
Experience with processes and monitors in Mesa
(summary)

Butler W. Lampson

Xerox Research Center
Palo Alto, California 94304

David D. Redell

Xerox System Development Department
Palo Alto, California 94304

In early 1977 we began to design the concurrent
programming facilities of Pilot, a new operating system for
a personal computer [5]. Pilot is a fairly large program
itself (25,000 lines of Mesa code). In addition, it supports
some large applications, ranging from data base
management to internetwork message transmission, which
are heavy users of concurrency (our experience with some
of these applications is discussed in the paper). We
intended the new facilities to be used at least for the
following purposes:

Local concurrent programming: An individual
application can be implemented as a tightly coupled
group of synchronized processes to express the
concurrency inherent in the application.

Global resource sharing: Independent applications can
run together on the same machine, cooperatively
sharing the resources; in particular, their processes can
share the processor.

Replacing interrupts: A request for software attention to
a device can be handled directly by waking up an
appropriate process, without going through a separate
interrupt mechanism (e.g., a forced branch, etc.).

Pilot is closely coupled to the Mesa language [4], which is
used to write both Pilot itself and the applications
programs it supports. Hence it was natural to design these
facilities as part of Mesa; this makes them more
convenient to use, and also allows the compiler to detect
many kinds of errors in their use. The idea of integrating
such facilities into a language was certainly not new.
Furthermore, the invention of monitors by Dijkstra, Hoare
and Brinch Hansen [1, 2, 3] provided a very attractive
framework for reliable concurrent programming.

We therefore thought that our task would be an easy one:
read the literature, compare the alternatives offered there,
and pick the one most suitable for our needs. This
expectation proved to be naive. Because of the large size

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear, and notice
is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1979 ACMO-89791-O09-5/79/1200/O043 $00.75

and wide variety of our applications, we had to address a
number of issues which were not dealt with in the
published work on monitors. Notable among these are :

a) Program structure: Mesa has facilities for organizing
programs into modules which communicate through
well-defined interfaces, Processes must fit into this
scheme.

b) Creating processes: a fixed number of processes is
unacceptable in such a general-purpose system.

c) Creating monitors: a fixed number of monitors is
also unacceptable, since the number of synchronizers
should be a function of the amount of data.

d) A WAIT in a nested monitor call: this issue had been
(and has continued to be) the source o f a considerable
amount of confusion.

e) Exceptions: a realistic system must have timeouts,
and it must have a way to abort a process.

0 Scheduling: the precise semantics o f waiting on a
condition variable was not agreed upon.

g) Input-output: the details of fitting devices into the
framework of monitors and condition variables had not
been worked out_

Processes

Mesa allows any procedure to be invoked in a new
process, which continues execution independently; later
the results can be retrieved• This pattern of process
creation allows a simple procedure call

n ~- ReadLine[terminal]
to be done concurrently:

p ~- FORK ReadLine[terminal];
• . . (concurrent computa t ion) . . .
n ~- JOIN p ;

The important properties o f this scheme are that

It treats a process as a first-class value in the language.

The method for passing parameters is exactly the same
as for procedures, and is subject to the same strict type
checking.

No special declaration is needed for a procedure which
is invoked as a process.

The cost of creating and destroying a process is only a
few times the cost of calling a procedure.

43

Monitors

When several processes interact by sharing data, care must
be taken to properly synchronize access to the data. The
idea behind monitors is that a proper vehicle for this
interaction is one which unifies

the synchronization,
the shared data,
the body of code which performs the accesses.

The data is protected by a monitor, and can only be
accessed within the body of a monitor procedure. The
processes can only perform operations on the data by
calling monitor procedures. The monitor ensures that at
most one process is executing a monitor procedure at a
time; this process is said to be in the monitor. As long as
any order of calling the entry procedures produces
meaningful results, no additional synchronization is
needed

In Mesa the simplest monitor is an instance of a module,
which is the basic unit of global program structuring, used
in sequential programming to implement a data
abstraction. Such a module has PUBLIC procedures which
constitute the external interface to the abstraction, and
PRIVATE procedures which are internal. In a MONITOR
module the PUBLIC procedures acquire and release the
monitor lock; PRIVATE ones do not, since they can only be
called from PUBLIC procedures or other internal
procedures.

Within a monitor a process can WAlT on a condition
variable until some other process is in the monitor and
does a NOTIFY to the variable. The WAIT releases the
monitor lock, which is reacquired when the waiting
process reenters the monitor. If, however, the monitor

calls some procedure outside the monitor module, the lock
is not released, even if the other procedure is in (or calls)
another monitor and ends up doing a WAIT. Otherwise,
the invariant maintained by the monitor would have to be
established before every such call. The result would be to
make calling such procedures hopelessly cumbersome. Of
course, holding locks longer increases the chances o f
deadlock. We have seen two patterns of deadlock, which
are discussed in the paper.

When an exceptional condition causes part of a
computation to be abandoned, each procedure being
abandoned is given a chance to clean up. This feature o f
Mesa interacts with concurrency: if an entry procedure is
abandoned, the invariant must first be restored (the
programmer's job) and the monitor lock released (done
automatically).

Condition variables

Hoare's definition of monitors [3] requires that a process
waiting on a condition variable must run immediately
when another process signals that variable, and that the
signalling process in turn runs as soon as the waiter leaves
the monitor. This definition allows the waiter to assume
the truth of some predicate stronger than the monitor
invariant (which the signaller must of course establish), but
it requires several additional process switches whenever a
process continues after a wait.

Mesa takes a different view: a NOTIFY is regarded as a hint
to a waiting process; there is no guarantee that some other
process will not enter the monitor first. Hence only the
monitor invariant may be assumed after a wait. The
proper pattern of code for a wait is therefore:

WHILE NOT (O K to proceed> DO WAIT c ENDLOOP.

The verification rule for Mesa monitors is thus extremely
simple: the monitor invariant must be established just
before a RETURN from an entry procedure or a WAIT, and
it may be assumed at the start o f an entry procedure and
just after a WAIT.

With this rule it is easy to add three additional ways to
resume a waiting process:

Timeout: A process which has been waiting for a preset
time t will resume automatically. Presumably in most
cases it will check the time and take some recovery
action before waiting again.

Abort: Any process may be aborted The effect is
simply that the process resumes at once from the next
WAIT. and the Aborted exception occurs. This
mechanism allows one process to gently prod another.

Broadcast: this causes all the processes waiting on a
condition to resume; NOTIFY is an optimizzation.

None of these mechanisms affects the proof rule for
monitors at all. Each provides a way to attract the
attention of a waiting process at an appropriate time.

Communication with input/output devices is also handled
by monitors and conditions. A process can NOTIFY a
special kind of condition variable to attract the attention of
a device. Reciprocally, a device can NOTIFY a condition
variable to resume a waitirig process

Applications

The full paper discusses three substantial applications of
these facilities: the Pilot system itself, a distributed
replicated file system, and an internetwork gateway.

References
1. Brinch Hansen, P., Operating System Principles,

Prentice-Hall, 1973.

2. Brinch Hansen, P. "The programming language
Concurrent Pascal," IEEE Transactions on Software
Engineering 1, 2, pp 199-207 (June 1975).

3. Hoare, C,A.R., "Monitors: An operating system
structuring concept," Com~ ACM 17, 10, pp 549-
557, (Oct 1974).

4. Mitchell, J.G., Maybury, W. and Sweet, R., Mesa
Language Manual, Report CSL-79-3, Xerox Research
Center, Paio Alto, CA, 1979.

5. Redell, D. et. al., "Pilot: An operating system kernel
for a personal computer," to appear in Comm. ACM.

44

