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Abstract  

A Compiler Directed Memory Management Pol- 
icy for numerical programs is described in this paper. 
The high level source codes of numerical programs 
contain useful information which can be used by a 
compiler to determine the memory requirements of a 
program. Using this information, the compiler can 
insert some directives into the operating system for 
effective management of the memory hierarchy. Dur- 
ing the program's execution the operating system 
dynamically allocates to a program the space it 
requires as specified by the received directive. The 
new policy is compared with LRU and WS policies. 
Empirical results presented in this paper sliow that 
the CD policy can out-perform LRU and WS by a 
wide margin. 

1 INTRODUCTION 

Many memory management policies have been 
designed since the early invention of Virtual 
Memory (VM) systems. These policies assume either 
fixed memory allocation (static policies) such as 
Least Recently Used (LRU) and First In First Out 
(FIFO), or they assume variable memory allocation 
(dynamic policies) such as working Set policy (WS) 
[Dcnn68] and Page Fault Frequency (PFF) [ChOp72]. 

Dynamic policies have been shown to out- 
perform static ones [DcGr75], [BDMS81]. However, 
they havc their own problems. The WS for example, 
is too expensive to implement; furthermore, it is 
unable to avoid heavy faulting rate during interlo- 
cality transitions [FeYi83]. The Damped. WS (DWS) 
was introduced to handle these transitional faults 
[Stair76]. However, the DWS out performs WS by 
less than 10% [Grah76]. The Sampled WS (SWS) 
[RoDu73] is a cheaper realization of the WS • In 
[FeYi83] the Variable Sampled WS (VSWS) was pro- 
posed to reduce both implementation cost and transi- 
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tional page faults. The Page Fault Frequency (PFF) is 
cheaper to implement [ChOp76] but has poorer per- 
formancce than the WS [Grab76]; also, it exhibits 
anomaious behavior [FrGG78]. The WS aiso exhibits 
some types of anomalies when tested against humeri- 
ca2 programs [AbPa81], [ALMY81]. Other types of 
WS anomalies in multiprogramming systems have 
been discovered by the authors of this paper. The 
controllability of the WS in a multiprogramming 
environment (10% de-tuned policy [GrDe78], 
[Denn80]) is too optimistic [ALMY82], [AbLM84]. 
The conclusions drawn about the WS optimality and 
controllability which were based mostly on experi- 
ments with systems programs do not hold for 
numericai programs [ALMY82], [AbLM84]. 

The difficulty of all of the above approaches is 
that they t ry  their best to estimate the behavior of a 
program at run time. A fair amount of run time 
behavior can be predicted from the high level source 
code. However, none of the proposed memory 
management policies exploit that fact. Empirical 
results about the localities of numerical programs 

show that their localities can always be associated 
with iterative structures [Malk82]. It is not ditiicult 
to identify the localities of a program if the space 
required by its data structures is explicit in the 
source code, as is the case in most high level language 
programs. The information inherent in the source 
code is, therefore, helpful for specifying the memory 
requirement of a program at execution time. 

In this paper we propose a memory management 
policy based on the recognition of locality charac- 
teristics at compile time. A study of the locality 
characteristics of FORTRAN numerica2 programs is 
presented in the next section. In Section 3 we develop 
the concept of memory directives (MD). An outline 
of a compiler-directed memory management policy, 
supported by MDs inserted into the program high 
level code, is presented in Section 4. Empirical results 
comparing CD with both WS and LRU policies are 
presented in section 5. Conclusions are drawn in Sec- 
tion 6. 

2. LOCALITY CHA.RACr~:ur~TICS OF NUMER/CAL PRO.- 
GKAMS 

It has been observed very early that a program 
does not reference its address space randomly. 
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Rather, it tends to reference a sinai.1 subset of its 
space for a relatively long period of time. This pro- 
petty is referred to as the locality of reference 
[Denn72], [DcSp72],. Quantitatively, the localities 
can be characterized by three parameters. The length 
of a locality specifics the time duration, during which 
a locality exists. The virtual size of a locality 
specifies the number of distinct pages (in a paged sys- 
tem) comprising the locality set. Finally, the level of 
a locality specifics the depth of a locatity in the 
hierarchical locality structure. The latter parameter 
is essential because several localities with different 
sizes and lengths can exist at the same time, thus, 
forming a hierarchical locality structure [MaBa76]. 
Studies of the locality characteristics of numerical 
programs have shown that the localities of these pro- 
grams can be always associated with array references 
inside their loop structures [MaBa76], [Abus81], 
[Malk82]. Complicated loop structures yield 
complicated locality characteristics. In particular, 
multi nested loops produce hierarchical locality 
structure [Abus81], [Malk82]. Such hierarchical 
locality structure imposes some difficulties on the 
implementation of a memory mangement system 
which is designed to be aware of the existence of pro- 
gram localities. The example in Figure I illustrates 
the localities depicted in a FORTRAN like piece of 
code. 

DO 10 1 = 1, 10 
DO 20 J = I, 200 

E(IJ)  = F (I J )  
20 CONTINUE 

DO 30 K = I, 200 
G(K,I) = H(K,I) 

30 CONTINUE 
10 CONTINUE 

The localities of the above code are represented by 
the following diagram. 

{E, F}: Loop 10 
I 

{Gl,Iirl} ... {G2,H 2} ... {Glo,nlO} 
l { ' ~ } { 

Figure I: Example Of Localities At The Source Level 

In this example, all four arrays (E,F,G,H) are 
repeatedly referenced in the outermost loop (loop 
101. In loop 20, arrays E and F are referenced row 
wise while, in loop 30, arrays G and H are referenced 
column wise; the arrays are stored in a column major 
order scheme. Loop 20 does not form a locality, 
since none of the pages in the virtual spaces of arrays 

E and F are referenced repeatedly during the execu- 
tion of loop 20. However, the same virtual space 
spanned by loop 20, is repeatedly spanned by loop 
10. Therefore, arrays E and F form a locality at the 
higher level of loop 10; the size of this locality is the 
sum of the virtual sizes of arrays E and F. During 
the execution of loop 30, one column from array G 
and one column from array H are referenced repeat- 
edly, therefore, forming a locality at the lower level 
of loop 30, 

The above example is too simple to illustrate the 
complexity involved in identifying all possible local- 
ities of a program at a given time. It is not, however, 
the intention of this paper to introduce a systematic 
procedure for computing the virtual size of program 
localities at the source level code. Rather, we present 
a study of the various parameters which could be 
used for this purpose. We examined a wide range of 
FORTRAN programs used in different packages for 
the purpose of identifying and measuring their local- 
ities using the information inherent in the source 
code. Some of these packages are UIARL : University 
of Illinois Atmospheric Research Lab, EISPACK, 
ACM: ACM Standard Programs, IEEE: IEEE Standard 
Programs; NRL: Naval Research Laboratory, AFWL: 
Air Force Weapons Laboratory, FISHPACK, MIN- 
PACK. 

Examining the source code of these programs 
reveal that six parameters can be used to calculate 
the virtual size of current program localities. Five of 
these parameters are program dependent and one is 
system dependent. The system dependent parameter 
is the page size (P). The page size is necessary for 
calculating the virtual size of the current locality in 
pages since memory allocation is measured in pages. 
Program dependent parameters are: 

(11 Array size (E) : E is usually given as (M x N) 
dimension, where M = number of rows and N = 
number of columns. N = 1 for vectors. Only up 
to two dimensional arrays are considered in this 
paper. Array sizes are given explicitly in the 
dimension declaration statements. The virtual 
size of an array (AVS) is given by: 

(M x N )  
A V S  = ~  

P 

Often the virtual size of an array column (CVSI 
contributes to the size of the current locality 
since; CVS is given by: 

M 
C V S  = 

P 

The virtual size of all arrays referenced in a 
program comprise an upper bound on the 
memory requirement of the program. Memory 
requirements during the execution interval of a 
loop structure are bounded by the virtual size of 
the arrays referenced inside the structure. We 
assume that all constants and instructions are 
permanently resident in memory. Finer ccalcula- 
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f ion of  loca l i ty  sizes is fac i l i t a ted  b y  o ther  
pa rame te r s  descr ibed below.  

(2)  The nest  dep th  of  the  loop s t ruc tu re  (A): A 
de te rmines  whe the r  the  cu r ren t  loca l i ty  has  a 
h ierarchical  s t ruc tu re  or  not.  A > 1 impl ies  tha t  
a h ierarchical  loca l i ty  s t ruc tu re  w i th  u tmos t  A 
levels  m a y  exist .  I t  is  possible,  however ,  not  to 
have  a h ierarchica l  loca l i ty  s t ruc tu re  w i t h  A > 
1. A typ ica l  example  is a d o u b l y  nested loop, A 
= 2, w i t h  a r r a y s  referenced row-wise  inside the  
inner  loop. In  th is  case, the  d o u b l y  nested loop 
fo rms  a single level  one local i ty .  A is also used 
fo r  assigning p r io r i t y  ~ e x e s  (defined in the  
next  section) to the  cur ren t  loop. 

(3)  The n u m b e r  of indexed var iab les  used to  re fe r -  
ence a r r a y  e lements  (X):  X is used to give an 
upper  bound  on the number  of d i s t inc t  a r r a y  
pages referenced a t  a given loca l i ty  level .  The 
m a x i m u m  n u m b e r  of  a r r a y  e lements  which  can 
be referenced dur ing  one i te ra t ion  of  a loop is 
de te rmined  b y  the number  of  d is t inc t  indexes, 
X, used to  address  the  a r ray .  I f  the a r r a y  ele-  
ments  referenced at  a pa r t i cu la r  level  are  s tored  
in  d i s t inc t  pages, then X d is t inc t  pages are  re fe r -  
enced a t  th is  level .  Depending on the d imension 
and the order  of  reference of  an a r ray ,  X can be 
used  to  give a real  upper  bound  on the  number  
of a r r a y  pages which  par t ic ipa te  in the  f o r m a -  
t ion of the  loca l i t y  a t  the  cur ren t  level .  For  the  
case of a vec tor  the  upper  bound  is f o u n d  b y  
counting the  d i s t inc t  indexed var iab les  used to  
index the  vector.  For  example ,  consider  the  fo l -  
lowing s ta tement  involv ing  a vector  V inside a 
loop : 

w = v  (1 )+v  (1 +l)+V (y): 

Three different  indexes are  used to reference 
vector  V; n a m e l y  I, I+1 and  $. Obvious ly ,  a m a x -  
i m u m  of  three  pages of vec tor  V can be r e fe r -  
enced dur ing  one i te ra t ion  of  the  loop containing 
V. For  co lumn-wise  referenced a r r a y s  , where  
the  co lumn size is la rger  than  a page size, an 
upper  bound  is given b y  

X = x o x x ,  
where  x ,  is  the  number  of  d i s t inc t  indexes used 
to  reference a co lumn ( r  ~ the  number  of  rows  
M)  and  X c is the  n u m b e r  of  d is t inc t  co lumns  
referenced a t  the  cu r ren t  loca l i ty  level  (c ~ the  
n u m b e r  of  a r r a y  co lumns  N). Consider  fo r  
example ,  the  foUowing s ta tement  encountered in 
an inner  loop: 

W=A (X.I)+A (I  + I . / )+A ( / . / + I ) + A  (I  + L I + I )  

where  I is the  index of  the  inner  loop and J is the  
index of  the  ou te r  one. In th is  example,  J and 
J+ l  are  t w o  different  co lumns  referenced inside 
the  inner  loop. I and  I+1 are used to  reference 
e lements  in co lumns  J and  J+ l .  Four  e lements  of  
array A are  referenced dur ing  one i te ra t ion  of  
the  inner  loop ; the  fou r  e lements  can be s tored  

in f o u r  pages a t  most .  I f  the  a r r a y  is referenced 
row-wise ,  then the  m a x i m u m  n u m b e r  of pages 
referenced dur ing  one i te ra t ion  of  the  loop con- 
ta ining the a r r a y  is given by:  

X =  x,  x N  
where  N is the  n u m b e r  of  co lumns  in the  a r ray .  
W e  use N here,  ins tead  of  Xo, because xc is  given 
b y  the loop 's  upper  bound,  a var iab le  which  
might  not  be k n o w n  at  compi le  t ime.  Therefore,  
we assume tha t  once a row I is referenced,  a l l  of  
i t s  e lements  (I ,1),  (I ,2) . . . . .  ( I ,N) wi l l  be re fe r -  
enced as wel l .  However ,  i f  the  to ta l  n u m b e r  of  
a r r a y  pages AVS is larger  than  X, then the upper  
bound  is de te rmined  b y  AVS. 

(4)  The o rde r  of reference (0 ) :  The  order  in which  
a r r a y s  are  referenced has a d i rec t  effect on the  
fo rma t ion  of  a local i ty .  I f  an a r r a y  is referenced 
co lumn-wise ,  then the  referenced columns pa r t i -  
c ipate in the  fo rma t ion  of  the  loca l i ty  comprised  
b y  the loop containing the a r ray .  On the con- 
t r a ry ,  a r o w - w i s e  referenced a r r a y  tends  to have 
mos t  of  i t s  v i r t ua l  space spanned dur ing  the 
whole  du ra t ion  of  the  loop in which  i t  is r e fe r -  
enced. Therefore,  the  pages referenced dur ing  
one i te ra t ion  of the  loop are  not  l i ke ly  to be 
referenced dur ing  the  next  i terat ion.  Row-wise  
referenced a r r a y s  t end  to  fo rm local i t ies  a t  
higher  levels  than  the ones t hey  are  referenced 
at.  

(5)  The level  (or  nest  dep th)  a t  which  the a r r a y s  are  
referenced (A):  A = I fo r  the  ou te rmos t  loop in a 
m u l t i  nes ted  loop s t ruc ture .  A increases for  
loops as we  go deeper  into the  nest.  A = A for  the  
innermos t  loop. The sma l l e r  the  va lue  of  A, the 
higher  the  level .  A r o w - w i s e  referenced a r r a y  at  
some level  A = g tends  to fo rm a loca l i ty  at  
higher  levels  A 2> g because the  same v i r t ua l  
space of  the  a r r a y  might  be spanned at  level  ~. 
dur ing  one i te ra t ion  of  a loop executing at  level  
> L S imi la r ly ,  fo r  the  case of  a vector,  one 
i te ra t ion  of  a higher  level  loop is sufficient to 
span the ent i re  v i r t ua l  space of  a l l  vectors  r e fe r -  
enced a t  lower  levels.  Therefore,  the  ent i re  v i r -  
tua l  space of  a vec tor  referenced at  level  ~ ~ 1 
cont r ibu tes  to  a l l  higher  level  locali t ies.  In the  
case of a co lumn-wise  referenced a r r a y  inside a 
loop at  level  A ffi ~, one or  more  columns  of the  
a r r a y  are  spanned dur ing  the execution of  the  
loop. These co lumns  are  u s u a l l y  specified b y  an 
ou te r  loop at  level  g - I .  The ent i re  v i r t ua l  space 
is spanned dur ing  one i te ra t ion  of  a loop at  level  

- 2. Thus  the  ent i re  v i r t ua l  space of  a 
co lumn-wise  referenced a r r a y  cont r ibutes  to 
local i t ies  f o rmed  a t  leas t  two  levels  higher than  
the level  a t  which  the a r r a y  is referenced.  

For  th is  s t udy ,  we  use the  above pa ramete r s  in a 
non-de te rmin is t i c  manner  to eva lua te  program local i -  
ties. A de te rmin is t i c  procedure  is  being developed b y  
the  au thors  of  ~ paper .  
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3. MEMORY DIRe'WIVES 

The above discussion leads to the idea of 
memory directives (MD) as a tool for improving the 
memory management system. A memory directive is 
an instruction whose execution generates useful 
information used~ by the operating system for 
memory allocation and deallocation purposes. MD's 
are to be inserted into the program code before exe- 
cution time. Madison and Batson introduced this 
idea and developed the BLI model to characterize 
program localities [MaBa76] with the intention of 
making these localities known to the operating sys- 
tem at execution time. In [Abus81] and [Malk82] one 
further step was taken in this direction. The BLIs 
were shown to reflect programs' iterative structures. 
Two directives were suggested to allocate and deallo- 
cate memory space on behalf of users' programs. 
The idea of using memory directives was also advo- 
cated by Hagman and Fabry [HaFa83] and Kearns 
and Defazio [KeDe83]. Some operating systems even 
provide facilities to improve program behavior in 
virtual memory systems using the idea of memory 
directives. For instance, VAX/VIVIS allows the user 
to lock and unlock certain pages in the main 
memory. Such facilities were shown to be useful for 
improving the behavior of some numerical algo- 
rithms [Abaz84]. 

The characteristics of MD, where and how to 
insert them into the program code, and how to pro- 
cess a MD by the system will be presented in the 
next two subsections. 

Three memory directives are investigated in this 
section: LOCK, U N L O C K  and ALLOCATE.  Both 
directives LOCK and UNLOCK have been used in 
recent operating systems as mentioned above. In 
these systems it is left to the user to decide which 
pages to lock or unlock at some given time. In this 
paper we present a procedure to resolve the problem 
of automatic insertion of LOCK and UNLOCK direc- 
tive. The effectiveness of LOCK and UNLOCK direc- 
tives is not studied in this work. 

The ALLOCATE directive is used to allocate 
physical memory on behalf of the running process. 
ALLOCATE does not deal with particular pages as 
LOCK and UNLOCK do. To the best of our 
knowledge, the effectiveness of such a directive has 
not been investigated. Some researchers predicted 
the viability of such a directive due to program 
locality characteristics [MaBa76], [AbLM84]. In this 
study we develop the concept of MD for a multipro- 
gramming environment, discuss implementation 
issues of the directives, and present some empirical 
results on program behavior under a memory 
management policy guided by the ALLOCATE direc- 
tive. 

3.1. Memory Directive : ALLOCATE 

The memory allocation directive is used for 
estimating the memory space required by a program 

during its execution. ALLOCATE is a measure of the 
virtual size of the current locality. In developing 
ALLOCATE for a multiprogramming system, two 
facts were considered. First, the available memory 
in a multiprogramming system dynamicaUy changes 
as processes acquire and release memory pages. 
Second, memory requirements of a program change 
dynamically according to the program's current 
locality characteristics. The locality characteristics 
include the size of the locality and its level in the 
locality hierarchy. Program localities exhibit 
hierarchical structure [MaBa76] which reflects the 
nested loop structures exhibited at the source level 
code [Abus81], [Malk82]. The decision as to which 
level of the hierarchy the directive should be applied 
is of special significance. In [BaBK77] a structure 
parameter cx was introduced to decide whether the 
lower level BLIs are significant enough to consider 
for memory allocation. However, ~x is a system 
dependent parameter [BaBK77]; furthermore, it can 
not respond to the dynamic change of memory space 
availability due to multiprogramming. Calculating 
the structure parameter ae further complicates the 
memory directive's implementation. 

To handle the effect of changes both in a 
program's memory requirements and in the available 
memory due to multiprogramming, we propose a 
priority index (PI) to be used in the argument list of 
ALLOCATE. Each ALLOCATE directive is capable 
of issuing several memory requests. Each request is 
assigned a priority index. The memory directive 
ALLOCATE has the following form: 

ALLOCATE ((Pl,  , x , )  else (PI 2 , X 2) 
else ... ) 

where 
Xj is the number of memory pages 
requested by the program. X~ 
corresponds to the virtual size of the 
current loeality. 
PA > n 2 >  e/3> ..- 
X ,  >/X2>/X3 ... 

The priority index tells the system whether the pro- 
gram is approaching a single locality or a hierarchy 
of localities, in which case the maximum level in the 
hierarchy is determined by the maximum PI. Furth-  
ermore, PI imposes a priority on the order of receiv- 
ing the requests issued by the ALLOCATE directive. 
Larger memory requests have larger values of PI and 
they are tried for allocation first. Moreover, the sys- 
tem can tell, using PI, which ALLOCATE requests 
may not be granted at the moment of their execution 
and which requests have to be satisfied. For this pur-  
pose the smaller the value of PI the higher the prior- 
ity. One can come up with a complicated priority 
structure from the analysis of the source program, 
the available memory and the number of processes 
competing for memory. In this paper we have chosen 
a priority structure with the following properties: 

( I )  The highest priority, PI - I is associated with 
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the inner most loops. 

(2) The lowest priority, PI = A is associated with the 
outer most loop. 

(3) The priori ty associated with any level in 
between the inner most and the outer most loops 
depends on its level, A, in the loop nest and its 
distance f rom the inner most loop for which the 
loop at level A is an outer loop. 

The priorities are assigned to the various levels of the 
loop structure according to the procedure given in 
Figure 2. This procedure scans all the loops in a 
bottom-up manner. In this scheme the priori ty index 
associated with level A, is given by  the distance f rom 
A to the inner most level of the loop substructure 
involving A. An example is given in Figure 2. 

Procedure 1: Assign P r i o r i t y  Indexes; 
With every inner loop in the nested loop structure 

DO 
Assign PI = 1 to the inner most loop; 
REPEAT 
Next Outer Loop; 
IF (PI is aiready assigned) 

THEN PI ffi maximum (PI+I , old PI); 
ELSE P I = P I + I ;  

UNTIL Outer Most Loop Is Encountered; 
END Of Procedure; 

Example:  4 

3 

1 

Figure 2: Procedure and Example of Assigning Prior- 
i ty  Indexes 

The vir tual  size X, of a locality formed by  a 
loop at some level in a mult i  nested loop, can be com- 
puted using the parameters given in section two. 

The arguments of ALLOCATE at some level A = 
k, are carried out at all subsequent levels > k. This 
technique allows requests not granted because of lack 
in memory  space to be reconsidered at later periods. 
It also favors the outer loops with larger locality 
sizes which aim at reducing the number of page 
faults  generated by  outer loops. 

The ALLOCATE directive is inserted into the 
program code according to algorithm 1 given in Fig- 
ure 3. 

A l g o r i t h m  1: 

INITIALIZE: MD ffi ALLOCATE O; 
{List is empty} 

PARSE 
{until the end of the program} 

CASE of encountering a loop DO : 
Current PI ffi PI associated with current loop; 

{Procedure 1 in Figure 2} 
Current  X ffi The vir tual  size of the current 

locality; 
IF the argument list of MD is empty  

THEN APPEND (Current PI, Current X) to 
IVID list 

ELSE APPEND else (Current PI, Current X) 
to MD list; 

INSERT MD {right before the beginning of the 
loop}; 

END of CASE statement; 
CASE of exiting a loop DO: 

DELETE last two elements of the argument list 
of MD; 

END of Algorithm I. 

Figure 3: Algorithm For Inserting the ALLOCATE 
Directive 

In algorithm I a single top-down parsing pro- 
cedure is used to insert the memory  directive ALLO- 
CATE into the program's code. ALLOCATE is 
inserted before the beginning of every loop in the 
program. We use a list structure to represent the 
memory  directive, MD. The head of the list is the 
element ALLOCATE (directive name); the rest is the 
argument list consists of elements of the form (PI,X) 
separated by  the element "else'. When the parser dis- 
covers a loop, a new IVID is generated. An MD at any 
level is updated by  appending the element pair "else 
(PI,X)', at  the taft of the MD argument list. PI is the 
priority index associated with the current loop and X 
is the vir tual  size of the locality comprised by the 
current loop. In case the current loop does not form a 
locality, X is evaluated to the minimum number of 
pages which a program is allocated by system 
default. 

Upon exiting a loop, the MD argument list is 
updated by  deleting the last "else (PI,X)" elements 
f rom the list, since any loop discovered in the future  
can not be enclosed by  the exiting one. Therefore the 
arguments of the exiting loop will not be present in 
the argument list of the next generated directives. By 
deleting the arguments of the exiting loop we avoid 
backtracking when generating an MD for the next 
loop in the program. 
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3.2. LOCK and UNLOCK Memory Directivu 

LOCK is used to prevent some pages f rom being 
paged out of memory  by the replacement policy. 
UNLOCK relases these pages. Pages to be locked are 
usually vectors or array columns referenced inside 
outer loops. References to pages of these arrays are 
expected to generate faults  whenever the execution of 
an inner loop is finished and a branch is made back to 
an outer loop. LOCK is useful when the allocation 
request made by  an ALLOCATE directive associated 
with an outer loop, is not granted. In such cases, 
locking those pages referenced in the outer loop 
which might be rereferenced avoids a possible 
increase in the number  of page faults. In case of high 
memory  contention the operating system is entitled 
to release the locked pages without  having to wait  
for  the UNLOCK directive to be executed. This flexi- 
bility makes the LOCK directive a soft one. The 
order of releasing pages by  the system, without  using 
UNLOCK, is determined by  a priori ty index PJ simi- 
lar to PI for  ALLOCATE. PJ is calculated using 
procedure 1, given in Figure 2. Since there will be no 
pages locked in the inner most loop, where the prior- 
i ty index is 1, the highest priority of locked pages is 
PJ = 2. Pages locked inside the outer most loops gen- 
erate less faults  than those referenced inside inner 
loops since they have lower frequency of reference. 
Therefore, pages with higher PJ values have lower 
priority and they are unlocked first by  the operating 
system. The LOCK directive has the following form: 

LOCK (PJ, r t ,  Y2 . . . .  ) 

where 
PJ is the priori ty index and 
Y, is the particular page to be locked in 
memory.  In case there are no pages to be 
locked, Y~ = 0. 

The LOCK directive is inserted into the program 
code according to algorithm 2, given in Figure 4. 

Algor i thm 2 {for a given loop structure} 

PARSE 
{until the end of the outer most loop} 

CASE of encountering a loop DO 
PJ = The priori ty associated with the current loop; 
SEARCH for arrays until the next loop is 

discovered; 
IF Loop Exit Is Found Then SKIP Next INSERT; 
Y~ = Array  Page To Be Locked (i = 1,2,..); 
INSERT LOCK (PJ, Y t ,  Y2 . . . .  ) ;  

{before the beginning of next loop} 

Figure 4: Algorithm For Inserting "LOCK" Directive 

To unlock the locked pages UNLOCK is inserted 
at the end of the outer most loop. The unlock direc- 
tive has the foUowing form: 

UNLOCK (r~, r2 ... ) 
where Yl, Yr.- are the pages which were 
locked by the LOCK directive. 

DO 4 I -1 ,N 
A(I), B(I) 

DO 2 J =I ,N 
C(J), D(J), 
CC (I,J), DD (J,I) 

2 CONTINUE 

DO 3 K =I ,N 
E(K) ,  F(K) 

4 

DO 1 L = I , N  
X(L), Y(L), Z(L), 
XX (K,L), YY (L,K) 

1 CONTINUE 
3 CONTINUE 

CONTINUE 

Figure 5a: FORTRAN-Like Code 

3 

I 

1 

I 

Figure 5b 

ALLOCATE (3,X 1) 
I~op 4; 

LOCK (3,A,B) 
ALLOCATE (3,x~) else (1,X2) 

• p 2; 

ALLOCATE (3,x ~) else (2,x3) 
~ o p  3; 

LOCK (2,E,F) 
ALLOCATE (3,X~) else (2,X,) else (l,x4) 

• p 1; 

UNLOCK (A,B,E,F) 

Figure 5c: Directives Inserted Into The Code of Fig- 
ure 5a 

The directives' insertion is illustrated through 
the example given in Figure 5. Figure 5a shows a 
piece of FORTRAN like code. In Figure 5b priori ty 
indexes are assigned to the loops in Figure 5a, accord- 
ing to the procedure in Figure 2. In Figure 5c the 
directives ALLOCATE, LOCK and UNLOCK arc 
inserted into the code of Figure 5a. Note that  the 
argument (3,x~) is the first argument in all ALLO- 
CATE directives at all levels. (2, X3) is present in the 
directives associated with  loop 3 and its inner loop 
(loop 1). A subscripted X denotes the vir tual  size of 
the locality comprised by  the loop before which the 
directive is inserted. Consider for  example, the direc- 
tive ALLOCATE inserted before loop 4. PI = 3 since 
loop 4 is the outer most  loop and A = 3. 

The vir tual  size of the locality formed by  loop 4, 
x ~, is computed by  considering all the arrays  encap- 
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sulated by loop 4. Consider the arrays referenced 
only inside loop 4, at level A ffi I. There are two vec- 
tors, A and B, referenced at this level. One indexed 
variable is used for each vector. Allocating one page 
for each vector will be sufficient during the execution 
of loop 4, since once a new page of A or B is refer- 
enced, the old one will not be referenced again. At 
level two four vectors and two arrays are refer- 
enced. Vectors C and D are referenced inside loop 2 
and vectors E and F are referenced inside loop 3. The 
entire virtual size of every one of these vectors will 
be spanned N times; N is the upper bound of loop 4. 
Hence, the entire virtual sizes of C, D, E and F con- 
tribute to the locality size at level 1. As for the 
arrays CC and DD we examine their referencing 
order. Array CC is referenced row-wise. Since the 
arrays are stores in a column major order, loop 2 
spans all the pages in which the elements of row I are 
stored. One indexed variable I is used to address the 
array CC; therefore, x r = 1. The maximum number 
of CC pages which could be referenced inside loop 2 
is given by N * 1 ffi N, (CC is N x N array). Thus CC 
contributes to the value of X~ with N pages. Array 
DD is referenced column-wise. Every time loop 4 
iterates, a new column I is referenced by loop 2. 
Since there is only one indexed variable, J, used for 
indexing the column I, there is only one active page 
of array DD during the execution of both loops 2 and 
4. Array DD thus contributes to x~ with one page 
only. At level 3, all of the arrays, regardless of their 
dimension or their order of reference, participate in 
the formation of the level one locality with their 
entire virtual sizes. 

LOCK (3, A, B) is used to lock a page of A and a 
page of B. This LOCK is useful if the request of 
ALLOCATE (3,Xl) is not granted. Locking pages of 
arrays E and F is useful if the request made by 
ALLOCATE (3,xx) else (2,x a) at the beginning of 
loop 3 is not granted. The UNLOCK directive is used 
to unlock all the pages which were locked by the 
LOCK directive in case they we were not released by 
the operating system. 

4. C O M P n - ~  DIR.~I'~.;jL) MEMORY MANAGEMENT POL- 

ICY 

The memory directives described by algorithms 
I and 2 in the previous section can be incorporated 
into an optimizing compiler to generate MD for the 
operating system (OS). The OS uses these directives 
for memory management purposes. The resulting 
Compiler Directed Memory  Management  Policy (CD) 
works as follows. At execution time the CPU inter- 
prets these directives as calls to the operating system. 
If the call is generated by a LOCK directive, the 
operating system locks the pages specified in the 
argument of the LOCK directive. These pages are 
kept locked until a UNLOCK directive is processed 
and a caU is generated to the OS. However, the OS is 
entitled to release locked pages without receiving 
UNLOCK, in case of high memory demands. The 

priority index PJ is used to decide which pages 
should be released first. 

Upon receiving a call generated by a directive of 
the form A L L O C A T E  ((Pl I , X~) else (PI 2 , x 2) 
else...), the operating system allocates Xx pages to the 
program if X~ pages are available, otherwise it allo- 
cates X2 if available, (x  2 < x I and PI~ > PI2), etc. If 
the requested pages by the ALLOCATE directive are 
not available and the smallest priority index specified 
by the directive PIj =I,  then the operating system 
either suspends the program's execution or invokes a 
page swapping procedure in case the current job has a 
higher priority. PI > 1 means that the current local- 
i ty is comprised by one of the outer loops in a 
multi-nested loop. The operating system in this case 
continues the execution of the program with the 
current allocation until it receives a new directive. 
This procedure continues until a directive with PI-1 
is reached. A flowchart describing this procedure is 
given in Figure 6. 

~ 0  

~ 0  

Figure 6: Memory Directives Processing 

CD policy incorporates a swapping mechanism. 
None of the existing memory management policies 
has this feature. The WS policy [Denn68] incor- 
porates a mechanism only for invoking the swapper. 
However, the WS does not provide the swapper with 
any useful information regarding the processes to be 
swapped. CD policy invokes the swapping mechan- 
ism whenever a memory request associated with a 
priority index PI = I can not be granted. The swapper 
is never invoked by a request whose priority is ~> I. 
This implementation reflects the fact that with PI > 

1, the program can reside in several localities of 
dilferent sizes at various levels of the hierarchical 
locality structure. 
5. Exp~rs AND RESULTS 

In our experiments we assume a paged system 
with a 256 byte page size. The performance indexes 
used in this paper are the number of page faults 
(PF), the average mernory allocated to a program 
(MEM), and the space time cost (ST). ST includes 
the time for page fault service, assumed to be 2000 
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memory references. 

Traces of array references were generated for 9 
numerical programs written in FORTRAN. A virtual 
memory simulator is used to simulate program 
behavior under the Least Recently Used (LRU), the 
Working Set (WS), and the CD policies. The simula- 
tion is done for a uniprogramming system. The per- 
formance of CD in a multiprogramming environment 
is still to be evaluated. 

In this paper we compare CD with both LRU and 
WS. The WS parameter, the window size r, is varied 
between I and some integer K ~< R, the reference 
string length. For LRU the memory allocated to a 
program is varied between 1 and V, where V is the 
virtual size of the program measured in pages. For 
CD policy the memory directives inserted at the 
source level before program execution determine the 
average memory allocated to the program, the 
number of page faults generated, and the space-time 
cost. In our experiments we specify prior to program 
execution the set of directives to be executed, since 
we assume no physical limit on the available 
memory. To produce different values, a program has 
to be rerun with different sets of ME). Programs 
MAIN, FDJAC and TQL were rerun with different 
sets of directives. In a multiprogramming environ- 
ment the priority index PI dynamically determines 
which set of directives to execute. 

The excess memory that LRU or WS require 
over CD to achieve a given performance goa/is given 
by: 

M E M  (LRUorWS )--MEM (CD ) 
%MEM = 100 

M EM (CD) 
Similarly, excess space-time cost that LRU or WS 
produce over CD is given by: 

ST(LRUorWS )--ST (CD) 
%S/'= I00 

ST (CD) 

and excess page faults that LRU or WS produce over 
CD is given by: 

APF =PF (LRUorWS )--PF (CD ) 

In Table 1 we show the effect of executing 
different sets of directives on the performance of the 
CD policy. Four sets were used for program MAIN 
and two sets for each of FDJAC and TQL. Less 
memory allocation results from executing the 
directives associated with the inner loops. Directives 
at outer levels consume more memory and generate 
fewer page faults. This reflects the fact that the sizes 
of lower level localities is always smaller than those 
at the higher levels. For example, when program 
MAIN1 was executed with the directives at the outer 
most levels, 144 page faults were generated and 3.89 
x lO 6 space-time cost was produced. When the pro- 
gram was executed with the directives inserted at the 
lower levels (MAIN3), the number of page faults 
increased 4.5 times (652 page faults) while the ST 
cost dropped by 50% (2.77 x 106); this is lower than 

Table 1: The Effect of Executing Different Sets of 
Directives Under CD Policy 

Program MEM PF Sr,a, (*06) 

MAIN 1.62 531 3.39 
MAIN1 20.37 144 3.89 
MAIN2 12.23 319 10.6 
MAIN3 1.11 652 2.77 
FDJAC 2.47 178 1.46 

I FDJAC1 3.11 175 2.04 
TQLI 2.48 322 2.84 

[ T Q L 2  2.02 421 3.063 

the minimum ST cost under the WS by 17% and 
under LRU by 47%. Similarly for programs FDJAC 
and TQL the lower level directives produced less ST 
cost than did the WS by 39% and less ST cost than 
did the LRU by 28%. Our observation holds for the 
rest of the programs. See Table 2. 

Table 2: Comparing Minimal Space Time Cost Values 
of LRU and WS versus CD 

PROGRAM 

%ST 
LRU vs. CD WS vs. CD 

MAIN3 47 
FDJAC 27 
FIELD 
INIT 
APPROX 
HYBRJ 

23 
133 

36 
31 

17 
39 

22 
58 
32 

CONDUCT 288 32 
TQL1 07 04 

Next we compare the performance of the three 
policies by allocating the programs the same memory 
space. The corresponding number of page faults and 
the ST cost are compared. Since CD policy produces 
ordy one value for each performance index, while 
LRU and WS produce many values, as discussed ear- 
lier, we chose to select the average memory allocated 
by CD. Similar values were obtained by direct 
assignment for LRU or by adjusting the WS parame- 
ter, the window size r .  Comparisons are presented in 
Table 3. 

For example, the program CONDUCT has a total of 
270 pages in its virtual space. CD policy a/locates on 
the average 25.8 pages and produces 577 page faults 
and 20.5 x 106 ST cost. Using 26 pages, LRU policy 
produces 3477 more page faults and has a larger ST 
cost by  988.3%. The WS uses a window size r - 421 
to allocate on the average 25.7 pages to program 
CONDUCT. Using this r the WS produces 1944 more 
page faults and has a larger ST cost by 1850.5%. 
From this table it is clear that CD policy makes best 
use of the memory space aval]able for these pro- 
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grams. Using the same amount of memory, LRU and 
WS produce on the average 2863 and 2340 more page 
faul ts  than does CD. ST cost reduction achieved by  
CD on the average is a factor of 5.24 and 5.57, com- 
pared with LRU and WS respectively. 

Table 3: Comparing LRU and WS versus CD When 
Similar Average Memory is Allocated to 

Policies 

LRU vs. CD WS vs. CD 
PROGRAM APF [ %ST APF %ST 

MAIN 1530 146.3 0 --4.7 

MAIN1 236 338.87 207 316.45 
MAIN2 207 35.5 207 19.8 

MAIN3 22665 1585.9 22665 1585.9 
FDJAC 337 115.75 293 91.1 
FDJAC1 53 -6.8 296 60.78 
FIELD 2643 1538.9 2 18 
INIT 2287 979.5 775 630 
APPROX 365 54.3 203 83.5 
HYBRJ 317 159.1 283 139.1 
CONDUCT 3477 988.3 1944 1840.5 
TQL1 1017 191.55 958 223.9 
TQL2 918 170.6 969 214.4 
HWSCRT 4028 1047.9 4033 2265.2 

One more way  of comparing LRU and WS 
versus CD is to compare the three policies' memory 
and ST costs of producing the same number of page 
faults.  Again we choose the number of page faul ts  
generated b y  CD for the same reason mentioned ear- 
Her. Comparisons are presented in Table 4. 

Table 4: The Cost of Generating The Same Number 
of Page Faults  as CD by  LRU and WS 

PROGRAM 

MAIN 
MAIN1 
MAIN2 
MAIN3 
FDJAC 
FDJAC1 
FIELD 
INIT 
APPROX 
HYBRJ 
CONDUCT 
TQL1 
TQL2 
HWSCRT 

LRU vs. CD 
%MEM %ST 

150 32 
170 415.68 
88 58 

170.3 46.6 
102 26.7 
60.7 -9.3 

106.8 29.5 
171.2 132.5 
105.8 36.2 
41.5 29.5 

283.7 324.6 
61.3 34.8 
98 25.2 

442 433.5 

WS vs. CUD 
%MEM 

14 -4.7 

72.5 216.45 

80.5 49.5 

64 16.6 

123 39 
77 .-0.3 

53.4 28 
151.8 108.2 

34.4 77.9 
82.3 140 
11.6 36.1 

86.4 4.2 
128.8 -3.3 
124.6 234.3 

In this table program HWSCRT has 69 pages in its 
vir tual  space. It generates 521 page faul ts  using 11.8 
pages on the average and a ST cost of 9.53 x 106 when 
CD policy is used. LRU needs at least 63 pages of 
memory, 442% more than CD needs, to generate at 
most 521 page faults.  Excess ST cost (%ST) is 
433.5%. The WS policy needs 124.6% more memory 

and 234.3% more ST cost than CD to generate at 
most 521 page faults.  Table 7 shows that  CD out 
performs both LRU and WS by a great margin. LRU 
and WS need on the average 247% and 175% respec- 
fively, more memory than the CD needs to generate 
the same number of page faults.  The average excess 
ST cost (%ST) is 216.45% and 55%, for  LRU and 
WS, respectively. 

5. CONCLUSIONS 

A new approach to the management of numeri-  
cal programs in v i r tual  memory systems is presented 
in this paper. Numerical programs exhibit localities 
which are governed by  data references inside loop 
structures. The source level code of numerical pro- 
grams contains sufficient information for locali ty 
identification purposes. Memory Directives can be 
inserted into the source code to ident i fy  and describe 
the locatities of the program to the operating system, 
These directives are mainly  used to specify the 
program's memory demand at  execution time. Three 
memory directives were discussed in this paper, 
LOCK, UNLOCK and ALLOCATE. We presented 
algorithms for  automatical ly inserting these direc- 
fives into the program source code. A compiler 
directed memory management policy (CD) was also 
introduced in this paper. The main features of CD 
policy include: First,  CD is able to dynamical ly  
adjust a program's memory allocation according to 
the status of the available memory on the system, 
which dynamical ly  changes as processes acquire and 
release memory space. Second, i t  incorporates a 
swapping mechanism. Inserting directives into the 
programs source code to guide the operating system 
memory manager significantly improves the perfor-  
mance of the v i r tual  memory system. Tables 2, 3 
and 4 present evidence of the improvement  of the 
compiler directed policy. CD, c~mpared to WS and 
LRU, makes better use of the memory allocated to 
the program to produce many fewer page faul ts  and 
to achieve lower space-time cost. 
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