
Compiler Directed M e m o r y Management Policy For Numerical Programs

Mohammad Malkawi and Janak Pate1

Coordinated Science Laboratory
University of Illinois at Urbana-Champaign

1101 West Springfield Avenue
Urbana, I1. 61801

Abstract

A Compiler Directed Memory Management Pol-
icy for numerical programs is described in this paper.
The high level source codes of numerical programs
contain useful information which can be used by a
compiler to determine the memory requirements of a
program. Using this information, the compiler can
insert some directives into the operating system for
effective management of the memory hierarchy. Dur-
ing the program's execution the operating system
dynamically allocates to a program the space it
requires as specified by the received directive. The
new policy is compared with LRU and WS policies.
Empirical results presented in this paper sliow that
the CD policy can out-perform LRU and WS by a
wide margin.

1 INTRODUCTION

Many memory management policies have been
designed since the early invention of Virtual
Memory (VM) systems. These policies assume either
fixed memory allocation (static policies) such as
Least Recently Used (LRU) and First In First Out
(FIFO), or they assume variable memory allocation
(dynamic policies) such as working Set policy (WS)
[Dcnn68] and Page Fault Frequency (PFF) [ChOp72].

Dynamic policies have been shown to out-
perform static ones [DcGr75], [BDMS81]. However,
they havc their own problems. The WS for example,
is too expensive to implement; furthermore, it is
unable to avoid heavy faulting rate during interlo-
cality transitions [FeYi83]. The Damped. WS (DWS)
was introduced to handle these transitional faults
[Stair76]. However, the DWS out performs WS by
less than 10% [Grah76]. The Sampled WS (SWS)
[RoDu73] is a cheaper realization of the WS • In
[FeYi83] the Variable Sampled WS (VSWS) was pro-
posed to reduce both implementation cost and transi-

A~knowledgment: This research was supported by
the Joint Services Electronics Program under Con-
tract N00014-84-C-0149

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1985 ACM-0-8979 I- 174- I - 12/85-0097 $00.75

tional page faults. The Page Fault Frequency (PFF) is
cheaper to implement [ChOp76] but has poorer per-
formancce than the WS [Grab76]; also, it exhibits
anomaious behavior [FrGG78]. The WS aiso exhibits
some types of anomalies when tested against humeri-
ca2 programs [AbPa81], [ALMY81]. Other types of
WS anomalies in multiprogramming systems have
been discovered by the authors of this paper. The
controllability of the WS in a multiprogramming
environment (10% de-tuned policy [GrDe78],
[Denn80]) is too optimistic [ALMY82], [AbLM84].
The conclusions drawn about the WS optimality and
controllability which were based mostly on experi-
ments with systems programs do not hold for
numericai programs [ALMY82], [AbLM84].

The difficulty of all of the above approaches is
that they t ry their best to estimate the behavior of a
program at run time. A fair amount of run time
behavior can be predicted from the high level source
code. However, none of the proposed memory
management policies exploit that fact. Empirical
results about the localities of numerical programs

show that their localities can always be associated
with iterative structures [Malk82]. It is not ditiicult
to identify the localities of a program if the space
required by its data structures is explicit in the
source code, as is the case in most high level language
programs. The information inherent in the source
code is, therefore, helpful for specifying the memory
requirement of a program at execution time.

In this paper we propose a memory management
policy based on the recognition of locality charac-
teristics at compile time. A study of the locality
characteristics of FORTRAN numerica2 programs is
presented in the next section. In Section 3 we develop
the concept of memory directives (MD). An outline
of a compiler-directed memory management policy,
supported by MDs inserted into the program high
level code, is presented in Section 4. Empirical results
comparing CD with both WS and LRU policies are
presented in section 5. Conclusions are drawn in Sec-
tion 6.

2. LOCALITY CHA.RACr~:ur~TICS OF NUMER/CAL PRO.-
GKAMS

It has been observed very early that a program
does not reference its address space randomly.

97

Rather, it tends to reference a sinai.1 subset of its
space for a relatively long period of time. This pro-
petty is referred to as the locality of reference
[Denn72], [DcSp72],. Quantitatively, the localities
can be characterized by three parameters. The length
of a locality specifics the time duration, during which
a locality exists. The virtual size of a locality
specifies the number of distinct pages (in a paged sys-
tem) comprising the locality set. Finally, the level of
a locality specifics the depth of a locatity in the
hierarchical locality structure. The latter parameter
is essential because several localities with different
sizes and lengths can exist at the same time, thus,
forming a hierarchical locality structure [MaBa76].
Studies of the locality characteristics of numerical
programs have shown that the localities of these pro-
grams can be always associated with array references
inside their loop structures [MaBa76], [Abus81],
[Malk82]. Complicated loop structures yield
complicated locality characteristics. In particular,
multi nested loops produce hierarchical locality
structure [Abus81], [Malk82]. Such hierarchical
locality structure imposes some difficulties on the
implementation of a memory mangement system
which is designed to be aware of the existence of pro-
gram localities. The example in Figure I illustrates
the localities depicted in a FORTRAN like piece of
code.

DO 10 1 = 1, 10
DO 20 J = I, 200

E(IJ) = F (I J)
20 CONTINUE

DO 30 K = I, 200
G(K,I) = H(K,I)

30 CONTINUE
10 CONTINUE

The localities of the above code are represented by
the following diagram.

{E, F}: Loop 10
I

{Gl,Iirl} ... {G2,H 2} ... {Glo,nlO}
l { ' ~ } {

Figure I: Example Of Localities At The Source Level

In this example, all four arrays (E,F,G,H) are
repeatedly referenced in the outermost loop (loop
101. In loop 20, arrays E and F are referenced row
wise while, in loop 30, arrays G and H are referenced
column wise; the arrays are stored in a column major
order scheme. Loop 20 does not form a locality,
since none of the pages in the virtual spaces of arrays

E and F are referenced repeatedly during the execu-
tion of loop 20. However, the same virtual space
spanned by loop 20, is repeatedly spanned by loop
10. Therefore, arrays E and F form a locality at the
higher level of loop 10; the size of this locality is the
sum of the virtual sizes of arrays E and F. During
the execution of loop 30, one column from array G
and one column from array H are referenced repeat-
edly, therefore, forming a locality at the lower level
of loop 30,

The above example is too simple to illustrate the
complexity involved in identifying all possible local-
ities of a program at a given time. It is not, however,
the intention of this paper to introduce a systematic
procedure for computing the virtual size of program
localities at the source level code. Rather, we present
a study of the various parameters which could be
used for this purpose. We examined a wide range of
FORTRAN programs used in different packages for
the purpose of identifying and measuring their local-
ities using the information inherent in the source
code. Some of these packages are UIARL : University
of Illinois Atmospheric Research Lab, EISPACK,
ACM: ACM Standard Programs, IEEE: IEEE Standard
Programs; NRL: Naval Research Laboratory, AFWL:
Air Force Weapons Laboratory, FISHPACK, MIN-
PACK.

Examining the source code of these programs
reveal that six parameters can be used to calculate
the virtual size of current program localities. Five of
these parameters are program dependent and one is
system dependent. The system dependent parameter
is the page size (P). The page size is necessary for
calculating the virtual size of the current locality in
pages since memory allocation is measured in pages.
Program dependent parameters are:

(11 Array size (E) : E is usually given as (M x N)
dimension, where M = number of rows and N =
number of columns. N = 1 for vectors. Only up
to two dimensional arrays are considered in this
paper. Array sizes are given explicitly in the
dimension declaration statements. The virtual
size of an array (AVS) is given by:

(M x N)
A V S = ~

P

Often the virtual size of an array column (CVSI
contributes to the size of the current locality
since; CVS is given by:

M
C V S =

P

The virtual size of all arrays referenced in a
program comprise an upper bound on the
memory requirement of the program. Memory
requirements during the execution interval of a
loop structure are bounded by the virtual size of
the arrays referenced inside the structure. We
assume that all constants and instructions are
permanently resident in memory. Finer ccalcula-

98

f ion of loca l i ty sizes is fac i l i t a ted b y o ther
pa rame te r s descr ibed below.

(2) The nest dep th of the loop s t ruc tu re (A): A
de te rmines whe the r the cu r ren t loca l i ty has a
h ierarchical s t ruc tu re or not. A > 1 impl ies tha t
a h ierarchical loca l i ty s t ruc tu re w i th u tmos t A
levels m a y exist . I t is possible, however , not to
have a h ierarchica l loca l i ty s t ruc tu re w i t h A >
1. A typ ica l example is a d o u b l y nested loop, A
= 2, w i t h a r r a y s referenced row-wise inside the
inner loop. In th is case, the d o u b l y nested loop
fo rms a single level one local i ty . A is also used
fo r assigning p r io r i t y ~ e x e s (defined in the
next section) to the cur ren t loop.

(3) The n u m b e r of indexed var iab les used to re fe r -
ence a r r a y e lements (X): X is used to give an
upper bound on the number of d i s t inc t a r r a y
pages referenced a t a given loca l i ty level . The
m a x i m u m n u m b e r of a r r a y e lements which can
be referenced dur ing one i te ra t ion of a loop is
de te rmined b y the number of d is t inc t indexes,
X, used to address the a r ray . I f the a r r a y ele-
ments referenced at a pa r t i cu la r level are s tored
in d i s t inc t pages, then X d is t inc t pages are re fe r -
enced a t th is level . Depending on the d imension
and the order of reference of an a r ray , X can be
used to give a real upper bound on the number
of a r r a y pages which par t ic ipa te in the f o r m a -
t ion of the loca l i t y a t the cur ren t level . For the
case of a vec tor the upper bound is f o u n d b y
counting the d i s t inc t indexed var iab les used to
index the vector. For example , consider the fo l -
lowing s ta tement involv ing a vector V inside a
loop :

w = v (1)+v (1 +l)+V (y):

Three different indexes are used to reference
vector V; n a m e l y I, I+1 and $. Obvious ly , a m a x -
i m u m of three pages of vec tor V can be r e fe r -
enced dur ing one i te ra t ion of the loop containing
V. For co lumn-wise referenced a r r a y s , where
the co lumn size is la rger than a page size, an
upper bound is given b y

X = x o x x ,
where x , is the number of d i s t inc t indexes used
to reference a co lumn (r ~ the number of rows
M) and X c is the n u m b e r of d is t inc t co lumns
referenced a t the cu r ren t loca l i ty level (c ~ the
n u m b e r of a r r a y co lumns N). Consider fo r
example , the foUowing s ta tement encountered in
an inner loop:

W=A (X.I)+A (I + I . /)+A (/ . / + I) + A (I + L I + I)

where I is the index of the inner loop and J is the
index of the ou te r one. In th is example, J and
J+ l are t w o different co lumns referenced inside
the inner loop. I and I+1 are used to reference
e lements in co lumns J and J+ l . Four e lements of
array A are referenced dur ing one i te ra t ion of
the inner loop ; the fou r e lements can be s tored

in f o u r pages a t most . I f the a r r a y is referenced
row-wise , then the m a x i m u m n u m b e r of pages
referenced dur ing one i te ra t ion of the loop con-
ta ining the a r r a y is given by:

X = x, x N
where N is the n u m b e r of co lumns in the a r ray .
W e use N here, ins tead of Xo, because xc is given
b y the loop 's upper bound, a var iab le which
might not be k n o w n at compi le t ime. Therefore,
we assume tha t once a row I is referenced, a l l of
i t s e lements (I ,1), (I ,2) (I ,N) wi l l be re fe r -
enced as wel l . However , i f the to ta l n u m b e r of
a r r a y pages AVS is larger than X, then the upper
bound is de te rmined b y AVS.

(4) The o rde r of reference (0) : The order in which
a r r a y s are referenced has a d i rec t effect on the
fo rma t ion of a local i ty . I f an a r r a y is referenced
co lumn-wise , then the referenced columns pa r t i -
c ipate in the fo rma t ion of the loca l i ty comprised
b y the loop containing the a r ray . On the con-
t r a ry , a r o w - w i s e referenced a r r a y tends to have
mos t of i t s v i r t ua l space spanned dur ing the
whole du ra t ion of the loop in which i t is r e fe r -
enced. Therefore, the pages referenced dur ing
one i te ra t ion of the loop are not l i ke ly to be
referenced dur ing the next i terat ion. Row-wise
referenced a r r a y s t end to fo rm local i t ies a t
higher levels than the ones t hey are referenced
at.

(5) The level (or nest dep th) a t which the a r r a y s are
referenced (A): A = I fo r the ou te rmos t loop in a
m u l t i nes ted loop s t ruc ture . A increases for
loops as we go deeper into the nest. A = A for the
innermos t loop. The sma l l e r the va lue of A, the
higher the level . A r o w - w i s e referenced a r r a y at
some level A = g tends to fo rm a loca l i ty at
higher levels A 2> g because the same v i r t ua l
space of the a r r a y might be spanned at level ~.
dur ing one i te ra t ion of a loop executing at level
> L S imi la r ly , fo r the case of a vector, one
i te ra t ion of a higher level loop is sufficient to
span the ent i re v i r t ua l space of a l l vectors r e fe r -
enced a t lower levels. Therefore, the ent i re v i r -
tua l space of a vec tor referenced at level ~ ~ 1
cont r ibu tes to a l l higher level locali t ies. In the
case of a co lumn-wise referenced a r r a y inside a
loop at level A ffi ~, one or more columns of the
a r r a y are spanned dur ing the execution of the
loop. These co lumns are u s u a l l y specified b y an
ou te r loop at level g - I . The ent i re v i r t ua l space
is spanned dur ing one i te ra t ion of a loop at level

- 2. Thus the ent i re v i r t ua l space of a
co lumn-wise referenced a r r a y cont r ibutes to
local i t ies f o rmed a t leas t two levels higher than
the level a t which the a r r a y is referenced.

For th is s t udy , we use the above pa ramete r s in a
non-de te rmin is t i c manner to eva lua te program local i -
ties. A de te rmin is t i c procedure is being developed b y
the au thors of ~ paper .

99

3. MEMORY DIRe'WIVES

The above discussion leads to the idea of
memory directives (MD) as a tool for improving the
memory management system. A memory directive is
an instruction whose execution generates useful
information used~ by the operating system for
memory allocation and deallocation purposes. MD's
are to be inserted into the program code before exe-
cution time. Madison and Batson introduced this
idea and developed the BLI model to characterize
program localities [MaBa76] with the intention of
making these localities known to the operating sys-
tem at execution time. In [Abus81] and [Malk82] one
further step was taken in this direction. The BLIs
were shown to reflect programs' iterative structures.
Two directives were suggested to allocate and deallo-
cate memory space on behalf of users' programs.
The idea of using memory directives was also advo-
cated by Hagman and Fabry [HaFa83] and Kearns
and Defazio [KeDe83]. Some operating systems even
provide facilities to improve program behavior in
virtual memory systems using the idea of memory
directives. For instance, VAX/VIVIS allows the user
to lock and unlock certain pages in the main
memory. Such facilities were shown to be useful for
improving the behavior of some numerical algo-
rithms [Abaz84].

The characteristics of MD, where and how to
insert them into the program code, and how to pro-
cess a MD by the system will be presented in the
next two subsections.

Three memory directives are investigated in this
section: LOCK, U N L O C K and ALLOCATE. Both
directives LOCK and UNLOCK have been used in
recent operating systems as mentioned above. In
these systems it is left to the user to decide which
pages to lock or unlock at some given time. In this
paper we present a procedure to resolve the problem
of automatic insertion of LOCK and UNLOCK direc-
tive. The effectiveness of LOCK and UNLOCK direc-
tives is not studied in this work.

The ALLOCATE directive is used to allocate
physical memory on behalf of the running process.
ALLOCATE does not deal with particular pages as
LOCK and UNLOCK do. To the best of our
knowledge, the effectiveness of such a directive has
not been investigated. Some researchers predicted
the viability of such a directive due to program
locality characteristics [MaBa76], [AbLM84]. In this
study we develop the concept of MD for a multipro-
gramming environment, discuss implementation
issues of the directives, and present some empirical
results on program behavior under a memory
management policy guided by the ALLOCATE direc-
tive.

3.1. Memory Directive : ALLOCATE

The memory allocation directive is used for
estimating the memory space required by a program

during its execution. ALLOCATE is a measure of the
virtual size of the current locality. In developing
ALLOCATE for a multiprogramming system, two
facts were considered. First, the available memory
in a multiprogramming system dynamicaUy changes
as processes acquire and release memory pages.
Second, memory requirements of a program change
dynamically according to the program's current
locality characteristics. The locality characteristics
include the size of the locality and its level in the
locality hierarchy. Program localities exhibit
hierarchical structure [MaBa76] which reflects the
nested loop structures exhibited at the source level
code [Abus81], [Malk82]. The decision as to which
level of the hierarchy the directive should be applied
is of special significance. In [BaBK77] a structure
parameter cx was introduced to decide whether the
lower level BLIs are significant enough to consider
for memory allocation. However, ~x is a system
dependent parameter [BaBK77]; furthermore, it can
not respond to the dynamic change of memory space
availability due to multiprogramming. Calculating
the structure parameter ae further complicates the
memory directive's implementation.

To handle the effect of changes both in a
program's memory requirements and in the available
memory due to multiprogramming, we propose a
priority index (PI) to be used in the argument list of
ALLOCATE. Each ALLOCATE directive is capable
of issuing several memory requests. Each request is
assigned a priority index. The memory directive
ALLOCATE has the following form:

ALLOCATE ((Pl, , x ,) else (PI 2 , X 2)
else ...)

where
Xj is the number of memory pages
requested by the program. X~
corresponds to the virtual size of the
current loeality.
PA > n 2 > e/3> ..-
X , >/X2>/X3 ...

The priority index tells the system whether the pro-
gram is approaching a single locality or a hierarchy
of localities, in which case the maximum level in the
hierarchy is determined by the maximum PI. Furth-
ermore, PI imposes a priority on the order of receiv-
ing the requests issued by the ALLOCATE directive.
Larger memory requests have larger values of PI and
they are tried for allocation first. Moreover, the sys-
tem can tell, using PI, which ALLOCATE requests
may not be granted at the moment of their execution
and which requests have to be satisfied. For this pur-
pose the smaller the value of PI the higher the prior-
ity. One can come up with a complicated priority
structure from the analysis of the source program,
the available memory and the number of processes
competing for memory. In this paper we have chosen
a priority structure with the following properties:

(I) The highest priority, PI - I is associated with

100

the inner most loops.

(2) The lowest priority, PI = A is associated with the
outer most loop.

(3) The priori ty associated with any level in
between the inner most and the outer most loops
depends on its level, A, in the loop nest and its
distance f rom the inner most loop for which the
loop at level A is an outer loop.

The priorities are assigned to the various levels of the
loop structure according to the procedure given in
Figure 2. This procedure scans all the loops in a
bottom-up manner. In this scheme the priori ty index
associated with level A, is given by the distance f rom
A to the inner most level of the loop substructure
involving A. An example is given in Figure 2.

Procedure 1: Assign P r i o r i t y Indexes;
With every inner loop in the nested loop structure

DO
Assign PI = 1 to the inner most loop;
REPEAT
Next Outer Loop;
IF (PI is aiready assigned)

THEN PI ffi maximum (PI+I , old PI);
ELSE P I = P I + I ;

UNTIL Outer Most Loop Is Encountered;
END Of Procedure;

Example: 4

3

1

Figure 2: Procedure and Example of Assigning Prior-
i ty Indexes

The vir tual size X, of a locality formed by a
loop at some level in a mult i nested loop, can be com-
puted using the parameters given in section two.

The arguments of ALLOCATE at some level A =
k, are carried out at all subsequent levels > k. This
technique allows requests not granted because of lack
in memory space to be reconsidered at later periods.
It also favors the outer loops with larger locality
sizes which aim at reducing the number of page
faults generated by outer loops.

The ALLOCATE directive is inserted into the
program code according to algorithm 1 given in Fig-
ure 3.

A l g o r i t h m 1:

INITIALIZE: MD ffi ALLOCATE O;
{List is empty}

PARSE
{until the end of the program}

CASE of encountering a loop DO :
Current PI ffi PI associated with current loop;

{Procedure 1 in Figure 2}
Current X ffi The vir tual size of the current

locality;
IF the argument list of MD is empty

THEN APPEND (Current PI, Current X) to
IVID list

ELSE APPEND else (Current PI, Current X)
to MD list;

INSERT MD {right before the beginning of the
loop};

END of CASE statement;
CASE of exiting a loop DO:

DELETE last two elements of the argument list
of MD;

END of Algorithm I.

Figure 3: Algorithm For Inserting the ALLOCATE
Directive

In algorithm I a single top-down parsing pro-
cedure is used to insert the memory directive ALLO-
CATE into the program's code. ALLOCATE is
inserted before the beginning of every loop in the
program. We use a list structure to represent the
memory directive, MD. The head of the list is the
element ALLOCATE (directive name); the rest is the
argument list consists of elements of the form (PI,X)
separated by the element "else'. When the parser dis-
covers a loop, a new IVID is generated. An MD at any
level is updated by appending the element pair "else
(PI,X)', at the taft of the MD argument list. PI is the
priority index associated with the current loop and X
is the vir tual size of the locality comprised by the
current loop. In case the current loop does not form a
locality, X is evaluated to the minimum number of
pages which a program is allocated by system
default.

Upon exiting a loop, the MD argument list is
updated by deleting the last "else (PI,X)" elements
f rom the list, since any loop discovered in the future
can not be enclosed by the exiting one. Therefore the
arguments of the exiting loop will not be present in
the argument list of the next generated directives. By
deleting the arguments of the exiting loop we avoid
backtracking when generating an MD for the next
loop in the program.

101

3.2. LOCK and UNLOCK Memory Directivu

LOCK is used to prevent some pages f rom being
paged out of memory by the replacement policy.
UNLOCK relases these pages. Pages to be locked are
usually vectors or array columns referenced inside
outer loops. References to pages of these arrays are
expected to generate faults whenever the execution of
an inner loop is finished and a branch is made back to
an outer loop. LOCK is useful when the allocation
request made by an ALLOCATE directive associated
with an outer loop, is not granted. In such cases,
locking those pages referenced in the outer loop
which might be rereferenced avoids a possible
increase in the number of page faults. In case of high
memory contention the operating system is entitled
to release the locked pages without having to wait
for the UNLOCK directive to be executed. This flexi-
bility makes the LOCK directive a soft one. The
order of releasing pages by the system, without using
UNLOCK, is determined by a priori ty index PJ simi-
lar to PI for ALLOCATE. PJ is calculated using
procedure 1, given in Figure 2. Since there will be no
pages locked in the inner most loop, where the prior-
i ty index is 1, the highest priority of locked pages is
PJ = 2. Pages locked inside the outer most loops gen-
erate less faults than those referenced inside inner
loops since they have lower frequency of reference.
Therefore, pages with higher PJ values have lower
priority and they are unlocked first by the operating
system. The LOCK directive has the following form:

LOCK (PJ, r t , Y2)

where
PJ is the priori ty index and
Y, is the particular page to be locked in
memory. In case there are no pages to be
locked, Y~ = 0.

The LOCK directive is inserted into the program
code according to algorithm 2, given in Figure 4.

Algor i thm 2 {for a given loop structure}

PARSE
{until the end of the outer most loop}

CASE of encountering a loop DO
PJ = The priori ty associated with the current loop;
SEARCH for arrays until the next loop is

discovered;
IF Loop Exit Is Found Then SKIP Next INSERT;
Y~ = Array Page To Be Locked (i = 1,2,..);
INSERT LOCK (PJ, Y t , Y2) ;

{before the beginning of next loop}

Figure 4: Algorithm For Inserting "LOCK" Directive

To unlock the locked pages UNLOCK is inserted
at the end of the outer most loop. The unlock direc-
tive has the foUowing form:

UNLOCK (r~, r2 ...)
where Yl, Yr.- are the pages which were
locked by the LOCK directive.

DO 4 I -1 ,N
A(I), B(I)

DO 2 J =I ,N
C(J), D(J),
CC (I,J), DD (J,I)

2 CONTINUE

DO 3 K =I ,N
E(K) , F(K)

4

DO 1 L = I , N
X(L), Y(L), Z(L),
XX (K,L), YY (L,K)

1 CONTINUE
3 CONTINUE

CONTINUE

Figure 5a: FORTRAN-Like Code

3

I

1

I

Figure 5b

ALLOCATE (3,X 1)
I~op 4;

LOCK (3,A,B)
ALLOCATE (3,x~) else (1,X2)

• p 2;

ALLOCATE (3,x ~) else (2,x3)
~ o p 3;

LOCK (2,E,F)
ALLOCATE (3,X~) else (2,X,) else (l,x4)

• p 1;

UNLOCK (A,B,E,F)

Figure 5c: Directives Inserted Into The Code of Fig-
ure 5a

The directives' insertion is illustrated through
the example given in Figure 5. Figure 5a shows a
piece of FORTRAN like code. In Figure 5b priori ty
indexes are assigned to the loops in Figure 5a, accord-
ing to the procedure in Figure 2. In Figure 5c the
directives ALLOCATE, LOCK and UNLOCK arc
inserted into the code of Figure 5a. Note that the
argument (3,x~) is the first argument in all ALLO-
CATE directives at all levels. (2, X3) is present in the
directives associated with loop 3 and its inner loop
(loop 1). A subscripted X denotes the vir tual size of
the locality comprised by the loop before which the
directive is inserted. Consider for example, the direc-
tive ALLOCATE inserted before loop 4. PI = 3 since
loop 4 is the outer most loop and A = 3.

The vir tual size of the locality formed by loop 4,
x ~, is computed by considering all the arrays encap-

102

sulated by loop 4. Consider the arrays referenced
only inside loop 4, at level A ffi I. There are two vec-
tors, A and B, referenced at this level. One indexed
variable is used for each vector. Allocating one page
for each vector will be sufficient during the execution
of loop 4, since once a new page of A or B is refer-
enced, the old one will not be referenced again. At
level two four vectors and two arrays are refer-
enced. Vectors C and D are referenced inside loop 2
and vectors E and F are referenced inside loop 3. The
entire virtual size of every one of these vectors will
be spanned N times; N is the upper bound of loop 4.
Hence, the entire virtual sizes of C, D, E and F con-
tribute to the locality size at level 1. As for the
arrays CC and DD we examine their referencing
order. Array CC is referenced row-wise. Since the
arrays are stores in a column major order, loop 2
spans all the pages in which the elements of row I are
stored. One indexed variable I is used to address the
array CC; therefore, x r = 1. The maximum number
of CC pages which could be referenced inside loop 2
is given by N * 1 ffi N, (CC is N x N array). Thus CC
contributes to the value of X~ with N pages. Array
DD is referenced column-wise. Every time loop 4
iterates, a new column I is referenced by loop 2.
Since there is only one indexed variable, J, used for
indexing the column I, there is only one active page
of array DD during the execution of both loops 2 and
4. Array DD thus contributes to x~ with one page
only. At level 3, all of the arrays, regardless of their
dimension or their order of reference, participate in
the formation of the level one locality with their
entire virtual sizes.

LOCK (3, A, B) is used to lock a page of A and a
page of B. This LOCK is useful if the request of
ALLOCATE (3,Xl) is not granted. Locking pages of
arrays E and F is useful if the request made by
ALLOCATE (3,xx) else (2,x a) at the beginning of
loop 3 is not granted. The UNLOCK directive is used
to unlock all the pages which were locked by the
LOCK directive in case they we were not released by
the operating system.

4. C O M P n - ~ DIR.~I'~.;jL) MEMORY MANAGEMENT POL-

ICY

The memory directives described by algorithms
I and 2 in the previous section can be incorporated
into an optimizing compiler to generate MD for the
operating system (OS). The OS uses these directives
for memory management purposes. The resulting
Compiler Directed Memory Management Policy (CD)
works as follows. At execution time the CPU inter-
prets these directives as calls to the operating system.
If the call is generated by a LOCK directive, the
operating system locks the pages specified in the
argument of the LOCK directive. These pages are
kept locked until a UNLOCK directive is processed
and a caU is generated to the OS. However, the OS is
entitled to release locked pages without receiving
UNLOCK, in case of high memory demands. The

priority index PJ is used to decide which pages
should be released first.

Upon receiving a call generated by a directive of
the form A L L O C A T E ((Pl I , X~) else (PI 2 , x 2)
else...), the operating system allocates Xx pages to the
program if X~ pages are available, otherwise it allo-
cates X2 if available, (x 2 < x I and PI~ > PI2), etc. If
the requested pages by the ALLOCATE directive are
not available and the smallest priority index specified
by the directive PIj =I, then the operating system
either suspends the program's execution or invokes a
page swapping procedure in case the current job has a
higher priority. PI > 1 means that the current local-
i ty is comprised by one of the outer loops in a
multi-nested loop. The operating system in this case
continues the execution of the program with the
current allocation until it receives a new directive.
This procedure continues until a directive with PI-1
is reached. A flowchart describing this procedure is
given in Figure 6.

~ 0

~ 0

Figure 6: Memory Directives Processing

CD policy incorporates a swapping mechanism.
None of the existing memory management policies
has this feature. The WS policy [Denn68] incor-
porates a mechanism only for invoking the swapper.
However, the WS does not provide the swapper with
any useful information regarding the processes to be
swapped. CD policy invokes the swapping mechan-
ism whenever a memory request associated with a
priority index PI = I can not be granted. The swapper
is never invoked by a request whose priority is ~> I.
This implementation reflects the fact that with PI >

1, the program can reside in several localities of
dilferent sizes at various levels of the hierarchical
locality structure.
5. Exp~rs AND RESULTS

In our experiments we assume a paged system
with a 256 byte page size. The performance indexes
used in this paper are the number of page faults
(PF), the average mernory allocated to a program
(MEM), and the space time cost (ST). ST includes
the time for page fault service, assumed to be 2000

103

memory references.

Traces of array references were generated for 9
numerical programs written in FORTRAN. A virtual
memory simulator is used to simulate program
behavior under the Least Recently Used (LRU), the
Working Set (WS), and the CD policies. The simula-
tion is done for a uniprogramming system. The per-
formance of CD in a multiprogramming environment
is still to be evaluated.

In this paper we compare CD with both LRU and
WS. The WS parameter, the window size r, is varied
between I and some integer K ~< R, the reference
string length. For LRU the memory allocated to a
program is varied between 1 and V, where V is the
virtual size of the program measured in pages. For
CD policy the memory directives inserted at the
source level before program execution determine the
average memory allocated to the program, the
number of page faults generated, and the space-time
cost. In our experiments we specify prior to program
execution the set of directives to be executed, since
we assume no physical limit on the available
memory. To produce different values, a program has
to be rerun with different sets of ME). Programs
MAIN, FDJAC and TQL were rerun with different
sets of directives. In a multiprogramming environ-
ment the priority index PI dynamically determines
which set of directives to execute.

The excess memory that LRU or WS require
over CD to achieve a given performance goa/is given
by:

M E M (LRUorWS)--MEM (CD)
%MEM = 100

M EM (CD)
Similarly, excess space-time cost that LRU or WS
produce over CD is given by:

ST(LRUorWS)--ST (CD)
%S/'= I00

ST (CD)

and excess page faults that LRU or WS produce over
CD is given by:

APF =PF (LRUorWS)--PF (CD)

In Table 1 we show the effect of executing
different sets of directives on the performance of the
CD policy. Four sets were used for program MAIN
and two sets for each of FDJAC and TQL. Less
memory allocation results from executing the
directives associated with the inner loops. Directives
at outer levels consume more memory and generate
fewer page faults. This reflects the fact that the sizes
of lower level localities is always smaller than those
at the higher levels. For example, when program
MAIN1 was executed with the directives at the outer
most levels, 144 page faults were generated and 3.89
x lO 6 space-time cost was produced. When the pro-
gram was executed with the directives inserted at the
lower levels (MAIN3), the number of page faults
increased 4.5 times (652 page faults) while the ST
cost dropped by 50% (2.77 x 106); this is lower than

Table 1: The Effect of Executing Different Sets of
Directives Under CD Policy

Program MEM PF Sr,a, (*06)

MAIN 1.62 531 3.39
MAIN1 20.37 144 3.89
MAIN2 12.23 319 10.6
MAIN3 1.11 652 2.77
FDJAC 2.47 178 1.46

I FDJAC1 3.11 175 2.04
TQLI 2.48 322 2.84

[T Q L 2 2.02 421 3.063

the minimum ST cost under the WS by 17% and
under LRU by 47%. Similarly for programs FDJAC
and TQL the lower level directives produced less ST
cost than did the WS by 39% and less ST cost than
did the LRU by 28%. Our observation holds for the
rest of the programs. See Table 2.

Table 2: Comparing Minimal Space Time Cost Values
of LRU and WS versus CD

PROGRAM

%ST
LRU vs. CD WS vs. CD

MAIN3 47
FDJAC 27
FIELD
INIT
APPROX
HYBRJ

23
133

36
31

17
39

22
58
32

CONDUCT 288 32
TQL1 07 04

Next we compare the performance of the three
policies by allocating the programs the same memory
space. The corresponding number of page faults and
the ST cost are compared. Since CD policy produces
ordy one value for each performance index, while
LRU and WS produce many values, as discussed ear-
lier, we chose to select the average memory allocated
by CD. Similar values were obtained by direct
assignment for LRU or by adjusting the WS parame-
ter, the window size r . Comparisons are presented in
Table 3.

For example, the program CONDUCT has a total of
270 pages in its virtual space. CD policy a/locates on
the average 25.8 pages and produces 577 page faults
and 20.5 x 106 ST cost. Using 26 pages, LRU policy
produces 3477 more page faults and has a larger ST
cost by 988.3%. The WS uses a window size r - 421
to allocate on the average 25.7 pages to program
CONDUCT. Using this r the WS produces 1944 more
page faults and has a larger ST cost by 1850.5%.
From this table it is clear that CD policy makes best
use of the memory space aval]able for these pro-

104

grams. Using the same amount of memory, LRU and
WS produce on the average 2863 and 2340 more page
faul ts than does CD. ST cost reduction achieved by
CD on the average is a factor of 5.24 and 5.57, com-
pared with LRU and WS respectively.

Table 3: Comparing LRU and WS versus CD When
Similar Average Memory is Allocated to

Policies

LRU vs. CD WS vs. CD
PROGRAM APF [%ST APF %ST

MAIN 1530 146.3 0 --4.7

MAIN1 236 338.87 207 316.45
MAIN2 207 35.5 207 19.8

MAIN3 22665 1585.9 22665 1585.9
FDJAC 337 115.75 293 91.1
FDJAC1 53 -6.8 296 60.78
FIELD 2643 1538.9 2 18
INIT 2287 979.5 775 630
APPROX 365 54.3 203 83.5
HYBRJ 317 159.1 283 139.1
CONDUCT 3477 988.3 1944 1840.5
TQL1 1017 191.55 958 223.9
TQL2 918 170.6 969 214.4
HWSCRT 4028 1047.9 4033 2265.2

One more way of comparing LRU and WS
versus CD is to compare the three policies' memory
and ST costs of producing the same number of page
faults. Again we choose the number of page faul ts
generated b y CD for the same reason mentioned ear-
Her. Comparisons are presented in Table 4.

Table 4: The Cost of Generating The Same Number
of Page Faults as CD by LRU and WS

PROGRAM

MAIN
MAIN1
MAIN2
MAIN3
FDJAC
FDJAC1
FIELD
INIT
APPROX
HYBRJ
CONDUCT
TQL1
TQL2
HWSCRT

LRU vs. CD
%MEM %ST

150 32
170 415.68
88 58

170.3 46.6
102 26.7
60.7 -9.3

106.8 29.5
171.2 132.5
105.8 36.2
41.5 29.5

283.7 324.6
61.3 34.8
98 25.2

442 433.5

WS vs. CUD
%MEM

14 -4.7

72.5 216.45

80.5 49.5

64 16.6

123 39
77 .-0.3

53.4 28
151.8 108.2

34.4 77.9
82.3 140
11.6 36.1

86.4 4.2
128.8 -3.3
124.6 234.3

In this table program HWSCRT has 69 pages in its
vir tual space. It generates 521 page faul ts using 11.8
pages on the average and a ST cost of 9.53 x 106 when
CD policy is used. LRU needs at least 63 pages of
memory, 442% more than CD needs, to generate at
most 521 page faults. Excess ST cost (%ST) is
433.5%. The WS policy needs 124.6% more memory

and 234.3% more ST cost than CD to generate at
most 521 page faults. Table 7 shows that CD out
performs both LRU and WS by a great margin. LRU
and WS need on the average 247% and 175% respec-
fively, more memory than the CD needs to generate
the same number of page faults. The average excess
ST cost (%ST) is 216.45% and 55%, for LRU and
WS, respectively.

5. CONCLUSIONS

A new approach to the management of numeri-
cal programs in v i r tual memory systems is presented
in this paper. Numerical programs exhibit localities
which are governed by data references inside loop
structures. The source level code of numerical pro-
grams contains sufficient information for locali ty
identification purposes. Memory Directives can be
inserted into the source code to ident i fy and describe
the locatities of the program to the operating system,
These directives are mainly used to specify the
program's memory demand at execution time. Three
memory directives were discussed in this paper,
LOCK, UNLOCK and ALLOCATE. We presented
algorithms for automatical ly inserting these direc-
fives into the program source code. A compiler
directed memory management policy (CD) was also
introduced in this paper. The main features of CD
policy include: First, CD is able to dynamical ly
adjust a program's memory allocation according to
the status of the available memory on the system,
which dynamical ly changes as processes acquire and
release memory space. Second, i t incorporates a
swapping mechanism. Inserting directives into the
programs source code to guide the operating system
memory manager significantly improves the perfor-
mance of the v i r tual memory system. Tables 2, 3
and 4 present evidence of the improvement of the
compiler directed policy. CD, c~mpared to WS and
LRU, makes better use of the memory allocated to
the program to produce many fewer page faul ts and
to achieve lower space-time cost.

REFERENCES

[n~z84]

[Abus82]

[AbLM84]

M. Abaza, "On The Effectiveness Of
Memory Management System ~ In
VAX/VMS," I~/I.S. Thesis, Yarmouk
University, Depart. of Electrical Eng.,
October 1984.

W. Abu-Sufah, "Identffyin~ Proffram
Localities at The Source Level," UnTver-
s i ty of Illinois, Dept. of Comp. Science,
Report No. UIUCDCS-R-82-1108,
October, 1982.

W. Abu-Sufah, R. Lee and M. Malkawi,
"Identifying Two Program Categories
for Memory Management Purposes,"
Proc. of the 1984]EEE 8th International
COPMSAC, pp. 492-503, November,
1984.

105

[AbPa81]

L4hDU71]

[ALMYSfl

[AI.MY82]

[BaBK77]

[BDMS81]

[ChOp72]

[ChOp76]

[CoRy72]

[Denn68]

[Denn80]

[DeGr75]

[DeKa75]

[Denn72]

[DeSp72]

W. Abu-Sufah and D. A. Padua, "Some
Results on the Workin$ Set Anomalies
in Numerical Prog.rams, IEFEE Trans. on
Software Engineering, Vol. SE-8, No. 2,
pp. 97-106, March 1982.
A. V. A2/o, P. J. Denning and J. D. Ull-
man, Prindples of Ootimal Page
Replacement," J. ACM 18 pp. 80-9],
January 1971.
W. Abu-Sufah, R. Lee, M. Malkawi, and
P--C. Yew, "Empirical Results on the
Behavior of Numerical Programs in Vir-
tual Memory Systems," 13niversity of
Illinois, Dept. of Computer Sdence,
Report No. UIUCDCS-R-81-1076,
November 1981.
W. Abu-Sufah, R. Lee, M. Malkawi, and
P-C. Yew, "Experimental Results on the
Paging. Behavior of Numerical Pro-
grams, Proc. of the 6th International
Conf. on Software Engineering, pp. 110-
117, September 1982.
A. P. Batson, D. W. E. Blatt, and J. P.
Kearns, "Structure Within Locality
Intervals," in Measuring, Modelling and
Eva h,~ing Commuter Systems, H. Beilner
and E. Gelenbe, Eds•, North-Holland
Publishing Company, 1977.

R. Budzinski, E. Davidson, W. Mayeda,
~o d H. Stone, "DMIN: An Algorithm for

reputing the Optimal Dynamic Allo-
cation in a Virtual Memory Computer,"
IEEE Trans. on Software Engineering,
Vol. SE-7, No. 1, pp. 113-121, Jan.
1981.
W. W. Chu and H. Opderbeck, "The
Page Fault Frequency Replacement
Algorithm," in 1972 AFIPS Conf. Proc.,
Fall Joint Comput. Conf., V ol. 41, AFIPS
Press, pp. 597-609,1972197'.
W. W. Chu and H. Opderbeck, "Program
Behavior and the Page Fault Frequency
Replacement A/gorithm," Commuter, Vol.
9, No. 11, pp. 29-38, Nov. 1976.
E. G. Coffman and T. A. Ryan, "A Study
of Storage Partitioning Using a
Mathematical Model of Locality,"
Commu. ACM 15, 3 pp. 185-190, March
1972.
P J Denning, "Working Set Model for
Program Behavmr, Comm. of the ACM,
Vol. 11, No. 5, pp. 323-333, May 1968.
P. J. Denning, "Working Sets Past and
Present," IEEE Trans. on Software
Engineering, Vol. SE-6, No. 1, pp. 64--
84, Jan. 1980.
P. J. Denning and G. S. Graham, "Mull
tiprogrammed Memory Managemem,
Proc. of the IEEE, Vol. 63, pp. 924-939,
June 1975.
P. J. Denning and K. C. Kahn "A Study
of Program Locality and Life-time
Functions," Proc. 5th Syrup. Operating
Systems Principles, ACM SIGOPS, pp.
207-216, Nov. 1975.
P. J. Denning, "On Modeling Program
Behavior, Proc. AFIPS SJCC, pp. 937-
945. 1972.
P. J. Denning and J. R. Svirn, "Experi-
ments with 15rogram Loca~ties," APlPS
FJCC, pp. 611-621, 1972.

[FeYi83]

[FrC~78]

[Grah76]

[GrDe78]

[HaFa82]

[HaPo83]

[KeDe83]

[MaBa76]

[Malk82]

[RoDu73]

[ScTu72]

[Smit76]

[Spit76]

D• Ferrari and Y-Y. Yih, "VSWS: The
Variabl_e-Interval Sampled Working Set
Policy," IEEE Trans. on Software
~ n e e r i n g , Vol. SE-9, No. 3, May

M. A. Franklin, G. S. Graham, and R. K.
Gupta, "Anomalies with Variable Parti-
tion Paging Algorithms," Comm. of the
ACM, Vol. 21, No. 3, pp. 232-236, Mar.
1978.
G. S. Graham, "A Study of Program and
Memory Policy Behavior," Ph.D. thesis,
Purdue Univ., Dept. of Computer Sci-
ence, Dec. 1976.
G. S. Graham and P. J. Denning, "On the
Relative Controllability of Memory Pol-
ities," in Computer Performance, K. M.
Chandy and M. Reiser, Eds. Amsterdam,
The Netherlands: North-HoUand, pp.
411-428, Aug. 1977.
R. B. Hagman and R. S. Fa_bry, "Program
Page Reference Patterns," Proc. o/ the
1982 ACM SIGMEFRICS Con/. on Meas-
urement and Modeling of Computer Sys-
tems, pp. 20-29, August 1982.
H. J. Haikala and H. Pohijanlahti, "On
the BLI-Model of Program Behavior,"
Proc. of the 1983 ACM SIGMEFRICS
Conf. on Measurement and Modeling of
Computer Systems, pp. 28-38, August
I983.
J. Kearns and S. DeFazio, " Locality of
Reference in Hierarchical Database Sys-
tems," IEEE Trans. on Software Eng.,
Vol.SE-9, No. 2, March 1983.
A. W. Madison and A. P. Batson, "
Characteristics of Program Localities,"
Comm. of the ACM, Vol. 19, No. 5, pp.
285-294, May 1976.
Mohammad Malkawi, "Some Aspects Of
Numerical Program Behavior In Virtual

" "S Memory Systems, ; M.S. Thesl , Del~_rt-
ment Of Electrical Engineering, Yar-
mouk University, Jordan.
JT" Rodriguez-Rosell and J. P. Dupuy,

he Design. Implementation and
Evaluation ~ of a Workin~ Set
Dispatcher," Cornmun. of the ACM, Vol.
16,pp. 556-560, Sept. 1973..
G. S. Schedler and C. Tung, Locality in
Page Reference Strings," SIAM J. on
Computing 1, 3 pp. 21g-241, Sept. 1972.
A. J. Smith, "A Modified Working_Set
Paging Algorithm, IEEE Trans. on Garn-
puters, Vol. C-25, No. 9, pp. 907-914,
September 1976.
J R S~irn "Distance String Models for
 o rJ; i havior," co mer 9. pp.
14-20, Nov. 1976•

106

