudVisor interposes address translation from guest physical ad-

dress to host physical address. Specifically, CloudVisor tracks the

ownership of each page and each page table maintained by the

VMM (i.e., extended page table, EPT 2) (section 5). CloudVisor

disallows the VMM from directly overwriting the EPT. On inter-

cepting updates to the VMM’s page table, CloudVisor checks if

the ownership of the page matches with that of the page table and

encrypts the page content if there is a mismatch.

One alternative approach to protecting a guest VM’s memory might

be multi-shadowing [17], which provides both encrypted version

(seen by the VMM) and plain version (seen by the guest VM) of a

page. However, this would require two EPTs for each VM and two

copies of some pages, which causes additional memory pressure.

Further, the VMM sometimes needs to access some guest VMs’

memory in plain form, which requires interposition and protection

by CloudVisor (section 5.3). Simply providing encrypted versions

of pages to the VMM would corrupt the whole system.

I/O Protection through Encryption: CloudVisor currently pro-

vides protection to virtual disks owned by a VM. For network de-

vices, as typical security-sensitive applications have already used

encrypted message channels such as SSL, CloudVisor does not pro-

vide cryptography protection to such devices. To protect virtual

disks, CloudVisor transparently encrypts and decrypts data during

each disk I/O access by a VM, including both port-based I/O and

direct memory access (DMA) (detailed in section 6). The integrity

of disk data is ensured using the MD5 hash algorithm and Merkle

tree [42] to do integrity checking (section 6). To prevent a VM, the

VMM or the management VM from issuing DMA attacks, Cloud-

Visor maintains a per-VM I/O access permission table (i.e., by ma-

nipulating the IOMMU 3) and only grants DMA accesses to their

own memory regions.

Late Launch to Reduce CloudVisor Complexity: As CloudVi-

2Translates guest physical address to host physical address.
3IOMMU translates the guest physical I/O addresses to host phys-
ical addresses on an memory access issued by I/O devices.

206

sor runs underneath the VMM, CloudVisor has to implement many

machine initialization procedures if it is booted before the VMM.

This could increase the complexity and also the code base of Cloud-

Visor. Hence, CloudVisor leverages existing hardware support for

dynamic measurement [27, 9] and boots CloudVisor after the sys-

tem has finished its booting process. Specifically, upon receiving

requests of booting CloudVisor from the VMM, CloudVisor boots

itself and the processor will issue a measurement on the integrity

of CloudVisor, which prevents the VMM from booting a tampered

version of CloudVisor. The measurement results will be used by

cloud tenants as evidences in remote attestation.

3.3 The CloudVisor Architecture

Metadata
File

TPM/TXT

CloudVisor

V
M
M

C
o
n
t
r
o
l

V
M

Auth. boot

G
u
e
s
t

V
M

Platform
Attestation

Encrypted
Image

G
u
e
s
t

V
M

Figure 2: Overall architecture of CloudVisor.

Figure 2 shows the overall architecture of CloudVisor, which is

a featherweight security monitor that runs at the most privileged

level, while the commodity VMM is deprivileged into the less priv-

ileged mode together with the control VM and guest VMs. Cloud-

Visor enforces the isolation and protection of resources used by

each guest VM and ensures the isolation among the VMM and its

guest VMs. Traditional virtualization functionalities, such as re-

source management, VM construction and destruction, scheduling,

are still done by the VMM. CloudVisor transparently monitors how

the VMM and the VMs use hardware resources to enforce the pro-

tection and isolation of resources used by each guest VM.

Figure 2 also depicts how cloud users could use CloudVisor to se-

curely deploy their services. A cloud tenant may first authenticate

the cloud platform by using TCG’s attestation protocol with TPM

to know if the platform is running a known version of CloudVi-

sor. Then, the tenant may send VM images and the corresponding

metadata file to run in the cloud. Similar to Amazon Machine Im-

ages [7], the image is encrypted using a random symmetric key.

The public key will then be used to encrypt the symmetric key

and the users will send both cipher-texts to CloudVisor. Cloud-

Visor controls the private key of the platform and uses it to de-

crypt the images for booting. In the metadata file for the VM im-

age, there is some information (such as hashes and initial vectors)

guarding the integrity, ordering and freshness of the VM images.

The metadata also contains information describing the execution

modes (e.g., paging mode) of this VM. Upon launching of a VM,

CloudVisor will use this information to ensure that the VM image

is executed “as is”.

4. SECURING CONTROL TRANSITION

WITH NESTED VIRTUALIZATION

CloudVisor interposes control transitions between a VMM and its

guest VMs. With hardware support for virtualization (i.e., VT-

x [45] or SVM [9]), such control transitions are abstracted with

VM exit (transitions from a VM to the VMM) and VM entry (tran-

sitions from the VMM back to a VM). CloudVisor transparently

secures such transitions using nested virtualization [23, 13] by vir-

tualizing such events and doing necessary security protection. This

section first introduces the necessary background information with

hardware-assisted (nested) virtualization using Intel’s VT-x as an

example, and then describes how CloudVisor leverages it to secure

control transitions.

4.1 Hardware-assisted (Nested) Virtualiza-

tion

VMM

VM

Kernel

User

host mode

VM_Entry VM_Exit

guest mode

unprivileged
mode

privileged
mode

CloudVisor

VM

Kernel

User

VMM

VM_ExitVM_Entry1

2

1
2

3

4

Traditional

Virtualization
Nested Virtualization
with CloudVisor

Figure 3: The general architecture of hardware-assisted virtu-

alization (left) and how CloudVisor leverages it to secure con-

trol transfer using nested virtualization.

The left part of Figure 3 shows the general architecture of

hardware-assisted virtualization, where the VMM runs in host

mode, and the VMs run in guest mode. The former mode is used by

the VMM and instructions are natively executed. The latter mode

is used by guest VMs, where privileged instructions that access

critical hardware resources (e.g., I/O resources) will cause a con-

trol transition from guest mode to host mode (a VM exit, step 1).

The VMM will handle the event (e.g., by emulating the violating

instruction) and then use VM entry to transfer the control back to

guest mode (step 2), where the guest VM resumes its execution.

For each virtual CPU of a guest VM, an in-memory VM con-

trol structures (VMCS in Intel’s terminology) is maintained by the

VMM. The VMCS saves the states for the VMM and the guest VM,

as well as controls which guest events should cause VM exit.

With nested virtualization, CloudVisor now runs in host mode,

while both the VMM and the guest VMs are put in guest mode,

as shown in the right part of Figure 3. To enforce isolation between

a VMM and its guest VMs, the VMM runs in a separated context

of guest mode. Note that, placing the VMM into a less privileged

mode will not degrade the security of the VMM, as CloudVisor will

ensure strict isolation among the VMM and its VMs.

4.2 Securing Control Transition with Nested

Virtualization
Enabling Interposition: CloudVisor maintains a VMCS for the

VMM to control the types of instructions or events that will cause

VM exit when executing in the VMM’s context. Currently, the

VMM only gets trapped on three types of architectural events relat-

ing to resource isolation: 1) NPT/EPT faults, which are caused by

faults on translation from guest physical address to host physical

address; 2) Execution of instructions in the virtualization instruc-

207

tion set such as VMRead/VMWrite 4; 3) IOMMU faults, which is

caused by faults during the translation from device address to host

physical address. Other architectural events like page faults and in-

terrupts do not cause traps to CloudVisor and are directly delivered

to the VMM.

The VMCS for each guest VM is still created and maintained by the

VMM. When a VMCS is to be installed on the CPU, CloudVisor

overwrites some critical control fields. For instance, the entry ad-

dress of VM exit handler is specified in the VMCS. To interpose con-

trol transition, CloudVisor records the entry address and replaces it

with the entry address of the handler in CloudVisor. As a result, all

VM exits from a guest VM is first handled by CloudVisor and then

propagated to the VMM.

Securing Control Transition: CloudVisor interposes between

guest VMs and the VMM on VM exit for mainly three purposes:

1) protecting CPU register contexts when a VM is interrupted; 2)

manipulating address translation to enforce memory isolation (de-

tailed in section 5); 3) intercepting and parsing I/O instructions to

determine the I/O buffer addresses in a VM (detailed in section 6).

As shown in the right part of Figure 3, CloudVisor interposes each

VM exit event (step 1), protects CPU contexts and parses I/O in-

structions if necessary, and then forwards the VM exit event to the

VMM (step 2). It then intercepts the VM entry request from the

VMM (step 3), restores CPU contexts and resumes the execution

of guest VM (step 4) accordingly.

Both external interrupts and certain instruction execution can cause

VM exits. For external interrupts, the VMM does not need the

general-purpose registers to handle the event. In that case, Cloud-

Visor saves and clears the content of general-purpose registers be-

fore propagating the event to the VMM. On VM entry, CloudVisor

restores the saved registers for the guest VM and resumes the VM.

For VM exits caused by synchronous instruction execution, Cloud-

Visor only resets a part of the register contexts and keeps the states

that are essential for the event handling. For instance, the program

counter and some general-purpose registers in an I/O instruction

should be exposed to the VMM.

CloudVisor ensures the CPU context on VM entry is exactly the

same with the context on last VM exit for each virtual CPU. Hence,

the VMM is unable to dump CPU register information by triggering

arbitrary interrupts, redirect control to arbitrary code in the guest

VM, or tamper with the CPU context of the guest VMs.

4.3 Dynamic Nested Virtualization
Though, CloudVisor runs underneath the VMM, CloudVisor does

not contain machine bootstrap code for the sake of small TCB. Con-

sequently, it is booted after the VMM and the management VM

have been initialized. When CloudVisor boots, it runs in host mode

and demotes the VMM to guest mode, thus effectively virtualizes

the VMM on the fly. To ensure a tamper-proof dynamic nested

virtualization, CloudVisor adopts dynamic root of trust (such as In-

tel TXT [27] and AMD SVM [9]) to ensure the processors are in

a known clean state when they initialize CloudVisor. The SHA-1

hash of CloudVisor binary is calculated and stored in the TPM [66]

for future remote attestation. This is done in the macro instruction

4
VMRead and VMWrite instructions read/write VM control struc-

tures (VMCS)

such as SINIT (Intel TXT) and SKINIT (AMD SVM) that are hard-

wired in the processor. For multi-processor or multi-core platforms,

all the processors are synchronized before launching CloudVisor

to ensure the all the processors are nestedly virtualized simultane-

ously.

5. MEMORY ISOLATION
Traditional

Virtualization

VA

GPA

VA

GPA

VMM

VA

HPA'

HPA

HPA'

EPT-v (RO)

VA

HPA

EPT-x

CloudVisor

HPA

EPT

VMM

Nested Virtualization

with CloudVisor

Guest Mode

Host Mode

VMVA: Virtual Addr

GPA: Guest Physical Addr

HPA: Host Physical Addr

VA

HPA

VM

Figure 4: The general structure of extended paging (left) and

how CloudVisor leverages it for memory isolation.

To provide efficient memory isolation among CloudVisor, the

VMM and guest VMs, CloudVisor uses commercially-available ex-

tended paging or nested paging, which provides hardware support

for MMU virtualization.

5.1 Isolation with Nested/Extended Paging
The left part of Figure 4 shows the intended usage of extended pag-

ing in virtualized systems: the VMM itself uses a translation table

that directly converts virtual addresses (VA) to host physical ad-

dresses (HPA) and controls how VMs translate guest physical ad-

dresses (GPA) to HPA using an extended page table (EPT). The

guest VM manages the address translation from VA to GPA with

the conventional page table.

When CloudVisor is booted, the VMM is demoted to run in the

guest mode. An extended page table (EPT) is created for the VMM

and the address translation of the VMM is then configured to use

a two-step address translation that uses page table (VA to GPA)

and extended page table (EPT) (GPA to HPA). As shown in the

right part of Figure 4, CloudVisor maintains an identity GPA-to-

HPA mapping (i.e., HPA’ equals to HPA) EPT for the VMM (called

EPT-x). Thus, the VMM is unaware of the memory virtualization

by CloudVisor. CloudVisor removes its own memory from EPT-x

to isolate its memory space from the VMM. EPT-x is kept in the

memory space of CloudVisor and is not accessible by the VMM.

The VMM still maintains a GPA-to-HPA’ mapping table (called

EPT-v) for each VM, but is granted with only read permission.

In principle, a guest VM can be configured to use either software

address translation such as shadow page table or hardware-assisted

address translation. The support of software address translation

should be technically doable in CloudVisor but might be more com-

plex. For simplicity, CloudVisor currently only supports platforms

with hardware-assisted address translation. If the VMM tricks a

guest VM into using a software address translation mechanism,

CloudVisor will refuse to attest for the VM.

5.2 Memory Ownership Tracking
To ensure memory isolation among the VMM and its guest VMs,

CloudVisor maintains a table to track the ownership of each phys-

208

ical memory page. The value of the table is the owner ID of the

page. Each VM is assigned with a unique ID when it is booted.

The VMM’s ID is fixed to zero. CloudVisor ensures that a physical

memory page can only be assigned to be one owner at a time.

During system startup, all pages other than those in CloudVisor

are owned by the VMM. When the EPT of a guest VM is loaded

into the processor for the first time, CloudVisor walks through the

whole EPT to find all the mapped pages. These pages are regarded

as being assigned to the guest VM. CloudVisor changes the owner

of these pages to the guest VM, and unmaps it from the EPT of the

VMM so that the VMM cannot access the pages any more. When a

page is unmapped from the EPT, the owner of the page is set to be

the VMM and the page is mapped back in the EPT of the VMM.

Whenever the VMM updates the guest EPT, a page fault in the

EPT (EPT violation in Intel’s term) is raised. CloudVisor handles

the fault by validating the page ownership. If a new mapping is

to be established, CloudVisor ensures that the page to be mapped

belongs to the VMM. CloudVisor unmaps it from the EPT of the

VMM and changes the page owner to the guest VM. If an existing

page is to be unmapped, CloudVisor encrypts the content of the

page, maps it to the EPT of the VMM and changes the page owner

to the VMM. CloudVisor does not allow a page to be mapped in

the same EPT more than once. To remap a page, the VMM has to

unmap it first, and then remap it to the new location.

DMA-capable devices can bypass memory access control enforced

by MMU. To defend against malicious DMA requests, CloudVisor

makes protected memory regions inaccessible from DMA devices

using IOMMU by manipulating the translation from host physi-

cal address to device address. During system startup, CloudVisor

unmaps its own memory in the IOMMU table to prevent DMA re-

quests from accessing the memory. When a guest VM boots up,

CloudVisor also unmaps the VM’s memory in the IOMMU table

used by DMA-capable devices. When the guest VM shuts down,

the pages are returned to the VMM and CloudVisor remaps the

pages in the IOMMU table. If a DMA request is setup to access

memory pages in CloudVisor or guest VMs, an IOMMU fault is

raised and handled by CloudVisor. Currently, CloudVisor simply

denies the request.

5.3 Legal Memory Accesses
Memory isolation mechanism provided by CloudVisor ensures the

entire memory space of a guest VM is inaccessible to the VMM

and the management VM. However, there are several cases where

the VMM and the management VM should be allowed to access

some memory of guest VMs. In such cases, CloudVisor interposes

and assists such accesses to ensure that only minimal insensitive

information will be divulged.

Privileged instructions such as I/O instructions and accesses to con-

trol registers cause traps (i.e., VM exits) that are handled by the

VMM. In some cases the VMM needs to get the instruction opcode

in the guest VM memory to emulate it. During such traps, Cloud-

Visor fetches the privileged opcode and feeds it to the VMM. As

CloudVisor only allows fetching one opcode pointed by the pro-

gram counter, the VMM is unable to trick CloudVisor into fetching

arbitrary non-privileged opcode, nor can it arbitrarily trigger traps

to access opcode.

On a trap, the program counter of the faulting instruction is a vir-

tual address and the memory operands are also presented as virtual

addresses. The VMM needs to walk the page table in the guest VM

to translate the virtual addresses to guest physical addresses, which

are further translated to host physical addresses using the EPT. To

handle this, CloudVisor temporarily allows the VMM to indirectly

read the guest page table entries corresponding to the opcode and

memory operands. Upon a trap caused by the execution of a priv-

ileged instruction, CloudVisor fetches the program counter of the

instruction and parses the instruction to get the memory operand.

CloudVisor walks the page table in the guest VM to get the page

table entries required to translate the program counter and the mem-

ory operands. When the VMM accesses the page table, CloudVisor

feeds it with the previously obtained page table entries. To reduce

overhead associated with privileged instruction emulation, Cloud-

Visor uses a buffer to cache the page table entries for privileged

instructions for each VCPU.

The VMM also needs to get the contents of guest I/O buffers when

emulating I/O accesses. When the VMM accesses I/O buffers, an

EPT fault is raised and CloudVisor handles the fault by copying the

data for the VMM. Specifically, when the VMM copies data to or

from the guest VM, CloudVisor validates that the buffer address in

the guest VM is a known I/O buffer and determines if the buffer is

used for disk I/O (section 6.1).

6. DISK STORAGE PROTECTION
Virtual disks of a VM are also critical resources that demand both

privacy and integrity protection. There are two alternative ways

to protect a virtual disk. The first one is letting a cloud user use

an encrypted file system that guard the disk I/O data at the file-

system level, such as Bitlocker [1] and FileVault [3]. This requires

no protection of disk I/O data by CloudVisor as the disk I/O only

contains encrypted data and the file system itself will verify the

integrity and freshness of disk data.

To provide transparent protection to tenant’s VM, CloudVisor also

provides full-disk encryption and hashing to protect disk data pri-

vacy and integrity. CloudVisor encrypts the data exchange between

a VM and the VMM and verifies the integrity, freshness and order-

ing of disk I/O data.

6.1 Handling Data Exchange
Retrieving I/O configuration information: When a VM boots up,

the guest VM usually probes its I/O configuration space (e.g., PCI)

to identify I/O devices and their ports. The VMM usually virtual-

izes the I/O space and feeds the VM with information of the virtual

devices. CloudVisor interposes the communication to gather the

information of virtual devices plugged into the guest VM. In this

way, CloudVisor knows the I/O ports used by the VM and their

types. Among the I/O ports, CloudVisor treats disk I/O ports dif-

ferently from others such as VGA, network and serial console. All

data exchanged through disk I/O ports are encrypted and hashed

before being copied to the VMM and decrypted before copying

data to a guest VM. CloudVisor does not encrypt or decrypt data

exchanges on other ports (such as NICs).

Interposing I/O requests: To determine if I/O data exchange be-

tween a guest VM and the VMM is legal, CloudVisor intercepts

and parses I/O requests from the guest VM. CloudVisor does not

emulate the I/O requests but only records the requests. By parsing

I/O requests from the I/O instructions, CloudVisor retrieves the in-

formation of I/O port, memory address of the I/O buffer and the

buffer size for further processing.

209

There are two alternative ways to process these I/O requests. The

first one is to “trap and emulate” the requests. To ensure security,

CloudVisor uses a white-list to record the I/O requests and then

propagates them to the VMM, which will handle the requests by

copying the data to/from buffers in the guest VM. The following

data copying will trap (i.e., VM exit) to CloudVisor, which will use

the white-list to validate the data copying. After the data exchange,

the corresponding record will be removed from the list to prevent

the VMM from revisiting the memory pages.

The second approach is using a bounce buffer in CloudVisor to

assist the data exchange. When a guest VM tries to copy data to

the VMM (i.e., an I/O write operation), CloudVisor intercepts the

request, copies the data to the bounce buffer, and then provides the

VMM with a modified I/O request to let the VMM read from the

bounce buffer instead of the guest VM. Similarly, when a VMM

tries to copy data to a guest VM, the data is first written to the

bounce buffer and then read by the guest VM.

In principle, the first “trap and emulate” based approach can handle

both port-based I/O and direct memory access (DMA). However, it

will introduce a large amount of traps (i.e., VM exits) to CloudVisor

if the data is copied in small chunks (e.g., 4 or 8 bytes). A DMA

request that incurs multiple traps will cause non-trivial performance

degradation for I/O intensive applications. Comparing to the first

approach, the bounce buffer approach only incurs one additional

data copy. Hence, CloudVisor uses the first approach for port-based

I/O and the second approach for DMA.

6.2 Disk I/O Privacy and Integrity
CloudVisor uses the AES-CBC algorithm to encrypt and decrypt

disk data in the granularity of disk sectors. A 128-bit AES key is

generated by the user and passed to CloudVisor together with the

encrypted VM image. The storage AES key is always maintained

inside CloudVisor.

At VM bootup time, CloudVisor fetches all non-leaf nodes of

hashes and IVs (Initial Vectors) in the Merkle hash tree and keeps

them as in-memory cache. On disk reads, CloudVisor first hashes

the data block to verify its integrity and then decrypts the disk sec-

tor using the AES storage key and the IV. On disk writes, an IV is

generated for each disk sector if it has not been generated yet. The

data block is hashed and then encrypted using the storage key and

the IV.

As CloudVisor does not control the devices, it cannot read or write

metadata on external storage space. One approach is let CloudVisor

issue shadow DMA requests to the VMM. However, our experience

shows that this sometimes could incur timeout for I/O requests in

a guest VM. Instead, we provide a user-level agent in the manage-

ment VM to assist metadata fetching, updating and caching. The

agent is untrusted as it has the same privilege as other software in

the management VM. If the agent refuses to function or functions

incorrectly, CloudVisor can always detect the misbehavior by vali-

dating the metadata.

As shown in Figure 5, for each disk sector, a 128-bit MD5 hash and

a 128-bit IV are stored in a file stored in the file system of the man-

agement VM. The hash is organized using a Merkle tree to guard

the freshness and ordering of disk data. When launching a guest

VM, the file is mapped into the memory of the agent. The agent

fetches all the non-leaf hashes in the Merkle hash tree and sends

them to CloudVisor. CloudVisor caches the hashes in memory to

virtual
device

hash (leaf)

initial vectors

hash (non-leaf)
CloudVisor

agent

CloudVisor

VMM/Management VM

storage
key

IV buffer

leaf hash

non-leaf hash

root hash

disk image

IO buffer

IO buffer

Guest VM

CloudVisor

6. decrypt

4. hash

3. validate

hash file

2. fetch

1. read

7. copy

5. compare
N/Y

Figure 5: Data flow of disk I/O read.

eliminate further fetches.

On a disk I/O read, the virtual device driver first reads the requested

disk block from the disk image of the VM (step 1). Then the agent

fetches the hash and IV of the requested disk block and puts them

in the hash and IV buffer provided by CloudVisor (step 2), and

the integrity of the fetched hash is validated by CloudVisor (step

3). The MD5 hash of the cipher text is calculated (step 4) and

compared with the fetched hash (step 5). If the computed hash

matches with the store hash, CloudVisor decrypts the data using

the fetched IV and the storage key (step 6). If the data is valid,

CloudVisor copies it to the I/O buffer in the guest VM and removes

the buffer address from the white-list if necessary (step 7). The

disk I/O write operation is similar to read. The difference is that

CloudVisor will generate the IVs and hashes and put it to metadata

file.

The agent leverages the file cache of the operating system to buffer

the most frequently used metadata. In the worst case, for a disk

read, the agent needs two more disk access to fetch the correspond-

ing hash and IV.

Sudden power loss may cause state inconsistency, as CloudVisor

currently does not guarantee atomic updates of disk data, hashes

and IVs. For simplicity, CloudVisor assumes the cloud servers are

equipped with power supply backups and can shutdown the ma-

chine without data loss on power loss. Recent researchers [70] have

also shown that providing atomicity and consistency in a secure file

system is not very difficult. We plan to incorporate such support in

future.

7. IMPLEMENTATION ISSUES AND

STATUS
CloudVisor has been implemented based on commercially-

available hardware support for virtualization, including VT-x [45],

EPT [45], VT-d [5], and TXT [27]. To defend against cache-based

side-channel attacks among VMs [56], CloudVisor uses the AES-

NI instruction set in CPU [4] to do encryption. For simplicity,

CloudVisor currently only supports hardware-assisted virtualiza-

tion. CloudVisor supports Xen with both Linux and Windows as

the guest operating systems and can run multiple uniprocessor and

multiprocessor VMs.

210

7.1 Multiple VMs and Multicore Support
CloudVisor supports multiple VMs to run simultaneously atop

a multiprocessor machine. To support multiprocessor, CloudVi-

sor maintains one VMCS for each CPU core used by the VMM.

All CPU cores shares one EPT for the VMM (i.e., EPT-x) and

CloudVisor serializes accesses from multiple cores to EPT-x. Dur-

ing startup, SINIT/SKINIT uses IPIs (Inter-processor Interrupt) to

broadcast to all CPU cores and launch CloudVisor on all the cores

simultaneously.

7.2 VM Life-cycle Management
CloudVisor can transparently support VM construction and de-

struction, as well as VM save, restore and migration. The follow-

ings briefly describe the involved actions required by CloudVisor

to provide protection to a VM on these operations:

VM construction and destruction: Even if the whole VM image

is encrypted, VM construction can still be supported by CloudVisor

in a transparent way. I/O data are transparently decrypted when it is

copied to guest VM memory. On VM destruction, the access right

of memory pages of the VM is restored to the VMM transparently.

VM snapshot, save, restore: In order to support VM snapshot,

save and restore, guest VM memory integrity and privacy should be

guaranteed when it is on storage space. CloudVisor uses per-page

encryption and hashing to protect memory snapshot. Similar to the

protection on the disk image, the memory contents are hashed at

the granularity of page. The hashes are organized as a Merkle tree

and stored together with an array of IVs.

When the management VM maps and copies the VM memory for

saving, the operation is not initiated by I/O instructions of the VM

itself. CloudVisor would not be able to find a corresponding entry

in the white-list. In that case, CloudVisor would encrypt the re-

quested page with the AES storage key and a newly generated IV.

The VMM will get an encrypted memory image. When restoring

the memory image, the VMM copies the encrypted memory im-

age into guest memory space. CloudVisor finds the corresponding

storage key of the VM, fetches the IVs and hashes of the memory

image and decrypts the pages.

VM migration: VM migration procedure is similar to VM save

and restore, but requires an additional key migration protocol.

CloudVisor on the migration source and destination platform needs

to verify each other before migrating the storage key and root hash.

The verification procedure is similar to the remote attestation pro-

cedure between CloudVisor and the cloud user, which is a standard

remote attestation protocol from TCG [52].

7.3 Performance Optimization
Boosting I/O with hardware support: CloudVisor currently sup-

ports virtualization-enabled devices such as SR-IOV NICs, direct

assignment of devices to a VM and virtualizing traditional devices.

For the first two cases, as most of operations are done in a VM it-

self without interventions from the VMM, CloudVisor mostly only

needs to handle the initialization work and does very little work

when the devices are functioning.

Reducing unnecessary VM exits: On Intel platform, we found

that a large amount of VM exit events are due to VM read and VM

write instructions. The VMM intensively uses these instructions to

check and update the states of guest VMs. These instructions al-

ways cause VM exits if not being executed in host mode. The large

amount of VM exits would bring notable performance overhead.

To remedy this, CloudVisor provides an optional patch to Xen that

replaces the VM read and VM write instructions with memory ac-

cesses to the VMCS, similar to the method used in [13]. Note that,

adding an in-memory cache for VMCS will not introduce security

vulnerabilities, as CloudVisor always validates the integrity of a

VMCS when the VMCS is loaded into CPU.

7.4 Key Management
Currently, CloudVisor uses a simple key management scheme by

using the cryptography key within VM images. The VM key is

encrypted using the public key of a machine (e.g., storage root

key) so that the VM images can only be decrypted and verified

by a know version of CloudVisor verified using authenticated boot

by the trusted platform module (TPM) [66] and Intel’s TXT [27].

When a VM is being launched, the encrypted VM key will be

loaded into CloudVisor’s memory and decrypted using the public

key of the platform (e.g., storage root key in TPM). The decrypted

VM key will then be used to encrypt/decrypt the data exchange

between the VMM and the guest VM. To ease users’ deployment,

we also provide a user-level tool to convert a normal VM image

to the encrypted form and generate the metadata file. Note that

the key management scheme is orthogonal to the protection means

in CloudVisor and can be easily replaced with a more complex

scheme.

7.5 Soft and Hard Reset
An attacker might issue a soft reset that does not reset memory and

try to read the memory content owned by a leased VM. In such

cases, the reset will send a corresponding INIT signal to the pro-

cessor, which will cause a VMX exit to CloudVisor. CloudVisor

will then scrub all memory owned by the leased VMs and self-

destruct by scrubbing its own memory. Similarly, if the VMM or

a VM crashes, CloudVisor will do the same scrubbing work upon

intercepting the events. For a hard reset, as the memory will be

lost due to power loss, CloudVisor simply post the hard rest sig-

nals to CPUs. In short, CloudVisor uses a fail-stop manner to de-

fend against possible attacks during hard and soft reset as well as

crashes.

7.6 Implementation Complexity
We have built a prototype of CloudVisor based on commercially-

available hardware support for virtualization. Our prototype con-

sists of a set of event handlers for privileged operations (e.g., VM

exit and EPT fault), a tiny instruction interpreter, and an AES li-

brary for encryption. The code base is only around 5.5K lines of

code (LOCs), which should be small and simple enough to ver-

ify. There is also an untrusted user-level CloudVisor agent in the

QEMU module of Xen. The agent consists of around 200 LOCs

and handles the management of hashes for pages and I/O data.

CloudVisor supports Xen with both Linux and Windows as the

guest operating systems. CloudVisor is mostly transparent to Xen

with an optional patch with about 100 LOCs to Xen for Intel plat-

form. Multiple unmodified Linux and Windows VMs can run with

uniprocessor or multiprocessor mode simultaneously atop Cloud-

Visor. CloudVisor could also transparently support VMMs other

than Xen, as it makes little assumption on the VMM, which will be

our future work.

8. PERFORMANCE EVALUATION

211

We evaluated the performance overhead of CloudVisor by compar-

ing it with vanilla Xen using a set of benchmarks. As we did not

have a machine with all features required by the current implemen-

tation, we used two machines to demonstrate the functionalities of

CloudVisor separately. The first machine is equipped with an Intel

Core2 Quad processor. The chipset supports Intel TXT [27] and has

a TPM chip installed, but without EPT support [45]. This machine

is used to demonstrate how CloudVisor dynamically establishes a

trusted execution environment after the boot of Xen. We use a Dell

R510 server as the second machine, which is equipped with two

SR-IOV NICs connected with one Gigabyte Ethernet. This ma-

chine has a 2.6 GHz 4-core/8-thread Intel processor with VT-x,

EPT and AES-NI support and 8 GB physical memory. Although

verified separately, the evaluation of functionality and performance

should still be valid as TXT and TPM are only effective at booting

time and VM launch time. CloudVisor has no interaction with TXT

and TPM during normal execution time.

We compare the performance of Linux and Windows VMs runs

upon CloudVisor, vanilla Xen-4.0.0. XenLinux-2.6.31.13 is used

as Domain0 kernel. Each VM is configured with one or more vir-

tual CPUs, 1 GB memory, a 4 GB virtual disk and a virtual NIC.

The VMs run unmodified Debian-Linux with kernel version 2.6.31

and Windows XP with SP2, both are of x86-64 version.

The application benchmarks for Linux VMs include: 1) Kernel

Build (KBuild) that builds a compact Linux kernel 2.6.31 to mea-

sure the slowdown for CPU-intensive workloads; 2) Apache bench-

mark (ab) on Apache web server 2.2.15 [10] for network I/O inten-

sive workloads; 3) memcached 1.4.5 [19] for memory and network

I/O intensive workloads; 4) dbench 3.0.4 [65] for the slowdown of

disk I/O workloads. SPECjbb [59] is used to evaluate the server

side performance of Java runtime environment in the Windows

VM. To understand the overhead in encryption and hashing and the

effect of the VM read and VM write optimization, we also present

a detailed performance analysis using KBuild and dbench. We fur-

ther evaluate the performance and scalability of CloudVisor by run-

ning KBuild in multicore and multi-VM configurations. Finally, we

use lmbench-3.0 [41] to quantify the performance loss incurred in

primitive operating system operations. Each test were ran five times

and the average result using performance slowdown (calculated us-

ing (Time(new) - Time(old))/Time(old)) is reported. Throughout

the evaluation, hardware cryptographic instructions (Intel AES-NI)

are used to perform the AES encryption and decryption.

8.1 Performance of Uniprocessor VMs
We use two applications to quantify the performance slowdown of

uniprocessor VMs underlying CloudVisor. For KBuild, we build a

compact kernel by running “make allnoconfig” and record the time

spent to complete the compilation. For Apache, we use Apache

Benchmark (ab) to issue 10,000 requests with concurrency level

500 to request a 4 Kbyte file from a client machine, and collect

its transfer rate. For memcached, we use a remote client to is-

sue requests to a memcached server, which is listening to a UDP

port. For SPECjbb, we use the standard testing script of SPECjbb

to evaluate the average number of business operations for eight data

warehouses on a Windows XP VM.

As shown in Figure 6, for KBuild, the performance slowdown is

relatively high (6.0%), as there are some disk I/O requests associ-

ated when reading files from disks and writing files back. Disk I/O

operations in CloudVisor requires interposition and cryptographic

operations, which are the major source of slowdown. For Apache,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

kbuild apache SPECjbb memcached

S
lo

w
d

o
w

n
 c

o
m

p
a

re
d

 t
o

 X
e

n

6.0%
96 0.2%11471 2.6%31253 0.1%44825

Xen
CV

Figure 6: Slowdown for Kernel Build (KBuild), Apache,

SPECjbb and memcached. The values shown in the bar indicate

the execution time (s), transfer rate (KB/s), score and requests,

accordingly.

as it mostly involves networked I/O which requires no intervention

by CloudVisor, CloudVisor incurs only 0.2% slowdown. For mem-

cached, the performance slowdown is also quite small (0.1%). This

is because most of the operations are in memory and there are only

a small amount of disk I/O requests. Hence, it rarely traps to Cloud-

Visor. The performance overhead for SPECjbb is around 2.6% as

it involes very few I/O operations. For all applications, most of

the performance slowdown comes from the additional VM exits to

CloudVisor and the emulation of some privileged instructions (such

as disk I/O operations).

 0

 0.5

 1

 1.5

 2

1 2 4 8 16 32

S
lo

w
d
o
w

n
 c

o
m

p
a
re

d
 t
o
 X

e
n

Number of clients

4.5%520
15.9%

523
16.7%

516

42.9%

465

41.4%

441

54.5%

359

Xen
Cloudvisor

Figure 7: Performance slowdown of CloudVisor on dbench

from 1 concurrent client to 32. The data on the left bar shows

the raw throughput in MB/s.

I/O Performance: As disk I/O is likely a performance bottle-

neck in CloudVisor due to the cryptographic operations, we use

dbench as a worst case benchmark to quantify the incurred slow-

down. dbench mimics the I/O pattern of real applications that issues

POSIX calls to the local filesystem, which taxes the I/O module in

CloudVisor.

As shown in Figure 7, when the number of clients is small, dbench

experiences relative small performance slowdown (4.5%, 15.9%

and 16.7% for 1, 2 and 4 clients accordingly), due to the fact that

the filesystem cache for IVs and hashes in the control VM has rela-

tively better locality. However, when the number of clients is larger

than four, the interference among clients causes worse locality for

IVs and hashes, thus incurs large performance slowdown. This can

either be fixed by increasing the filesystem cache in the control VM

for a machine with abundant memory or integrating an intelligent

cache in the untrusted user-level agent and CloudVisor.

212

Analyzing the Performance Slowdown: To understand the ben-

efit of using the VM exit optimization, we profiled the execution

of KBuild. We first collected the statistics of VM exit in CloudVi-

sor and observed 4,717,658 VM exits, which accounted for around

3.31s out of 102s spent on VM exit handlers in CloudVisor. In con-

trast, before the VM exit optimization, we observed 9,049,852 VM

exits. Hence, the optimization eliminated around 47.9% VM exits,

which accounted for 2.11s in VM exit handlers.

As I/O intensive benchmarks stress the cryptographic module in

CloudVisor, we used dbench running 32 concurrent clients to pro-

file the slowdown caused by AES encryption/decryption and hash-

ing. We replaced the AES cryptographic and/or hashing opera-

tions with NULL operations. Without encryption and hashing, the

throughput of dbench is 270 MB/s. When only AES encryption

for I/O data was turned on, the throughput is 255 MB/s, caus-

ing a relative slowdown of 5.9%. When both AES cryptographic

and hashing were enabled, the throughput is 233 MB/s, causing

a slowdown of around 9.4%. The evaluation showed that, with

the new AES-NI instruction support, cryptographic operations in-

cur only a small amount of slowdown, even when CloudVisor is

highly stressed. Thus, the major overhead comes from the I/O in-

terposition and metadata management, which are further worsened

by poor locality due to interference among multiple clients.

8.2 Performance of Multiple VMs and Multi-

core

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

1/2 1 2 4 8

S
lo

w
d

o
w

n
 c

o
m

p
a

re
d

 t
o

 X
e

n

Number of cores

8.5%

196
6.0%

96

6.7%

65
3.4%

38

9.4%

29

Xen
Cloudvisor

Figure 8: Slowdown of kernel build on a VM configured with

1/2, 1, 2, 4, 8 cores. When configured with 1/2 core, it means

that there are two VMs runs on one core.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1 2 4 8

S
lo

w
d
o
w

n
 c

o
m

p
a
re

d
 t

o
 X

e
n

Number of VMs

6.0%
0.6% 3.7%

16.8%
VM8
VM7
VM6
VM5
VM4
VM3
VM2
VM1

Figure 9: Slowdown of kernel build CloudVisor compared to

Xen. The workload is concurrently run on multiple VMs.

To evaluate the performance of CloudVisor in multi-tenant cloud,

we scaled up the system by increasing the number of cores man-

aged by a VM or increasing the number of VMs. Figure 8 shows

the scalability of a single VM running kbuild workloads on both

Xen and CloudVisor. CloudVisor incurs at most 9.4% slowdown

compared to Xen and the slowdown does not grow up much with

the increase of processor cores. During the execution of a guest

VM, VM exits are mainly caused by disk I/O requests.

The evaluation results of concurrent execution of KBuild on mul-

tiple VMs is shown in Figure 9. In the evaluation, each VM was

configured with one core, 512 MB memory and one virtual disk.

CloudVisor incurs at most 16.8% slowdown (8 VMs) compared to

Xen. When the number of VMs is less than 8, the slowdown is

moderate. In CloudVisor, disk I/O states of each guest VM are or-

ganized in the per-VM area that can be simultaneously accessed

without lock protection. Multiple I/O requests can be handled by

CloudVisor in parallel. However, with the increase of the num-

ber of VMs, the buffer cache used by the CloudVisor agent will be

stressed. Although each guest VM has its own CloudVisor agent

instance, the instances in the control VM share the file cache in the

OS kernel.

8.3 OS Primitives:
app Xen CV slowdown

ctx(16p/64k) 2.3 2.46 7.1%

stat 1.115 1.12 0.4%

mmap 2259 2287 1.2%

sh proc 1171 1437 22.7%

10k file(delete) 9.7 11.0 13.1%

Bcopy(hand) 3527 3443 2.4%

Bcopy(libc) 3565 3466 2.9%

Table 3: The slowdown of OS primitives in CloudVisor (CV

stands for CloudVisor).

Lmbench is used to evaluate the slowdown of some primitive oper-

ating system operations. The results are shown in Table 3. Cloud-

Visor does not cause much slowdown for primitives that do not trap

to the VMM, like stat, mmap and Bcopy. 10k file delete and sh proc

incur relatively high slowdown. 10k file delete tests the rate of file

remove per second that involves inode updates in the filesystem. sh

proc executes a binary that also involves expensive file operations.

8.4 Boot Time and Memory Overhead
As CloudVisor requires to do decryption and integrity checking

when booting a guest VM, we also compared the time of com-

pletely booting a VM under CloudVisor and Xen. As expected,

the VM booting time under CloudVisor suffered a 2.7X slowdown

(33.3s vs. 9.1s) when booting up a VM with 1 GB memory. This

is due to the frequent privilege instruction emulation, I/O inter-

position and cryptographic operations during system bootup. We

believe that such overhead is worthwhile as CloudVisor ensures

tamper-resistant bootstrap of a guest VM.

The major memory usage in CloudVisor is for the storage of non-

leaf Merkle tree metadata for each guest VM and a bounce buffer.

This counts up to 10 MB per VM. The memory consumption of the

rest part of CloudVisor is less than 1 MB. Hence, for commodity

server machines with abundant memory, the memory overhead of

CloudVisor is negligible.

213

9. LIMITATION AND FUTURE WORK
CloudVisor is a first attempt to leverage the concept of nested vir-

tualization [23, 13] for the case of TCB reduction and security pro-

tection of virtualized multi-tenant cloud. There are still ample im-

provement spaces over CloudVisor, which will be our further work:

Enhancing Protection: A common problem exists in CloudVisor

and other similar systems when trying to protect from a hostile ser-

vice provider [15, 17, 71, 40], as the service provider (e.g., OS

or VMM) might mislead or even refuse to serve a client (e.g., an

application or a VM). Specifically, a malicious VMM might try

to mislead a VM by even discarding I/O requests from a VM. One

possible mitigation technique is to let a VM or CloudVisor to proof-

check services by the VMM.

We are also investigating the tradeoff in functionality division be-

tween hardware and software. As the functionality of CloudVisor

is very simple and fixed, it might be feasible to implement Cloud-

Visor in hardware or firmware (like Loki [72]).

Impact on VMM’s Functionality: While CloudVisor is mostly

compatible with existing operations in virtualization stack like save

and restore, it does inhibit some VM introspection systems [30, 29]

that require introspection of a VM’s memory, as they can only see

encrypted data. Further, CloudVisor follows a strict isolation pol-

icy among VMs, which may prevent some memory sharing sys-

tems [67, 25, 43] from working. This could be simply enabled by

allowing some pages being shared read-only among VMs, and val-

idating any changes to these pages in CloudVisor. Finally, Cloud-

Visor currently uses a fail-stop approach against possible attacks or

crashes. This can be replaced by a fail-safe approach to improving

the reliability of VMs atop CloudVisor.

VMM Cooperation: Our currently system is designed to work

with existing VMMs, to retain backward compatibility. As demon-

strated by our optimization on VM read and VM write, slight

changes to the Xen VMM to make it cooperative with CloudVisor

may further improve the performance and reduce the complexity of

CloudVisor.

Supporting Other VMMs: We currently only tested CloudVisor

for the Xen VMM. A part of our further work includes the evalu-

ation of CloudVisor on other VMMs (such as VMware, KVM and

BitVisor [57]) and OSes (such as MAC OS and FreeBSD). Further,

we will also investigate how the VMM could be adapted to support

para-virtualization in CloudVisor.

Verification: CloudVisor is currently built with a very small code

base, thus would be possible to formally verify its correctness and

security properties [34] and verify its implementation with software

model checking [28], which will be our further work.

10. RELATED WORK
Securing the Virtualization Layer: The increasing number of

systems relying on trustworthiness of the virtualization layer makes

the security of this layer more important than ever before. Hence,

there are several efforts in improving or even reconstructing the vir-

tualization layer to increase the security of the virtualization stack.

For example, HyperSentry [11] and HyperSafe [68] both target at

improving the security of the VMM by either measuring its in-

tegrity dynamically or enforcing control-flow integrity. NOVA [60]

is micro-kernel based VMM that decouples the traditional mono-

lithic VMM into a component-based system, and improves security

by introducing capability-based access control for different com-

ponents in a VMM. The security of the management software in

Xen [12] is also improved by moving the domain (i.e., VM) build-

ing utilities into a separate domain [44]. However, these systems

aim at protecting the virtualization layer from external attacks to

the VM stack, but without considering possible attacks that lever-

age legal maintenance operations from the cloud operators, which

is a new requirement in multi-tenant cloud. Hence, such systems

are orthogonal to CloudVisor and could reduce the possibility of

compromises in the VMM.

NoHype [31] tries to address the trustworthiness of multi-tenant

clouds by removing the virtualization layer during execution. How-

ever, removing the virtualization layer may also lose some useful

features such as sharing resources across multiple VMs, which are

key features of multi-tenant clouds. Further, NoHype still trusts the

VM management software and requires changes to existing hard-

ware and virtualization stack and there is no available implemen-

tation of such a system. By contrast, CloudVisor is backward-

compatible with commercial virtualization software and is with a

smaller trusted computing base.

Protecting Application Code: The threat model and goal of

CloudVisor are similar to systems that provide protection of indi-

vidual processes inside an untrustworthy operating system, such as

CHAOS [15], Overshadow [17] and SP
3 [71]. Compared to sys-

tems providing protection at the process level, protection at the VM

level is much simpler and results in a much smaller TCB. This is

because the VM interface and abstraction is with less semantics and

thus much simpler and cleaner than those at the process level. For

example, there are more than 300 and 1000 system calls with rich

semantics (e.g., ioctl) in Linux and Windows accordingly. Porting

the protection mechanism from one OS to another is usually non-

trivial. By contrast, the interface between the VM and VMM can

mostly be expressed using the VM exit and VM entry primitives.

To ensure secure execution of specific code (e.g., SSL) in some ap-

plications, researchers proposed several systems to ensure code in-

tegrity and data secrecy of such code by leveraging trusted comput-

ing hardware [39, 38] and virtualization [40]. Compared to these

systems that protect only a part of application software, CloudVi-

sor provides protection at the whole VM level, which naturally fits

with the context of multi-tenant cloud.

Virtualization-based Attacks and Defenses: On the positive side,

virtualization provides a new playground for system security. Many

prior literatures use special-purpose VMMs to improve security of

operating systems [53, 69, 48], or extend existing VMMs with

security-enhanced policies or mechanisms [30, 29] Compared to

CloudVisor, these systems only protect a part of a program, while

CloudVisor aims at protecting the entire virtual machine. The

above systems could be incorporated with CloudVisor to prevent

attacks from the network side, which may form a more secure cloud

platform.

On the negative side, virtualization has also been used as a means to

mount attack traditional operating systems and virtualization sys-

tem [32, 50, 51]. When it is used to attack a VMM [51], the rootkit

also needs to implement part of the nested virtualization to give the

illusion that the VMM is running on bare metal.

Software and Hardware Support for Trusted Computing:

Building more trustworthy software stack and platforms is always

214

the concerns of researchers. The trusted computing groups have

proposed the Trusted Platform Module [66] for the purpose of mea-

suring a platform [52]. There is also several research on software-

based remote attestation (e.g., Pioneer [54] and SWATT [55]).

Such attestation techniques could be integrated into CloudVisor

for remote attestation of code inside leased VMs to prevent from

network-side attacks.

Machine partitioning using virtualization (e.g., Terra [21],

NGSCB [47]) tries to satisfy the security requirements of diverse

applications by providing different types of close-box and open-

box VMs to applications. However, no defense against operators is

provided in these systems.

There are also many architectural proposals that aim at providing

security protection to applications. For examples, many architec-

tural enhancements [36, 61] have been proposed to support trusted

execution of an application within an untrusted operating system.

System designers also leverage such support to build operating sys-

tems (e.g., XOMOS [37]).

Nested Virtualization: Researchers have investigated integrating

nested virtualization into commodity VMMs, which forms an even

larger TCB. For example, the recent Turtles project [13] investi-

gates the design and implementation of nested virtualization to sup-

port multi-level virtualization in KVM [33]. In contrast, CloudVi-

sor leverages nested virtualization to minimize TCB by separating

the functionality for nested virtualization from the functionality for

resource management, and further enhances the nested VMM with

security protection of the hosted virtual machines.

11. CONCLUSION
Current multi-tenant cloud faces two major sources of threats: at-

tacks to the virtualized infrastructure by exploiting possible se-

curity vulnerabilities in the relative large and complex virtual-

ized software stack; and attacks originated from stealthy accesses

to sensitive data from cloud operators. This paper presented a

lightweight approach that introduces a tiny security monitor un-

derneath the VMM to defend against these attacks. Our system,

called CloudVisor, provides strong privacy and integrity guarantees

even if the VMM and the management software are in control by

adversaries. CloudVisor achieved this by exploiting commercially-

available hardware support for virtualization and trusted comput-

ing. Performance evaluation showed that CloudVisor incurred

moderate slowdown for I/O intensive applications and very small

slowdown for other applications.

12. ACKNOWLEDGMENTS
We thank our shepherd Nickolai Zeldovich and the anonymous

reviewers for their insightful comments. Cheng Tan, Yubin Xia

and Rong Chen helped to prepare the final version of this paper.

This work was funded by China National Natural Science Founda-

tion under grant numbered 90818015 and 61003002, a grant from

the Science and Technology Commission of Shanghai Municipal-

ity numbered 10511500100, Fundamental Research Funds for the

Central Universities in China and Shanghai Leading Academic Dis-

cipline Project (Project Number: B114).

13. REFERENCES
[1] Bitlocker drive encryption technical overview. http://

technet.microsoft.com/en-us/library/
cc766200%28WS.10%29.aspx.

[2] Common vulnerabilities and exposures. http://cve.
mitre.org/.

[3] Filevault in mac osx. http://www.apple.com/macosx/whats-
new/features.html#filevault2.

[4] Intel advanced encryption standard instructions (aes-ni).
http://software.intel.com/en-us/
articles/intel-advanced-encryption-
standard-instructions-aes-ni/, 2010.

[5] D. Abramson, J. Jackson, S. Muthrasanallur, G. Neiger,
G. Regnier, R. Sankaran, I. Schoinas, R. Uhlig, B. Vembu,
and J. Wiegert. Intel virtualization technology for directed
I/O. Intel technology journal, 10(3):179–192, 2006.

[6] Amazon Inc. Amazon Elastic Compute Cloud (Amazon
EC2). http://aws.amazon.com/ec2/, 2011.

[7] Amazon Inc. Amazon machine image. http://aws.
amazon.com/amis, 2011.

[8] Amazon Inc. Amazon web service customer agreement.
http://aws.amazon.com/agreement/, 2011.

[9] AMD Inc. Secure virtual machine architecture reference
manual, 2005.

[10] Apache. ab - apache http server benchmarking tool.
http://httpd.apache.org/docs/2.0/
programs/ab.html, 2011.

[11] A. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and
N. Skalsky. HyperSentry: enabling stealthy in-context
measurement of hypervisor integrity. In Proc. CCS, pages
38–49, 2010.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the
art of virtualization. In Proc. SOSP. ACM, 2003.

[13] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and B.-A.
Yassour. The turtles project: Design and implementation of
nested virtualization. In Proc. OSDI, 2010.

[14] H. Chen, J. Chen, W. Mao, and F. Yan. Daonity-grid security
from two levels of virtualization. Information Security
Technical Report, 12(3):123–138, 2007.

[15] H. Chen, F. Zhang, C. Chen, Z. Yang, R. Chen, B. Zang,
P. Yew, and W. Mao. Tamper-resistant execution in an
untrusted operating system using a virtual machine monitor.
Parallel Processing Institute Technical Report, Number:
FDUPPITR-2007-0801, Fudan University, 2007.

[16] P. Chen and B. Noble. When virtual is better than real. In
Proc. HotOS, 2001.

[17] X. Chen, T. Garfinkel, E. Lewis, P. Subrahmanyam,
C. Waldspurger, D. Boneh, J. Dwoskin, and D. Ports.
Overshadow: a virtualization-based approach to retrofitting
protection in commodity operating systems. In Proc.
ASPLOS, pages 2–13. ACM, 2008.

[18] Y. Dong, Z. Yu, and G. Rose. SR-IOV networking in Xen:
Architecture, design and implementation. In Proc. Workshop
on I/O virtualization. USENIX, 2008.

[19] B. Fitzpatrick. Distributed caching with memcached. Linux
journal, 2004.

[20] Flexiant Inc. Flexiscale public cloud. http://www.
flexiant.com/products/flexiscale/.

[21] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A virtual machine-based platform for
trusted computing. ACM SIGOPS Operating Systems
Review, 37(5):206, 2003.

[22] T. Garfinkel and M. Rosenblum. When virtual is harder than
real: Security challenges in virtual machine based computing
environments. In Proc. HotOS, 2005.

[23] R. Goldberg. Architecture of virtual machines. In
Proceedings of the workshop on virtual computer systems,
pages 74–112, 1973.

[24] R. Goldberg. Survey of virtual machine research. IEEE
Computer, 7(6):34–45, 1974.

[25] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: harnessing memory redundancy in virtual machines.
In Proc. OSDI, pages 309–322, 2008.

215

http://technet.microsoft.com/en-us/library/cc766200%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc766200%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc766200%28WS.10%29.aspx
http://cve.mitre.org/
http://cve.mitre.org/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://aws.amazon.com/ec2/
http://aws.amazon.com/amis
http://aws.amazon.com/amis
http://aws.amazon.com/agreement/
http://httpd.apache.org/docs/2.0/programs/ab.html
http://httpd.apache.org/docs/2.0/programs/ab.html
http://www.flexiant.com/products/flexiscale/
http://www.flexiant.com/products/flexiscale/

[26] J. Heiser and M. Nicolett. Assessing the security risks of
cloud computing. http://www.gartner.com/
DisplayDocument?id=685308, 2008.

[27] Intel Inc. Intel trusted execution technology. www.intel.
com/technology/security/, 2010.

[28] R. Jhala and R. Majumdar. Software model checking. ACM
Computing Surveys (CSUR), 41(4):1–54, 2009.

[29] X. Jiang and X. Wang. Out-of-the-box monitoring of
VM-based high-interaction honeypots. In Proc. RAID, pages
198–218, 2007.

[30] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection
through vmm-based out-of-the-box semantic view
reconstruction. In Proc. CCS, pages 128–138. ACM, 2007.

[31] E. Keller, J. Szefer, J. Rexford, and R. Lee. NoHype:
virtualized cloud infrastructure without the virtualization. In
Proc. ISCA, pages 350–361, 2010.

[32] S. King, P. Chen, Y. Wang, C. Verbowski, H. Wang, and
J. Lorch. SubVirt: Implementing malware with virtual
machines. In Proc. S&P (Oakland), 2006.

[33] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
kvm: the linux virtual machine monitor. In Linux
Symposium, 2007.

[34] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, et al. seL4: Formal verification of an OS kernel.
In Proc. SOSP, pages 207–220, 2009.

[35] M. Krohn, P. Efstathopoulos, C. Frey, F. Kaashoek,
E. Kohler, D. Mazieres, R. Morris, M. Osborne,
S. VanDeBogart, and D. Ziegler. Make least privilege a right
(not a privilege). In Proc. HotOS, 2005.

[36] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for copy
and tamper resistant software. In Proc. ASPLOS, pages
168–177, 2000.

[37] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an
untrusted operating system on trusted hardware. In Proc.
SOSP, pages 178–192, 2003.

[38] J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki.
Flicker: An execution infrastructure for TCB minimization.
In Proc. Eurosys, pages 315–328, 2008.

[39] J. McCune, B. Parno, A. Perrig, M. Reiter, and A. Seshadri.
Minimal TCB code execution. In Proc. S&P (Oakland),
pages 267–272, 2007.

[40] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB Reduction and
Attestation. In Proc. S&P (Oakland), 2010.

[41] L. McVoy and C. Staelin. lmbench: Portable tools for
performance analysis. In Proc. Usenix ATC, 1996.

[42] R. Merkle. Protocols for public key cryptosystems. In Proc.
S&P (Oakland), 1980.

[43] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman.
Satori: enlightened page sharing. In Proc. Usenix ATC, 2009.

[44] D. Murray, G. Milos, and S. Hand. Improving Xen security
through disaggregation. In Proc. VEE, pages 151–160, 2008.

[45] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig.
Intel virtualization technology: Hardware support for
efficient processor virtualization. Intel Technology Journal,
10(3):167–177, 2006.

[46] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The eucalyptus
open-source cloud-computing system. In Proc. CCGRID,
pages 124–131, 2009.

[47] M. Peinado, Y. Chen, P. England, and J. Manferdelli.
NGSCB: A trusted open system. In Information Security and
Privacy, pages 86–97, 2004.

[48] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention
of kernel rootkits with vmm-based memory shadowing. In
Proc. RAID, pages 1–20, 2008.

[49] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,

you, get off of my cloud: exploring information leakage in
third-party compute clouds. In Proc. CCS, pages 199–212.
ACM, 2009.

[50] J. Rutkowska. Introducing Blue Pill. The official blog of the
invisiblethings. org. June, 22, 2006.

[51] J. Rutkowska and A. Tereshkin. Bluepilling the Xen
Hypervisor. Black Hat USA, 2008.

[52] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a tcg-based integrity measurement
architecture. In Proc. USENIX Security, 2004.

[53] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for
commodity OSes. In Proc. SOSP, 2007.

[54] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. Van Doorn, and
P. Khosla. Pioneer: Verifying integrity and guaranteeing
execution of code on legacy platforms. In Proc. SOSP, pages
1–16, 2005.

[55] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla.
SWATT: Software-based attestation for embedded devices.
In Proc. S&P (Oakland), pages 272–282, 2004.

[56] J. Shi, X. Song, H. Chen, and B. Zang. Limiting cache-based
side-channel in multi-tenant cloud using dynamic page. In
Proc. HotDep, 2011.

[57] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai, Y. Oyama,
E. Kawai, et al. BitVisor: a thin hypervisor for enforcing i/o
device security. In Proc. VEE, pages 121–130. ACM, 2009.

[58] L. Singaravelu, C. Pu, H. H
"artig, and C. Helmuth. Reducing TCB complexity for
security-sensitive applications: Three case studies. In Proc.
Eurosys, 2006.

[59] SPEC. Specjbb 2005. http://www.spec.org/
jbb2005/, 2005.

[60] U. Steinberg and B. Kauer. NOVA: A microhypervisor-based
secure virtualization architecture. In Proc. Eurosys, pages
209–222. ACM, 2010.

[61] G. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas.
AEGIS: architecture for tamper-evident and tamper-resistant
processing. In Proc. Supercomputing, 2003.

[62] T. R. Team. Rackspace cloud. http://www.
rackspacecloud.com/.

[63] TechSpot News. Google fired employees for breaching user
privacy. http://www.techspot.com/news/40280-
google-fired-employees-for-breaching-
user-privacy.html, 2010.

[64] The Nimbus Team. Nimbus project. http://www.
nimbusproject.org/.

[65] A. Tridgell. Dbench filesystem benchmark. http://
samba.org/ftp/tridge/dbench/.

[66] Trusted Computing Group. Trusted platform module.
http://www.trustedcomputinggroup.org/,
2010.

[67] C. A. Waldspurger. Memory resource management in
vmware esx server. In Proc. OSDI, pages 181–194, 2002.

[68] Z. Wang and X. Jiang. HyperSafe: A lightweight approach to
provide lifetime hypervisor control-flow integrity. In Proc.
S&P (Oakland), pages 380–395, 2010.

[69] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel
rootkits with lightweight hook protection. In Proc. CCS,
pages 545–554. ACM, 2009.

[70] C. Weinhold and H. Härtig. jVPFS: Adding Robustness to a
Secure Stacked File System with Untrusted Local Storage
Components. In Proc. Usenix ATC, 2011.

[71] J. Yang and K. G. Shin. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In Proc.
VEE, pages 71–80, 2008.

[72] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis.
Hardware enforcement of application security policies using
tagged memory. In Proc. OSDI, pages 225–240, 2008.

216

http://www.gartner.com/DisplayDocument?id=685308
http://www.gartner.com/DisplayDocument?id=685308
www.intel.com/technology/security/
www.intel.com/technology/security/
http://www.spec.org/jbb2005/
http://www.spec.org/jbb2005/
http://www.rackspacecloud.com/
http://www.rackspacecloud.com/
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
http://www.techspot.com/news/40280-google-fired-employees-for-breaching-user-privacy.html
http://www.nimbusproject.org/
http://www.nimbusproject.org/
http://samba.org/ftp/tridge/dbench/
http://samba.org/ftp/tridge/dbench/
http://www.trustedcomputinggroup.org/

	Introduction
	Motivation and Threat Model
	Attack Surface of Virtualization Layer
	Assumptions and Threat Models

	Goals and Approaches
	Design Consideration
	Approach Overview
	The CloudVisor Architecture

	Securing Control Transition with Nested Virtualization
	Hardware-assisted (Nested) Virtualization
	Securing Control Transition with Nested Virtualization
	Dynamic Nested Virtualization

	Memory Isolation
	Isolation with Nested/Extended Paging
	Memory Ownership Tracking
	Legal Memory Accesses

	Disk Storage Protection
	Handling Data Exchange
	Disk I/O Privacy and Integrity

	Implementation Issues and Status
	Multiple VMs and Multicore Support
	VM Life-cycle Management
	Performance Optimization
	Key Management
	Soft and Hard Reset
	Implementation Complexity

	Performance Evaluation
	Performance of Uniprocessor VMs
	Performance of Multiple VMs and Multi-core
	OS Primitives:
	Boot Time and Memory Overhead

	Limitation and Future Work
	Related Work
	Conclusion
	Acknowledgments
	References

