
STORAGE REALLOCATION IN HIERARCHICAL ASSOCIATIVE MEMORIES 

Jeffrey L. Gertz 
Bell Telephone Laboratories, Incorporated 

Hoimdel, New Jersey 

Summary 

Two recent trends in computing, namely parallelism 
and programming generality, imply that increasing im- 
portance will be placed on developing location-inde- 
pendent schemes for computer memories. This paper 
examines several issues that arise when hierarchical 
associative memories are used to accomplish this ob- 
jective. First, it presents methods for constructing 
economical associative memories to be utilized as lower 
levels in the hierarchy. Then, it considers the rami- 
fications of storage reallocation in the memory and 
develops a new unit of storage transfer, the paragraph. 
Finally, it demonstrates that difficulties that might 
arise due to duplicate storage of data words in the 
memoz~ can be negated by a simple scheme. 

Introduction 

Recent work by Dennis I has indicated that two 
current trends in computing require a radical change in 
thinking in regard to computer system architecture. 
These are the increasing importance of parallelism in 
computer operations and the growing desire for program- 
ming generality in computer system usage. Both trends 
imply that increasingly greater importance will be 
placed on developing location-independent schemes for 
computer memories. One possible manner of accomplish- 
ing this objective is to employ an associative memory 
for the computer system. 

Parallelism in computer systems is desirable for 
several reasons. Some of the more important of these 
are: hardware utilization is increased because re- 
sources can be shared, information can be shared among 
several computations at once thereby reducing memory 
requirements, and individual programs can be run more 
rapidly by executing instructions in parallel whenever 
possible. Although parallelism can operate within 
standard addressable memories, much efficiency is sac- 
rificed by such implementations. In particular, ad- 
dressing restricts allocation choices, yet dynamic 
storage allocation is vital for multiprogrammed systems, 
and memory and processing efficiency are lowered by 
the many mapping tables required by addressable memory 
systems. 

A program that exhibits programming generality 
should be able to be run on any sufficiently powerful 
computer and be usable as a building block for more 
complex programs without its internal structure being 
known. The latter property requires that a computer 
system allow a program module to create and transmit 
arbitrarily complex information structures as para- 
meters to procedures whose storage requirements are 
unknown. These requirements imply that location-inde- 
pendent addressing must be used, since only the oper- 
ating system of the computer could possibly make the 
necessary storage allocation decisions. 

This paper is concerned with the examination of 
several issues that arise when the implementation of 
hierarchical associative memories is considered. 
First, it presents an overview of the manner in which 
the various levels of the memory might be constructed 
in an economical manner. Then, it considers the rami- 
fi:ations of storage reallocation in an associative 
memory, and in particular, develops a new unit of stor- 
age transfer, the paragraph. Finally, it investigates 
an issue that could be a serious problem in associative 

memory hierarchies, the duplicate storage of data words, 
and demonstrates that a simple scheme can negate any 
difficulties that might arise. A complete study of all 
issues involved in the analysis and design of hier- 
archical associative memories is contained in a previous 
report. 2 

Associative Memory Hierarchies 

In recent years, as various feasibility studies 
have indicated the value of associative memories, sev- 
eral hardware associative ~emory implementations have 
been built or proposed. 3, ~ Three main areas in which 
investigation is currently proceeding are cryogenics, 
thin films, and semiconductors, although as many as a 
dozen other tecbnqologies are also being considered. 
Whatever the material actually used, all associative 
memories presently have two serious drawbacks: they 
are quite small by addressable memory standards, and 
they are very exRensive. The first problem can be 
alleviated by using modularization, but the only solu- 
tion to both is to use conventional addressable mem- 
ories, suitably modified to appear associative, in 
several levels of the memory hierarchy. There are two 
main courses one can pursue in designing no,hardware 
associative memories for the lower levels of the memory 
hierarchy. One is to build a discrete, parallel search 
m~nory from relatively cheap components, such as shift 
registers. The ether is to devise a method to use a 
standard addressable memory, such as a drum, as an as- 
sociative memory. This section will develop each of 
these alternatives. For ease of discussion, the con- 
crete examples just mentioned will be used in these 
formulations. 

The simplest envisioned parallel search shift 
register associative memory, illustrated in Figure l, 
can be constructed as follows. Each word of the memory 

Logic Module 

Request 

lilitli, 
Register 

I Bit 

IIIllll 
Shift Register 

Shift 
Register 
Memory 

Figure 1 - Shift Register Associative Memory 

58 



will be stored in one shift register. A separate 
ternary shift register (0, i, don't-care) will be used 
to hold the key to be matched. Associated with each 
memory word will be a logic module containing the fol- 
lowing items: (i) an exclusive-or circuit; (2) a tag 
bit; (3) a word-empty bit; and (4) a read-write circuit. 
The actual memory operation would then consist of al- 
ternations of the following two cycles: 

Cycle i - matching 

(a) set to i the tag bit of each memory word whose 
word-empty bit is O. 

(b) compare the first bit of each memory word with 
the first element of the key. 

(c) reset to 0 the tag bit of each memory word 
which doesn't match the key. 

(d) shift all memory words and the key one posi- 
tion each. 

(e) if n shifts have occurred, proceed to Cycle 2, 
else return to step (b). 

Requests 

Empty List 

Drum 

Request List 
IAssociative Memory) 

Cycle 2 

(a) 

(h) 

(e) 

(d) 

- reading 

read out the first bit of every memory word 
whose tag bit is i; write an element of the 
next key into the key shift register. 

shift all memory words and the key one posi- 
tion each. 

if n shifts have not yet occurred, return to 
step (a). 

if readout is to be destructive, set to i the 
word-empty bit of every word whose tag bit 
is i. 

(e) proceed to Cycle i. 

If the key is to be read into memory instead of matched, 
then Cycle i is used to read the key into the first 
word whose word-empty bit is i while Cycle 2 is used 
only to place the next key in the key shift register. 

The most efficient method that can be devised for 
the conversion of a drum memory from addressable to 
associative access requires a functional reversal of 
the usual associative memory operation. Namely, the 
words on the drum become the keys while the proffered 
keys become the associative memory. Basically, the 
envisioned system would work as follows. When a re- 
trieval request is made to the memory, the key is 
placed in a request list which is implemented by an 
associative memory. Then, as each memory word is 
brought under a set of reading heads, it is treated as 
a key and associatively compared against the request 
list. If a match is recorded, the memory word is 
transmitted to the desired piece of hardware, most 
likely a memory unit in a higher level of the hier- 
archy. Of course, if the request list were full, a 
new request would be temporarily queued. 

Writing in such a system could be implemented in 
many ways. Possibly the simplest of these is to keep 
the addresses of all empty locations in an empty list. 
Then, when a write request were made, the word to be 
written would be given an address from this list and 
the dram system would perform the write operation in 
just the same way it presently does for addressable 
operation. Correspondingly, when a destructive readout 
occurred, the newly available address would be 

Figure 2 - Associative Drum Memory System 

appended to the empty list. Finally, to revise a 
stored word, the word would first be read out destruc- 
tively, changed, and then written in any available lo- 
cation, net necessarily the one from which it was read. 
Figure 2 gives an overview of this associative drum 
system. 

Storage Reallocation Concepts 

When a word not in first-level memory is sought by 
a processing unit, it must be brought up to that level 
by the memory hardware. In order to attempt to 
minimize the number of such time-consuming storage re- 
allocations, this word is generally brought up with a 
suitably selected block of words. The selection scheme 
chosen should attempt to meet the following two (pos- 
sibly divergent) objectives: (i) minimization of the 
time used for information transfer, and (2) minimiza- 
tion of the number of words elevated but not later used. 

At present, the commonly used unit of information 
transfer is the page, a fixed-size block of contiguous 
words. However, the page has several serious draw- 
backs for our system. For example, when a program is 
represented as an information structure, the actual 
storage order of the instructions cannot be made to 
reflect their order of execution as the latter is not 
determined prior to runtime. Much information about 
the future needs of a procedure becomes available 
during runtime, but a page, being fixed in nature, 
cannot incorporate any of this knowledge. Also, the 
use of pointers as input parameters for a procedure, 
required for programming generality, implies that the 
procedure's data set may we]_l be scattered throughout 
memory. However, the most serious drawback is contin- 
gent upon our use of an associative, rather than an 
addressable, memory. For an associative memory, the 
concept of contiguity is meaningless since words can 
only be accessed by content, not by relative location. 
To introduce addresses to an associative memory would 
only bring back all the disadvantages we sought to 
eliminate. Thus, the ideal unit of information trans- 
fer for our system should be based on content rather 
than location, be formed dynamically, and be able to 

59 



incorporate words that may be physically separated in 
memory. To suggest these properties, we have coined 
the term paragraph. 

Considerable, though not total, freedom exists in 
choosing words that belong to the same paragraph. The 
only restriction is due to a singular property of as- 
sociative memories, namely that several words may be 
retrieved at once, as multiple matches to a key are 
possible (whereas addresses, of course, are unique). 
This could occur, for example, when accessing all data 
having a given property, or when retrieving all instruc- 
tions logically following a newly completed one in a 
parallel processing environment. Thus, memory requests 
are satisfied by phrases, where a phrase is the set of 
all memory words which may be accessed by one key 
during the execution of some process. In addition, any 
word may be accessed by several keys, as a key may be 
to any subset of the fields contained in a word. Hence, 
a word may belong to several different phrases. 

Clearly, all memory words in the same phrase must, 
of necessity, belong to the same paragraph. This, in 
turn, leads to a structural condition for a paragraph; 
namely, that it must consist of an integral number of 
phrases. This result can lead to serious trouble if no 
restrictions are put on the number of phrases to which 
any one word may belong, as a paragraph must contain 
every phrase of which any of its constituent words is 
a member. Thus, to prevent paragraphs from becoming 
enormous in size, and to prevent local changes from 
having global repercussions, we require the following 
postulate. 

Postulate i: No memory word can belong to more than 
one phrase whose size is greater than one. 

Aside from the previous structural condition, no 
other constraint exists concerning which words may be 
grouped together in a paragraph except that the words 
be chosen in such a way that the previously detailed 
objectives be met in an optimal manner. Two distinct 
approaches appear worthy of pursuit. The first is the 
use of preset paragraphs which resemble pages in that 
they are formed prior to execution and have an approxi- 
mately fixed size. The second is the use of dynamic 
paragraphs which fit more closely with our ideal unit 
in that they are formed when required and will vary 
during execution. 

A preset paragraph will be defined as a block of 
N or fewer memory words that are moved together for 

storage reallocation purposes. It is constructed by 
grouping together as many phrases as possible that, 
based upon expected program behaviorj are likely to be 
used together in time. By its nature, a preset para- 
graph maintains two of the important attributes of 
pages, namely an approximately fixed size and unique- 
ness (every memory word will be part of one and only 
one preset paragraph). In addition, it has two advan- 
tages over the page: contiguity of storage locations 
is not a binding factor and word additions may be more 
easily accommodated. Once a preset paragraph has been 
formed, a method is required that will allow the com- 
puter system to locate all of its words. The only 
feasible one is to append a paragraph designation field 
to each memory word. Then an entire paragraph can be 
retrieved with one memory access by keying on the de- 
sired designation field. Figure 3 depicts a sample 
preset paragraph stored in memory. 

One of the disadvantages of using preset blocks of 
words for storage reallocation is that many words that 
are known at retrieval time not to be needed by any 
active computation in the near future are brought into 
first-level memory, thereby tying up valuable storage 
locations. The purpose of using dynamic paragraphs is 
to attempt to eliminate such inefficiencies of use of 
first-level storage. In an attempt to meet this ob- 
jective, such paragraphs can be built in a "forward" 
direction from an accessed phrase. That is, when a 
phrase not in first-level memory is to be retrieved 
from lower memory, a paragraph is formed consisting of 
that phrase and the group of phrases that are most 
likely to be accessed in succession. This group of 
phrases will be referred to as the successor phrase 
set of the given phrase. Thus, a dynamic paragraph 
will be defined as a block of memory words constructed 
by adding the successor phrase sets of each phrase al- 
ready included in the paragraph until some paragraph 
completion rule is met. With such construction the 
paragraph consists of a tree-like structure, as illus- 
trated in Figure 4. 

A major disadvantage of the dynamic paragraph is 
its lack of uniqueness. That is, a memory word may 
belong to several different paragraphs during its life 
time, a situation which would arise whenever the phras 
tree-structures of two different accessed phrases 
intersect. Should a word belong to more than one 

Accessed 
Phrase a 

MemoryWords 

Paragraph 
Information Designatio n 

Fields Field 
1 ! 

Phrase a 37 
Phrase e 
Phrase b 37 
Phrase d 
Phrase c 
Phrase b 
Phrase c 
Phrase a 
Phrase b 
Phrase a 
Phrase d 
Phrase d 

Size Parameter: N=7 
Candidate Phrase: c 

37 

37 
37 
37 

Figure 3 - Structure of a Typical Preset Paragraph 

Phrase b 
SP(a) 

Phrase d 

----1 

Phrase 
SP(c) 

F 

Phrase c 

Phrase g 
SPIc} 

60 

SPIx)=Member of Successor Phrase 
Set of Phrase x 

Completion Rule: 7 Phrases in the Paragraph 

Figure 4 - Tree Structure of a Typical Dynamic Paragraph 



paragraph at the same time, duplication of first-level 
storage would result. Thus, the following storage 
tradeoff should be considered when choosing the type of 
paragraph to employ -- a preset paragraph system wastes 
valuable first-level memory by storing words that are 
known to be unneeded while a dynamic paragraph system 
wastes memory by storing words more than once. Another 
disadvantage of the dynamic paragraph is that several 
accesses are needed to retrieve its words, one per each 
successor set in the paragraph. No designation scheme 
is required for these paragraphs, however, as their 
constituent phrases need not be removed together. 
Thus, a dynamic paragraph exists for only one instant 
of timer namely when it is formed. 

Since neither type of paragraph has a fixed size, 
storage reallocation based on their use is more complex 
than that for pages. In particular, a means must exist 
for determining at any time the number of available 
storage locations in the main memory. This is because 
it will no longer be true that removing a paragraph 
from first-level memory will either be necessary or 
sufficient to provide room for a newly elevated one; 
small paragraphs may fit in the available space with- 
out displacing any paragraph, while larger ones may 
displace several small ones. Also, it may be necessary 
to count the number of words in the newly elevated 
paragraph. This can be avoided for preset paragraphs, 
however, by the use of the following algorithm. 

i. If there are N or more available locations in 
memory, the newly elevated paragraph is stored im- 
mediately and no words are removed at this time. 

2. Otherwise, the paragraph that has been designated 
as the first to be displaced is removed by the 
hardware. 

3. Steps i and 2 are followed alternately until the 
new paragraph has been stored. 

Thus, word elevation and removal can be performed at 
the same time using this method. Dynamic paragraphs 
can only utilize this simplification if the completion 
rule is based on size. Otherwise, word-counting must 
be employed. The removal algorithm for dynamic para- 
graphs can be made more efficient than that for preset 
paragraphs, however, as the removal can be made by 
individual phrase rather than by whole paragraph. 

Multiple Storage Considerations 

Many present day addressable computer systems do 
not actually "move" a page into main memory; rather, 
they create a duplicate copy of the page when it is re- 
quired. The advantage of such a multiple storage sys- 
tem is that much reverse traffic in the interlevel 
communication links is eliminated, as unmodified pages 
(whose change indicators have not been set), particu- 
larly pure procedure pages, may simply be overwritten. 
The possible existence of several conflicting copies of 
a data word will never cause trouble, as the addressing 
mechanism of the computer system will always direct any 
access to the most recent version of the word. 

The multiple storage strategy will result in the 
same increased operating efficiency if it is employed 
in associative memory systems. However, whereas this 
scheme is optional for addressable systems, it is re- 
quired for associative ones which allow sharing of in- 
formation. Otherwise, if a phrase existed in only one 
place in active memory (those levels accessible to the 
processing hardware), the execution time of an instruc- 
tion could become unbounded. This unacceptable be- 
havior could result from the following sequence of 
events: 

61 

i. Process A requests phrase X. 

2. A memory search locates X in second-level memory. 

3- Process B requests phrase X. 

4. The new search fails to locate X in main memory. 

5. Phrase X is paragraphed into main memory due to the 
search initiated by process A. 

6. The search corresponding to B's request continues 
in the second level, with no success. 

7. This search continues until all active memory has 
been checked, with no success. 

At this point the system cannot decide whether phrase X 
is not in active memory or has been missed. Further- 
more, if the search returns to first-level memory to 
check for the latter occurrence~ the entire cycle could 
repeat once again. 

This problem is resolved in addressable memory 
systems by having the supervisor maintain updated 
address tables. Then, if access to a specified lower- 
level location is unsuccessful, the search mechanism 
will know that a paging operation is in progress. No 
foolproof method appears to exist for preventing these 
occurrences in single storage associative memory sys- 
tems. For instance, assume a list of all currently 
sought phrases were created. This would fail because 
phrases are often retrieved not by name but rather by 
their paragraph affiliation with explicitly sought 
phrases. Such implicitly sought phrases would of 
course be unknown to the system. When the multiple 
storage strategy is employed, a search that missed a 
phrase being paragraphed into main memory would locate 
the lower level copy, which it could then retrieve for 
the process initiating the search. 

Unfortunately, the use of multiple storage creates 
a new problem, namely that two copies of a phrase may 
exist in first-level memory at the same time. This 
raises the possibility of the two copies becoming dif- 
ferent, and thus of an instruction receiving an incor- 
rect operand. This problem can be eliminated either by 
devising a scheme to prevent multiple first-level stor- 
age or by insuring that the multiple copies always 
exist in the same module (proved below). No foolproof 
method exists for implementing the former alternative, 
however, as the timing of actions cannot be controlled 
carefully enough to guarantee correct behavior (unless 
synchronous operation is used, an impossible approach 
for decentralized, modular computers). For example, 
the best scheme would appear to be to mark the left- 
behind copy of a phrase when it is elevated into main 
memory. Then future accesses that missed a phrase 
being paragraphed into first-level memory would note 
the mark and return its searching to that level. This 
method, of course, partly negates the main advantage of 
multiple storage, as unchanged paragraphs can no longer 
be simply overwritten since the mark on each component 
phrase must be removed from the lower level copy. 
More important, though, the search mechanism can con- 
tinually oscillate between memory levels with this 
scheme if the timing between searching and paragraphing 
becomes out of phase. 

Thus, since duplication of first-level storage 
cannot be satisfactorily eliminated, a method of opera- 
tion that guarantees that multiple copies of a phrase 
always exist in the same module is required. Various 
set associative properties of phrases could be used to 
implement this policy, but only that of ownership meets 
all the conditions placed on modular associative 



memories. Every phrase must have an owner, as other- 
wise neither privacy nor security could be maintained 
in the computer system. 

The reason why duplicate storage within a first- 
level module cannot cause system irregularities will 
now be explained. To do this, the following defini- 
tions are needed: 

Definition i: A computer system is conflict-free if 
every pair of instructions in the system satisfies one 
or more of the following conditions: 

i. They have no operands in common. 

2. One is the logical predecessor of the other. 

3- The output operand set of one and the total 
operand set of the other have a null inter- 
section. 

Definition 2: A computation is completely functional 
if the value history of each of its data words is de- 
pendent only on the initial state of the computations 
that is, on its input data values. 

In particular, a computation will not be completely 
functional if its data values depend on the relative 
timing of instructions which can be applicable at the 
same time. Hence, it would appear that a necessary, 
and perhaps sufficient, condition for a computation to 
be completely functional is that the computer system in 
which it is executed be conflict-free with respect to 
its instructions. This supposition is indeed true in 
both respects. For a formal proof of these facts, the 
reader is referred to the work of Luconi. 5 

The theorem we seek can now be presented as 
follows: 

Theorem i: The duplicate storage of data words within 
a first-level memory module will affect neither the 
presence nor absence of complete functionality for any 
computation in the computer system. 

Proof: Let X be a data word being elevated into first- 
level memory module M, which already contains a copy 
of this word, as part of paragraph P. Then four cases 
can be identified, depending upon whether the old copy 
of word X has been changed (C) or unchanged (U) since 
its arrival in M, and whether X is (A) or is not (N) 
the word accessed by the instruction i causing the 
paragraphing operation. 

Case i: U, N 

Word X will be immediately stored in module M. 
Future references to X will retrieve two identical 
copies, and can destroy either. 

Case 2: C, N 

Word X will be immediately stored in module M. 
Future reference to X will retrieve two different 
copies, only one of which (the old one) will have its 
change indicator set. Thus the correct value of X is 
identifiable, and the incorrect one can be destroyed. 

Case 3: U, A 

Instruction i receives word X~ which is correct, 
directly. If i changes X, future instructions will 
know that the new copy is correct as only that copy 
will have its change indicator set. The only problem 
that could arise would occur if another instruction 
retrieved the old copy of the data word before the 

Instructions A and B both 
under execution in this interval 

! 
! 

t=0 

tl: 

t 2 : 

t3: 

t4: 

t5: 

t6: 

tT: 

: : I I I I I I 

t I t 2 t 3 t 4 t 5 t 6 t 7 t=T 

instruction A searches for word x, finds it in 
lower level of memory 

instruction B begins this same search 

instruction A retrieves word x 

instruction A stores the changed value of word x 
in main memory module m 

instruction B retrieves new copy of word x 

instruction B stores the changed new copy of 
word x in main memory module m 

instruction C retrieves both copies of word x 
from module m and notes error - values disagree, 
both words have change indicator set 

Figure 5 - Timing Diagram Showing Conflict that 
Resulted in Multiple Value Error 

revised word X were stored in M. But then this latter 
instruction and i would violate the conflict-free con- 
dition~ the computation could not have been completely 
functional, and the resulting errors would have oc- 
curred for any storage system. 

Case 4: C, A 

Instruction i receives word X, which possesses the 
incorrect data value. However~ the instruction which 
changed the old copy of X and instruction i must have 
satisfied the relative timing constraints illustrated 
in Figure 5, or else paragraphing would not have 
occurred. Hence, again the computation could not have 
been completely functional. 

In summary, the discussion of this section has 
indicated that storage reallocation for an associative 
memory computer system should proceed in the following 
manner. When a phrase requested by a computation is 
not found in first-level memory, the paragraph con- 
taining this phrase should be read non-destructively 
from its l~esent location in lower level memory and be 
stored in the main memory module which is serving as 
the primary store of the owner of the information con- 
tained in the paragraph. It is occasionally possible 
that this operation will result in two or more copies 
of a word residing in the same first-level memory 
module. Should any instruction subsequently retrieve 
duplicate copies of a memory word 3 it should proceed 
as follows: 

1. If all copies of the word are identical, it can 
use any of them and should destroy the others. 

2. Otherwise, if only one copy has its change 
indicator set, this copy should be used and the 
others destroyed. 

3. Finally, if two or more of the copies have their 
change indicator set, it should have the system 
print an error message indicating that the 
relevant computation has a conflict within it. 

When a word is subject to removal from main memory, it 

62 



should be restored in its original position in the 
hierarchy only if its change indicator has been set, 
otherwise it may simply be overwritten by a newly 
elevated word. 

Conclusions 

Because of the nature of associative memories, 
paging cannot be used for storage reallocation among 
their levels. Rather, paragraphs, based on program be- 
havior instead of storage contiguity, are required. 
Two vastly different types of paragraphs are possible: 
preset paragraphs, which are formed prior to execution, 
and dynamic paragraphs, which are formed when accessed. 
The former type have the advantages of uniqueness, 
single access retrieval, and simplified replacement 
rules, while the latter type make a superior choice of 
words to elevate (at the expense of storage duplica- 
tion) and allow more selective replacement algorithms 
to be employed. 

The retrieval problems resulting from the use of 
hierarchical associative memories are due to the need 
for the multiple storage of words in memory. Assume 
only one copy of each item existed in the hierarchy. 
Then if process A, looking for word X, failed to locate 
that word because process B were simultaneously moving 
it into main memory, process A would never find word X. 
The only solution to this problem is to read non- 
destructively for storage reallocation. But using 
this multiple storage strategy could result in several 
copies of a word residing simultaneously in main 
memory. Fortunately, a simple reallocation scheme 
will prevent any errors from arising due to this 
effect. 

i. 

2. 

3. 

4. 

5. 

References 

Dennis~ J. B., "Programming Generality, Paral- 
lelism and Computer Architecture," MIT Project 
MAC, Computation Structures Group Memo No. 32. 

Gertz, J. L., Hierarchical Associative Memories 
for Parallel Computation, MIT Project MAC, 
MAC-TR-69, June 1970. 

Hanlon, A. G., "Content-Addressable and Associa- 
tive Memory Systems, A Survey," IEEE Transactions 
on Electronic Computers, Vol. EC~i5, No. 4, August 
1966, pp. 509-521. 

Cannell, M. H., et. al., Concepts and Applications 
of Computerized Associative Processing, Including 
an Associative Proce@sing Bibliography, MITRE 
Corporation, ESD-TR-70-379, December 1970. 

Luconi, F. L., Asynchronous Computational 
Structures, MIT Project MAC, MAC-TR-49, February 
1968. 

63 


