
Using Idle Workstations
in a Shared Computing Environment

David A. Nichols
Computer Science Department

Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract

The Buffer system is a set of programs running on
Andrew workstations at CMU that give users access to
idle workstations. Current Andrew users use the sys-
tem over 300 times per day. This paper describes the
implementation of the Buffer system and tells of our
experience in using it. In addition, it describes an ap-
plication of the system known as gypsy servers , which
allow network server programs to be run on idle
workstations instead of using dedicated server
machines.

1. Introduction
The Information Technology Center at Carnegie-

Mellon University has spent the last four years develop-
ing the Andrew computing environment [5]. This en-
vironment consists of over 350 workstations running
the 4.2 BSD release of the UNIxloperating system, and
connected to a university-wide local area network.
Andrew provides its users with a shared file system [6]
and a network window manager that can display win-
dows from programs running on other workstations. A
number of these workstations are in faculty and staff
offices, and the rest are in public terminal rooms avail-
able to the student body.

These workstations are meant for use by single users,
and at any given time a large number of them are idle.
This paper describes a system for making these idle
workstations available to other users, called the B u t l e r

1Umx is a trademark of AT&T.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the AC M copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Comput ing Machinery. To
copy otherwise, or to republish, requires a fee and /o r specfic
permission.

© 1987 ACM 089791-242-X/87/0011/0005 $1.50

system, after Dannenberg's work [2]. The Butler sys-
tem is a set of programs that run on Andrew worksta-
tions. It should run on any workstations that provide
similar facilities, such as workstations running Sun's
Network File System [9] and MIT 's X window
manager [7].

Other people have built systems similar to the Buffer
system. Shoch and Hupp's w o r m programs [8] used
idle Alto workstations at Xerox PARC, but did not have
access to a shared file system. Craft 's resource
manager [1] concentrated on building configurations of
resources to provide various services. Hagmann [3],
Litzkow [4], and Theimer [10] all provide systems quite
similar to Butler. The main difference between these
systems and the Buffer system is that Buffer can run on
"off-the-shelf" operating systems without modification
to the kernel or the application programs. However,
this implementation choice limits the functionality that
Buffer can provide. One of the purposes of this paper is
to show that such as system can be quite useful none-
theless, and to discuss some of the problems caused by
these limitations.

The system maintains a list of the workstations that
are in the pool of available machines. When a user
wishes to use one of these workstations, he types

re_nt c o m m a n d

to the shell. The r em program finds one of the idle
workstations and arranges to have the command ex-
ecuted on it. Every effort is made to make remote
execution identical in effect to local execution. While
this is not possible in every case, a good deal of com-
patibility can be achieved. Section 2.2 discusses this
issue further.

These facilities are also available to C programmers
via a subroutine library. The library is used by the rem

program and by several experimental programs that use
multiple machines.

The next section of this paper describes the implemen-
tation of this system within Andrew. Section 3
describes gypsy servers , which allow us to run network
servers on idle workstations instead of using dedicated

server machines. Section 4 tells of the usage the system
.has received to date. In section 5, we describe
problems that arose during the building of the system,
and how we did or did not deal with them. Finally,
section 6 provides the conclusion to the paper.

2. Implementation
The Buffer system is implemented as a set of programs

running on the Andrew workstations. We made no
changes to the kernel. Applications may run without
change, but they can benefit from minor modifications.

If the machine is available, the buffer marks it as in
use and removes its name from the free machine
registry. The rem program then sets up the remote
execution environment, invokes the command, and
waits for it to exit. The client is free to invoke several
commands before freeing the machine, but the current
r em program runs only one program before releasing
the machine. When the client is done, it releases the
machine, and its buffer returns the machine to the free
pool.

When the machine is reclaimed by its owner, usually
by logging in at the console, the butler warns and kills
any guest processes that may be i'unning, removes the
machine's name from the global registry, and exits.

2.1. P roces s I n v o c a t i o n
When a machine is donated to the pool of available

machines, it runs a program called bu t l e r (sometimes
referred to as "the buffer"). This program is respon-
sible for adding and removing the machine from the
global free machine registry, and for handling requests
for remote execution on that machine. The buffer al-
lows only one user to use the machine at a time, but it
does allow that user to run as many processes as he
wishes.

The process of claiming a machine and invoking a
process on it is shown in figure 1. The r em program on
the client machine first contacts the registry to find a
candidate machine to use. The registry returns the
name and net address of the potential server machine
(this process is described in more detail below). The
machine registry gives no guarantees about which
machines are available, so the r em program contacts the
candidate machine and checks to make sure that it is
available.

 -ma; ne-i
m ~ registry i

1 - find

. . . . / _ ~ ~ - f ~ - - -] 2 - claim machine

,/" ~ e n t _ _ _ ~ i

- - - [- i 4 - start process !
rem I I - t ~,

7 - notify of death ~ . ~

~ - _ _ _ ~ - release machine~___--~ - ~

I

2.2. T h e remote execution e n v i r o n m e n t
When a program is running on a remote machine,

bu t l e r and r em try to provide an execution environment
that is as much like the user's execution environment as
possible. Ideally, the program running on the remote
machine would have access to the identical objects that
it would have had access to on the user's machine.
However, this is not always practical or desirable from
a performance standpoint. For this reason, the kinds of
resources a program uses fall into three groups.

Those provided by global servers. In Andrew, the
main service provided by global servers is the file sys-
tem. When a program is run on another machine, it
simply contacts the same file servers that it would have
contacted had it run on the local machine. Since the
files are provided by servers in either case, there is no
difference in semantics or performance when running a
program remotely.

buffer

\\
application

5 - start process

6 - process dies

• J

Local machine

I j

Remote machine

Figure 1: Process Invocation

The Andrew file system uses whole file transfer to
move data to and from the server, and changes made to
a file are not visible to other workstations until the file
is closed. This prevents programs that do fine-grained
sharing of file information from operating on different
machines. However, programs that share at a file
open/close granularity, such as a parallel m a k e

program, work fine.

Those provided by the user ' s machine. In Andrew,
applications communicate with the window manager
via a network byte stream, even when the application is
running on the same machine as the display driver.
When the application is run on a remote machine, this
network connection is established back to the user's
window manager. It turns out that the performance of
the window manager is nearly as good when the con-
nection goes between machines as when it is local, so
users do not see much of a performance penalty for
running window manager applications remotely.

The standard input and output streams of a program
are also directed back to the user's machine by use of a
network byte stream. T h e r em program moves data
between the end of the byte stream on the user 's
workstation and the user 's terminal. Network byte
streams and local terminals do not behave identically in
UNIX, so the user sometimes sees minor differences in
the way buffering of the standard input and output
streams is handled in the remote case.

Those provided by the remote machine. Some
resources are best handled by the remote kernel: ex-
amples are the time of day and software interrupts.

Providing these resources on the remote machine in-
stead of on the user's machine can cause problems, and
the Butler system uses them only when it would be
impractical to provide the original resource or when
there would be a severe performance penalty for doing
so. For example, using the time provided by remote
workstation can cause incorrect timestamps to be writ-
ten on files because the clocks are not synchronized.
To alleviate this problem, Andrew workstations
periodically resynchronize their clocks to the clocks of
the file servers.

In Andrew, the " / tmp" directory used by many
programs for temporary files is local to the workstation
and is not kept in the shared file system. The result is
substantial performance improvement since 300
workstations are not constantly trying to change the
same directory. However, programs that run on one
workstation cannot communicate with programs run-
ning on another by leaving files in the " / tmp" direc-
tory. We have not tried to split up applications that use
" / tmp" for communication (such as the C compiler).

Figures 2 and 3 show the difference between the local
and remote execution environments. In the figures, the
m e s s a g e s program uses standard I/O for a greeting mes-
sage, creates a window for mail reading, and uses the
file system and kernel facilities. The w m program is the
window manager and v e n u s is the local cache manager
for the Andrew file system. The figures show how
access to the facilities used by m e s s a g e s is given in the
local and remote cases.

! I
file server t

I I
I I

w m

messages

typescript

kernel
t . . . 4

Local workstation

Figure 2: The local execution environment

2.3. The machine registry
The butlers announce the presence of their machines

in the free pool by writing a file to a special directory in
the shared file system. This file contains the name and
net address of the machine, along with any special at-
tributes associated with the machine. For these at-
tributes, the butlers list the CPU type and the version of
the current software release for the machines. The list
of available machines is only a hint for the rem

program; it must still contact the butler on the machine
that it chooses to ask if the machine indeed is available.

In early versions of the butler system, the rein

programs scanned the list of butlers directly to trmd a
suitable machine. However, this database is changing
quite rapidly as butlers add and remove their enlries,
causing the search process to slow down with extra file
fetches. To speed up the search process, a special serv-
er program, caUed mreg, runs on several machines and
caches the information in these files. A simple RPC
call to one these servers can quickly find a likely can-
didate for a free machine.

The mreg servers also register themselves in a global
directory, just as the butlers do. But since this set of
machines is changing far less rapidly than the one con-
taining the list of butlers (once an hour vs. once a
minute), it is usually cached on the user's workstation.

The mreg programs are started up on idle workstations
by butler whenever it notices that too few are running.
They are an example of gypsy servers, which are
described in detail in the next section.

w m

typescript

Now that we have used this system for a while, we
believe that a better solution is to use the machine
registry servers only, and to store no information about
the available machines in the file system. Because all
the free machines in the network are busy checking to
make sure a registry server is running, the service is
quite robust. Also, the butlers re-register themselves
every 30 minutes in case the free machine database is
damaged. With our current figure of 60 free machines
on average, if a machine registry were to crash, another
would be started and it would know about a few free
machines within one or two minutes.

3. Gypsy s e r v e r s
An interesting application of the Butler software is its

use by the so-called gypsy servers. These are network
servers that have no dedicated machines to run on. In-
stead, they float from workstation to workstation using
the facilities of the butler to find free machines.

One such server is the help daemon. This program
caches a list of all the help files in the system, keeping
track of the help keywords for each file and the file's
full pathname. When the help program wants to find
the help file for some topic, it sends an RPC request to
the help server and receives a list of files that contain
help for the topic. Since the help files are scattered
throughout many directories, using the help daemon is
much faster than fetching each of the help directories
from the file server and scanning them in the help
program.

I I
i file server
I i
! I

L I
r I

kernel

messages

I J I

Local workstation

kernel
. d

Remote workstation

Figure 3: The remote execution environment

Another example are the machine registry servers
described in the preceding section. The machine
registry servers differ from other gypsy servers in that
they are started by the buffers, while the other gypsy
servers must be started in other ways.

3.1. H o w they w o r k
The servers maintain a list of machines running the

service by inserting and deleting f'lles from a directory
in the shared file system. Each file gives the name of
the machine running the service and its network ad-
dress. A client of the service contacts a server by read-
ing the list of servers and choosing one to call.

Each server updates the modified time of its file every
t seconds, where t is a constant of the particular service.
Periodically, each server examines the list of running
servers and verifies that all the files have a modified
time that is within 2t seconds of the present. Those
files that are too old are assumed to have been written
by servers that have crashed, and are deleted. After
doing the time check on each file, the server checks the
number of servers that are running and verifies that it
above the minimum number of servers for the program.
If it is too small, another server is started using the rem
program. The servers also check to ensure that some
maximum number of servers is not exceeded.

The mreg servers used by the buffers are a special kind
of gypsy service. Instead of being started by other
mreg servers, they are started by the butlers running on
idle workstations. This ensures that mreg servers are
always running whenever any machines are in the free
pool.

3.2. Problems with the se rve r s
One problem with the gypsy servers is keeping them

running at all times. Since the servers keep themselves
running, it is possible that all the servers could die at
once and nothing would be left to restart them. One can
make this event less likely by increasing the number of
servers running at all times. A better solution is to have
a program on a dedicated machine that performs the
periodic checks of the running servers described in the
preceding section. Since this is a fairly inexpensive
operation, this machine could also be used for other
purposes, such as serving as someone's workstation.

It is also possible that the workstation pool could dry
up, making the service unavailable for a while due to
the lack of machines. To handle this case, the dedicated
machine could take over the service temporarily until
workstations became available again. For certain ap-
plications, the client programs can be designed to
operate without the servers, doing the work locally in-
stead. In either case, some sort of performance penalty
is likely.

A second problem with the servers is keeping them
authenticated with the Andrew file system at all times.
The file system has an authentication scheme involving
authentication tokens, which can be created when a
user presents his password, and which give him access
to the file system for up to 25 hours. These tokens are
automatically copied to the remote machine by the rem
program when it invokes a remote process.

The problem is that servers will have their tokens ex-
pire. Since they are unattended, there are no operators
around to type in the password every day. Putting the
password in the program itself isn't very secure and
makes the password difficult to change. Putting it in a
file in the shared file system causes startup problems
since the password is unavailable at startup time.
Again, the best solution involves using a dedicated
machine to start the server programs. This machine
would have the password on its local disk and could
generate authentication tokens as needed. As before,
the load on this machine would be light, so it could be
used for other purposes or could be used to maintain
several gypsy services.

4. Usage
The Andrew system currently has approximately 350

workstations on line, with about 3600 registered users.
Of these workstations, about 50-70 workstations are in
the free pool during the daytime. At night, the number
of free machines goes up to over 100.

The number of invocations of the rem program has
gone up from about 25 per day when the facility was
introduced in September 1986 to about 300 per day in
February 1987. Of these, about one-third are for the
typescript program, which gives the user a shell on the
remote machine. Each of the typescript invocations
represents an extended session, so the actual number of
commands actually executed on remote machines is
much higher than 300 per day.

When we started this project, we envisioned that users
would run mostly compilers, document processors, and
other non-interactive, CPU-intensive applications. We
were surprised by the large number of invocations of
typescript and other interactive programs.

According to a survey of the buffer users conducted as
this paper was being written, the large proportion of
typescript invocations is caused by several factors:

• The overhead of starting a remote program
with rein is about seven seconds, while
starting a command from a shell takes less
than a second. By running typescript, users
are effectively caching connections to other
machines.

• If a user runs a typescript on the other
machine, then he retains a handle on that

machine so that he can later find out what
Iris programs are up to. The current system
marks a machine as " in use" as soon as
one command is run on it, so if a user in-
yokes a command directly with the r em
program, he cannot later run the process
status command to find out what is going
on if the program hangs. But if the user
uses his one command to get a typescript,
he can later use that typescript to examine
the processes he has started on the remote
machine.

• When a user uses the same machine for
several commands, he can take advantage
of the caching provided by the Andrew file
system. If the user uses the r em program
for each command, he receives a random
sequence of machines and does not have
any files cached between invocations.

• There are a few bugs in ~imulating a ter-
minal for the standard I/O streams when
commands are invoked directly from rem.
By using a typescript, the user avoids these
bugs.

As mentioned above, we were also surprised to learn
that the majority of the uses of r em have been for inter-
active programs instead of ccmputation-intensive
programs. Even with the remote t)~scr ip t invocations
removed from the data, over halt of the uses of rein
were for interactive applications. In particular, the mail
and bboard system accounted for 20% of the total in-
vocations of rem. We believe that this is because the
mail and bboard programs in Andrew are fairly memory
intensive and users are taking advantage of the butler
system to prevent their workstations from thrashing.

We are just beginning to develop parallel programs to
increase the speed of applications directly, instead of
just providing more cycles to people doing more than
one thing at a time. For example, a parallel version of
t he UNIX m a k e program is now working. In addition,
Gregory McRae and Joseph Pekny of the Chemical En-
gineering Department are using groups of 50 or so
machines to solve certain combinatorial search
problems.

5. Practical considerations
As we were building and using this system, we en-

countered several problems. This section describes the
problems, the approach we took to dealing with them,
and the mixed degrees of success we had with the solu-
tions.

5.1. Getting the machines
The original version of butler had to be run explicitly

by the user in order to donate his machine to the pool.
Users could set up command files to do this for them
automatically whenever they logged in and out of their
machines, but few users did this. As a result, we wrote
au tobu t l e r and installed it on all workstations by ad-
ministrative fiat. A u t o b u t l e r runs all the time on the
workstation and monitors the state of the machine to
decide when it should be added to or removed from the
free pool.

A user-created configuration file on the machine tells
au tobu t l e r when the machine should be in the free pool.
The configuration file consists of a boolean expression
that can test the number of logged in users, the idle time
of the console keyboard, and the time of day. The
default expression is user s = 0, which causes the
machine to be in the free pool whenever no one is
logged into the workstation. When a user logs into his
workstation, it is automatically reclaimed and any guest
processes are evicted. Our surveyshowed that users are
happy with this default, and very few have changed it.

When we installed au tobu t l e r , we also installed a con-
figuration file causing all workstations to be donated to
the butler pool by default. Immediately, the number of
free machines shot up and has stayed high ever since.
The moral seems to be that while users will not go to
any particular effort to have their machines donated to
the butler service, neither will they go to any particular
effort to prevent it, unless bu t l e r causes problems for
them. So far, very few users have wanted to turn off
butler service on their machine.

5.2. Machine types
The pool of workstations at CMU includes four kinds

of machines: Sun 2 workstations, Sun 3 workstations,
DEC MicroVaxes, and IBM RT PCs. When a user runs
a compiler, he usually wants to compile his program for
the same kind of machine as the one he is using. In any
event, he wants control over which kind of machine is
used.

T h e r e m program uses the machine type attributes
stored in the machine registry to pick machines of the
proper CPU type for each invocation. A user can
specify which machine type he wants, or say that any
type will do. By default, he gets the same type as the
one he is running on at the time.

This same mechanism is used to distinguish between
machines running the two major software releases at
CMU. Most machines run the production release, while
a few (about 15%) run the newer, experimental version
of the Andrew software. Again, users can ask for either
kind of workstation or specify that either will do.

Files are named in the Andrew system so that most

10

commands work without regard to CPU type. For ex-
ample, the file/usr/andrew/bin/messages always refers
to the mail reading program, regardless of CPU type or
software release. Symbolic links local to the worksta-
tion cause thi,~ name, and those of other system files, to
refer to the co:rect one of the eight possible versions.

The buffer system lacks more advanced facilities for
selecting workstations. For example, users cannot ask
for " an RT or Sun 3, but not a Sun 2 or MicroVax." In
addition, users have asked for facilities to define other
attributes for workstations, such as the deparmaent that
owns it, and whether it is in a public cluster or not.

5.3. Living without process migration
Some systems similar to the butler system (such as the

V system [11]) provide process migration to move
visiting processes off the workstation when the owner
reclaims it. We judged that is was too difficult to
provide process migration in our system, due to the
extensive kernel modifications it would entail. Instead,
we have chosen to kill visiting processes when a
machine is reclaimed.

In order to warn both the user and the programs when
a machine is being reclaimed, butler proceeds as fol-
lows:

1. It sends a message to the console program
of the machine that initiated the guest
processes. The console program is run by
most Andrew users and is a machine
monitor that displays various information
such as the load of the workstation, file
transfers in progress, the status of incom-
ing mail, the time of day, etc. In par-
ticular, it displays messages generated by
UNiX programs and can display messages
sent to it from other workstations. The
messages sent by butler tell the user that
the machine he is using is about to be
reclaimed.

2. Two minutes later, the buffer delivers a
software interrupt (called a signal in
UNIX) to each of the guest processes on
the machine. We intend that the
processes will respond to this signal by
saving any state that they have at the time.
Most of the editors in common use in
Andrew will checkpoint their buffers and
exit on receipt of this signal. Programs
that do not handle the signal die im-
mediately.

3. After another 30 seconds, the butler kills
any remaining processes with an uncatch-
able signal. All the remaining processes
are terminated at this point.

Usually, this warning mechanism has proved suf-
ficient for our use. Many programs such as compila-
tions cart simply be restarted when aborted by the but-
ler. When the user is running an interactive program
such as a mail reading program, the warning sent to the
console gives the user time to save his state and to find
another machine.

However, it is annoying to have to move to another
machine, particularly if the user has the bad luck to
choose a machine that is just about to be reclaimed.
Our survey showed that most users thought the reclaim
mechanism was reasonable, but that many of them were
annoyed by having interactive programs seemingly
killed at random. Many asked for some sort of process
migration or a way to ask for a machine that would
remain free for a given period of time. It would be nice
to have some way of estimating how long the machine
is likely to remain available, perhaps by asking the
owner or basing the predictions on his past use. These
methods would only be heuristics, but it should not be
too hard to improve on the current totally random
method of choosing machines that is used today.

5.4. Security
Dannenberg gives a description of the problems with

protecting the users of a system such as this one from
one another [2]. There are two basic problems: protect-
ing the host computer from being disrupted by the guest
programs, and protecting the guest programs from
modified system software running on the host com-
puter.

In the first case, we use the security provided the by
the host operating system, in this case UNIX coupled
with the Andrew file system. While this combination is
not completely secure, it has usually provided enough
protection for our purposes. We have only had one
reported case of a guest user violating protection
mechanisms and reading private t-des that the owner
had stored on his local disk.

More common is accidental disruption caused by
guest programs using up some workstation resource.
Several times a guest program has filled up a disk par-
tition by leaving many files in the " / tmp" directory.
When the owner reclaims his machine, he can ex-
perience difficulties in running various programs until
the " / tmp" is cleared out. Butler now removes the
temporary files that the guest user leaves behind as part
of its normal cleanup procedure. Another form of ac-
cidental disruption is the flushing of the file system
cache contents caused by the guest's use of the
machine. When the owner returns, he finds that his
favorite files have been removed from the cache to
make room for the files of the guest.

Protecting the guests from the programs on the host

11

computers is much more difficult. Since the owner of a
workstation has complete control over the system
software run on it, it is in principle easy for the owner
to run a modified butler that disrupts the guest
programs or uses the file system rights shipped along
with the program to delete that user's files.

To our surprise and relief, attacks of this form have
not yet been a problem with the current system, despite
the fact that the user community for Andrew is quite
large. If we do have such problems, we hope to be able
to handle them with the logging provided by the sys-
tem. Since users know which machines are being used
to run their programs, the owners of that machine can
be held accountable for disreputable actions performed
by host software on that machine. For public worksta-
tions that have no owners, we hope to be able to impose
restrictions to prevent users from installing system
software.

6. Conclusion
We have been quite pleased with the reception that the

butler system has had with the local user community
over the past half year. During that time, it has become
quite popular despite its shortcomings. In the course of
supporting the system during this time, we were
surprised by several things:

• Transparent access to the local window
manager when running remotely is almost
as important as transparent access to the
file system. Far more interactive programs
are run with our system than we an-
ticipated.

• We thought that process migration would
not be very important because we under-
estimated the amount of interactive use the
system would get. While it is possible to
live without process migration, it would
make our system much more pleasant to
use .

• Problems related to security and protection
occurred much less frequently than we an-
ticipated. Even with a large user com-
munity such as ours, users can be mostly
cooperative.

We have only preliminary experience with gypsy ser-
vers, but we are quite encouraged by the results. We
believe that they are a real alternative to dedicating
large numbers of machines for certain network services.
We are working on plans to use them for parts of the
mail system, and for the workstation-based servers that
IBM PC-class workstations need to attach to the
Andrew file system.

7. Acknowledgements
Jim Morris and the referees gave me many valuable

comments on earlier versions of this paper. I am also
grateful for the assistance of Richard Cohn, Mike
Kazar, and Sherri Menees.

References

1. Daniel H. Craft. Resource Management in a
Decentralized System. Proceedings of the Ninth ACM
Symposium on Operating Systems Principles, October,
1983, pp. 11-19.

2. Roger Berry Dannenberg. Resource Sharing in a
Network of Personal Computers. Ph.D. Th., Carnegie-
Mellon University, Dec. 1982.

3. Robert Hagmann. Process Server: Sharing Process-
ing Power in a Workstation Environment. Proceedings
of the Sixth International Conference on Distributed
Computing Systems, 1986.

4. Michael J. Litzkow. Remote Unix: Turning Idle
Workstations into Cycle Servers. Proceedings of the
Summer 1987 Usenix Conference, June, 1987, pp.
381-384.

5. James H. Morris, Mahadev Satyanamyanan, Michael
H. Conner, John H. Howard, David S. H. Rosenthal,
and F. Donelson Smith. "Andrew: A Distributed Per-
sonal Computing Environment". Comm. ACM 29, 3
(March 1986), 184-201.

6. M. Satyanarayanan, John H. Howard, David
A. Nichols, Robert N. Sidebotham, Alfred Z. Spector,
and Michael J. West. The ITC Distributed File System:
Principles and Design. Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, Dec.,
1985, pp. 35-50,

7. Robert W. Scheifler and Jim Gettys. "The X Win-
dow System". ACM Transactions on Graphics 5, 2
(April 1986), 79-109.

8. John F. Shoch and Jon A. Hupp. "The "W orm"
programs---Early Experience with a Distributed
Computation". Comm. ACM 25, 3 (March 1982).

9. Sun Microsystems, Inc. Networking on the SUN
Workstation. 1986.

10. Marvin M. Theimer. Preemptable Remote Execu-
tion Facilities for Loosely-Coupled Distributed
Systems. Ph.D. Th., Stanford University, June 1986.
Available as Stanford Computer Science tech. report
STAN-CS-86-1128.

11. Marvin M. Theimer, Keith A. Lantz, and David
R. Cheriton. Preemptable Remote Execution Facilities
for the V-System. Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, 1985, pp.
2-12.

12

