
Proceedinqs of Sixth ACM Symposium on 0peratin 9 Systems Principles (November 1977) 91. 

SYNCHRONIZATION WITH EVENTCOUNTS AND SEQUENCERS 
(Extended Abstract) 

David P. Reed 
Rajendra K. Kanodia* 

Massachusetts Institute of Technology 
Laboratory for Computer Science 
Cambridge, Massachusetts 02139 

The design of computer systems to be 
concurrently used by multiple, independent users 
requires a mechanism that allows programs to 
synchronize their use of shared resources. Many 
such mechanisms have been developed and used in 

practical applications. Most of the currently 
favored mechanisms, such as semaphores and monitors 
are based on the concept of mutual exclusion. 

In this paper, we describe an alternative 
synchronization mechanism that is not based on the 
concept of mutual exclusion, but rather on 
observing the sequencing of significant events in 
the course of an asynchronous computation. Two 
kinds of objects are described, an eventcount, 
which is a communication path for signalling and 
observing the progress of concurrent computations, 
and a sequencer, which assigns an order to events 
occurring in the system. 

Eventcounts and sequencers are a more natural 
mechanism for controlling the sequence of execution 
of processes that do not need mutual exclusion. 
Examples of these applications are monitoring state 
changes of operating system variables, and 
broadcasting the occurrence of an event to any 
number of interested processes. 

In applications where mutual exclusion 
mechanisms are explicitly prohibited, such as 
physically distributed systems and systems that 
need to solve the confinement problem, eventcounts 
and sequencers can be used to solve synchronization 
problems in a very natural way. 

An eventcount is an object that keeps a count 
of the number of events in a particular class that 
have occurred so far in the execution of the 

This research was performed in the Computer Systems 
Research Division of the M.I.T. Laboratory for 
Computer Science. It was sponsored in part by 
Honeywell Information Systems Inc., and in part by 
the Air Force Information Systems Technology 
Applications Office (ISTAO), and by the Advanced 
Research Projects Agency (ARPA) of the Department 
of Defense under ARPA order no. 2641, which was 
monitored by ISTAO under contract No. 
F19628-74-C-0193. 

* Present affiliation of R. K. Kanodia: Bell 

Laboratories, Holmdel, N.J. 

system. An eventcount can be thought of as a 
non-decreasing integer variable. We define an 
advance primitive to signal the occurrence of an 
event associated with a particular eventcount and 
two primitives, await and read, that obtain the 
"value" of an eventcount. 

Some synchronization problems require 
arbitration: a decision based on which of several 
events happens first. Eventcounts alone do not 
have this ability to discriminate between two 
events that happen. Consequently, we provide 
another kind of non-decreasing integer object, 
called a sequencer, that can be used to dynamically 
order the events in a given class. 

Eventcounts and sequencers are a primitive 
synchronization mechanism of approximately the same 
level of abstraction as semaphores. We show in the 
paper how P and V semaphore operations can be 
expressed in terms of eventcount operations, and 
how a simultaneous-P operation on several 
semaphores is just as easily expressed. On the 
other hand, eventcounts are more easily used in 
expressing synchronization requirements directly in 
the program because they directly encode the 
history of events in the system. 

We show in the paper how the eventcount and 
sequencer primitives can be axiomatized in terms of 
a partial ordering of the events that occur within 
the system. From the axioms defining eventcounts 
and sequencers, one can directly obtain the 
ordering constraints enforced in a particular set 
of programs. 

Synchronization mechanisms provided by 
operating systems present a thorny obstacle to 
solving the "confinement problem" defined by 
Lampson. Eventcounts and sequencers provide some 
help in controlling the flow of information, by 
providing a distinction between those 
synchronization primitives that can be used to send 
information (advance and ticket) and those that can 
only receive (read and await). In the paper we 
show how to solve a synchronization problem called 
the "secure readers-writers problem" while 
preventing unnecessary leaks of information. 

91 


