
A CONCURRENT ALGORITHM FOR AVOIDING DEADLOCKS IN

MULTIPROCESS MULTIPLE RESOURCE SYSTEMS

Rafael O. Fontao

Visiting Scholar *
Digital Systems Laboratory

Stanford University

S u m m a r y :

I n c o m p u t e r s y s t e m s i n w h i c h r e s o u r c e s a r e a l l o c a t e d d y n a m i c a l l y , a l g o r i t h m s m u s t b e e x e c u t e d w h e n e v e r

r e s o u r c e s a r e a s s i g n e d t o d e t e r m i n e i f t h e a l l o c a t i o n o f t h e s e r e s o u r c e s c o u l d p o s s i b l y r e s u l t i n a d e a d l o c k , a

s i t u a t i o n i n w h i c h two o r m o r e p r o c e s s e s r e m a i n i n a n i d l e o r b l o c k e d s t a t e i n d e f i n i t e l y .

In previous research, execution of the process requesting resources is suspended while an algorithm is exe-

cuted to determine that the assignment could not cause a deadlock. In this papers an algorithm is used to calcu-

late all possible safe requests before they are made. This algorithm is executed concurrently with other processes

between requests for resource allocations. If the determination of all safe requests has been completed and a proc-

ess makes a request, the calculations required by the resource allocation are trivial.

In order to use this algorithm it is necessary to have a priori knowledge of the maximum resource require-

ments of each process. This is a standard requirement for deadlock avoidance algorithms (dynamic avoidance). In

addition, requests are restricted so that a process may request only units from a single resource class. Given

these requirements, the determination of the safe requests can be formed with a complexity of second-order in n,

where n is the number of processes in the system.

A scheduler using this algorithm can reduce the in-line system time if there are sufficient idle CPU cycles

available between requests to execute the algorithm as, for examples in the case of an I/0 bound system. In addi-

tion effective deadlocks may be prevented and non-sequential processes can be accepted.

I. Introduction

In multiprocess multiple resource systems~ if cer-

tain behavioral assumptions on the allocation of resour-

ces persist 2 a deadlock situation may arise in which two

or more processes remain in an idle or blocked state in-

definitely.

Solutions to the deadlock problem have been clas-

sified as prevention techniques and detection and re-

covery techniques 9. For deadlock preventions the sched-

uler allocates resources so that the deadlocks will nev-

er occur. With deadlock detection and recovery, the

scheduler gives resources to the processes as soon as

they are available and when a deadlock is detected the

scheduler preempts some resources in order to recover

the system from the deadlock situation. Deadlock detec-
6

tion and recovery techniques will not be considered

here. Prevention techniques have been grouped accord-

ing to two major classifications: static and dynamic ~.

The author is a Teaching Assistant at the Electrical

Engineering Dept., Universidad Nacional del Sur, Bahia

Blanca, Argentina. This paper was supported by a grant
/

of Consejo Nacional de Investigaciones Cientlficas y
/

Teenicas of Rep~blica Argentina.

Certain conditions can be shown to be necessary if

deadlocks are to occur. By restricting the behavior of

the processes so that one of the necessary conditions

for the occurrence of a deadlock is violated, deadlocks

will never occur. This approach 2'4 has been called stat-

ic prevention ~, since the rule for allocatihg resources

does not depend upon the current state of the system.

Dynamic prevention methods, on the other hand, attempt

to allocate resources depending upon the current state

of the system. These methods lead to a better resource

utilization; however, they need some information about

the resource requirements for each process. The algo-

rithm presented in this paper is a new approach for

dynamic prevention.

II. Preliminaries

The resource allocation system:

A resource allocation system (RAS) is formed by

a set of independent processes Pl,P~,...,Pn (n ~ i),

a set of different types of resources Ri,R2,...,R m

(m > 1) each with a fixed number of units (two units

are considered to be equal if they can perform the same

task)~ and a scheduler that allocates the resources to

~he processes according to certain rules fulfilling some

72

specified criteria.

The system state:

The system state of an RAS is defined by a 3-tuple

(W,A,~) where;

I) W = (Wl,W 2 '~n) is the want matrix (nxm). The

entry W(i3j) = wi(j) is the maximum number of addi-

tional units of resource R. that the process P. will
J i

need at one time to complete its task. Wk is the want

vector for the process Pk"

2) A = (al,a 2 ~n) is the allocation matrix (nxm)

The entry A(i,j) = ai(j) is the number of units of

resource R. allocated to process Pi" ~k is the alloca-
J

tion vector for the process Pk"

3) ~ is the free resource vector. The jth component is

the number of available units of the resource R..
3

When A = 0 (matrix full of zeros) the system is

in the initial state. In that case D = W is called the

demand matrix and ~ = ~ is the system capacity vector.

Basic assumptions:

i) Before it enters the systems a process is required to

specify for each resource the maximum number of resource

units it will ever need.

2) If a process is allocated resources, only the process

can release them i.e., there is no preemption.

3) If a process is allocated all of the claimed resources

it will release them after it completes its task.

4) The demand vector of every process is less than or

equal to the system capacity vector.

D efiniti___~n I: A sequence of processes Pe(i~Pe(2) " ' . "Pe(k)..

is called a terminating sequence for (W~A,~) (where

e(j) is the index of the process in the jth place) if:

1) ~e(1) --< ~ and,
i-1

2) <'~ a . for l< i < k. ~e~ij' ' -- + j e(j) --

1

A terminating sequence is called complete if for all P.
1

there exists j (l < j < k) such that e(j) = i. In

other words~ all processes are in the sequence.

Definition If: The system state (W,A~) is safe if

there exists a complete terminating sequence for it.

In other words, the system is in a safe state if

there is a way to allocate the resources claimed by the

processes so that all of them can finish their task.

A. N. Habermann I has shown that when no process

releases resources until the end of its exemption~proo-

esses will not get into deadlock if and only if the al-

location state (or system state) is safe.

He also proved the following important theorem,

Theorem (Habermann)

Let (W,A,~) be a safe state, and (W',A',~')

the transformed state after a request by the process P. i

is granted. If there exists a terminating sequence for

(W',A',~') containing Pi' then the system state de-

fined by (W',A',~') is safe.

The scheduler for Habermann's method works as fol-

lows: when a process wants additional resources, it calls

the scheduler and goes into a wait state, the scheduler

then decides if granting the request could cause a dead-

lock. If not, the process gets the resources requested.

Otherwise, it remain waiting and later its claim is re-

considered by some scheduling rule. Figure 1 shows the

timing of the procedure. It is assumed that only one

process requires additional resources

request continue

Process ~ wait

S c h e d u l e r deciding

wait

idle

-- > time - - w o r k i n g

........ idle

Figure 1

Timing of the use of process and scheduler in a previous
method.

In a parallel sense~ dynamic prevention methods

may be classified as concurrent and non-concurrent, de-

pending upon the concurrency of the working time between

the process~ involved in a request, and the scheduler.

III. On Concurrent Algorithms

I n o r d e r t o d e v i s e c o n c u r r e n t a l g o r i t h m s , two a l -

t e r n a t i v e s may be c o n s i d e r e d : 1) know as e a r l y as p o s s i -

b l e when a r e q u e s t w i l l be made, t h e n run t h e s c h e d u l e r

c o n c u r r e n t l y w i t h t h e p r o c e s s (c o n c u r r e n c y - b e f o r e - r e -

q u e s t)~ and 2) know b e f o r e a r e q u e s t i s made i f i t can

be g r a n t e d s a f e l y . I f t he r e q u e s t i s g r a n t e d , t h e n run

c o n c u r r e n t l y t h e p r o c e s s (c o n t i n u i n g i t s t a s k) and t h e

s c h e d u l e r (u p d a t i n g f o r new r e q u e s t s) (c o n c u r r e n c y -

a f t e r - r e q u e s t) .

The figures 2(a) and 2(b) show the timing behavior

of these alternatives The first alternative uses addi-

tional information (advanced request) and it will not

be considered here. The algorithm that this paper deals

with uses the second alternative.

75

Process

Advanced r e q u e s t
i n f o r m a t i o n

,l
I
I

-s-~-h-~-dL'-~-%r 1

request __~ I cOntiNue

wait

I
deciding t --~2---

(a)

Process

r e q u e s t
c o n t i n u e

[..... ~ 2

I
I u p d a t i n g 1

ScheduleTl I

I ~ 2

I: request granted, 2: request denied

(h)

Figure 2

2(a); Timing of concurrency-before-request.
2(b); Timing of concurrency-after-request.

At first glance, it seems to be a tremendous task

since all possible requests for each resource and for

each process must be dealt with. However, if the requests

are restricted to be single, i.e., for only one type of

resource, then the task can be done with the same com-

plexity as Habermann's method; second-order in n.

The safe request matrix

Clearly each process can safely request (single

request) only a flhite number of units (possibly ze-

ro). Let R be a matrix (nxm) defined by: the entry

R(i,J) is the maximum number of units of resource J,

t h a t can be g r a n t e d s a f e l y i f t h e p r o c e s s I r e q u e s t s

them. The m a t r i x R i s c a l l e d t h e s a f e r e q u e s t m a t r i x .

The s i n g l e r e q u e s t r e s t r i c t i o n : An example .

Let (W,A,~) be t h e s t a t e o f a s y s t e m d e f i n e d by:

(3 p r o c e s s e s and 2 t y p e s o f r e s o u r c e s)

w: 2 A= ~ = (l , 1)
0

The system is in a safe state since PiP3P2 is a

complete terminating sequence. If P2 requests only one

unit of Ri, the system will be in a safe state since in

that case P3PlP2 is a terminating sequence contalning Ps"

Thus R(2,1) = i. Similar, if P2 requests only one unit

of R 2 (PiP3P2 would be a terminating sequence contain-

ing P2)" Thus R(2,2) = i. However, if P2 requires a_~

the same time one unit of R 1 and one unit of RS, the re-

quest can not be granted safely.

This example shows that the matrix R can be used

only for single requests. If a process requires more

than one resource, a rule stating the order in which the

resources will be requested must be defined.

When a r e q u e s t o f q u n i t s o f a r e s o u r c e can be

g r a n t e d s a f e l y , i n f a c t , i t means t h a t any r e q u e s t o f k

u n i t s (k < q) can be g r a n t e d s a f e l y . Thus i f t h e m a t r i x

R i s known a t t h e t ime a r e q u e s t i s made, t h e p r o c e s s

r e q u e s t i n g o n l y needs t o check i f t h e number o f u n i t s

c l a i m e d , i s l e s s t h a n o r e q u a l t o t h e c o r r e s p o n d i n g e n t r y

i n t h e m a t r i x R. I f t h e t e s t I s p o s i t i v e t h e p r o c e s s g e t s

t h e c l a i m e d r e s o u r c e s and c o n t i n u e s i t s t a s k . In t h i s

c a s e , t h e s c h e d u l e r r u n s c o n c u r r e n t l y (s e e F i g . 2 (b))

i n o r d e r to fo rm t h e m a t r i x R f o r t h e t r a n s f o r m e d s t a t e .

I f t h e t e s t i s n o t p o s i t i v e t h e n ; 1) t h e p r o c e s s g e t s

t h e maximum number o f u n i t s , g i v e n by t h e e n t r y a t R,

and r e - r e q u e s t s t h e d i f f e r e n c e l a t e r , o r 2) i t i s pu t

i n t o t h e w a i t s t a t e .

The a p p r o a c h 1) may be u s e d t o p r e v e n t t h e e f f e c t i v e

d e a d l o c k s p o i n t e d o u t by R. H o l t B and i t w i l l be d i s -

c u s s e d l a t e r . Now we p r e s e n t t h e a l g o r i t h m .

IV. A C o n c u r r e n t A l g o r i t h m

Let (W,A,~) be t h e c u r r e n t s t a t e o f an RAS. Fo r

all q (q < f(j)) let ~J be a vector formed from the -- q

free resource vector as follows:

i) f~(k) : f (k) for a l l k# J (l < j <m)

f ~ (k) : f (k) - q for k = j .

A

2)

I n o t h e r w o r d s , ~J i s t h e f r e e r e s o u r c e v e c t o r a f t e r q
q

u n i t s o f r e s o u r c e j a r e d e l e t e d f rom ~ .

Definition I: A process Pl is in the set H j (head
q

set) if there exists a terminating sequence for

(W,A,~) containing Pi"

In other words, H~ Is the set of processes which

can be still completed even though q units of resource

j are deleted from the free resource vector.

Lemma. l: Let Pi in H~ and Pe(1)Pe(2)...Pe(k) be a

terminating sequence for (W,A,~) where e(k) : i. For

allt (l ~ t < k) P c (t) is inH~.

Proof: It follows directly from definition.

74

Definition 2:

set) if;

A process Pi is in the set T j (tail
q

I) P. is not in H j and, 1 q

2) ~i <f + ~J-- q where hJ k~E ~ k q =P H

Lemma 2: If Pi is in T j then the transformed state af- q
ter allocation of q units of resource j to Pi is safe.

Proof;
4

Let (W'jA',~) be the transformed state after
I

allocating q units of resource j to Pi" In this case

W' and A' differ from W and A only in the (i,j) entry

as follows;

W'(i , j) = W(i , j) - q

A' (i , j) = A(i , j) + q

Let P ,,~P ,~...P _~ be a terminating sequence
e~±) e ~) e(K)

f o r (W , A , ~) c o n t a i n i n g a l l p r o c e s s e s i n H J . From
q

Lemma 1 can be p roved t h a t such a s e q u e n c e a lways ex -

i s t s . In facts that sequence is terminating for the

transformed state (W',A',~J) since by hypothesis Pi

is not in H~. From definition, condition 2) may be re-

written as 2

~ ' . < ~J + ~J (1)
i-- q q

T h e r e f o r e , the s e q u e n c e Pe(1)Pe(2)...Pe(k)Pi (Pi i n

the tail) i s a terminating sequence for (W ' ,A ' / f Jq)

since after Pe(k~ finishes its task it will release all
% #

its allocated resources and the free resource vector

will be -jfq + ~Jq , thus by (i) Pi can request a l l its

claimed resources. Therefore by Habermann's theorem the

~J) is safe. system state (W'jA', q

Q.E.D.

Theorem

Let (W,A~) be a s a f e s t a t e . I f a p r o c e s s Pi r e -

q u i r e s q u n i t s o f r e s o u r c e j , t h e n t h e r e q u e s t can be

s a f e l y g r a n t e d i f and o n l y i f P i 6 H J U T J .
q q

P r o o f : ~ - -) I f P i E H j t h e n by d e f i n i t i o n t h e r e e x i s t s q
a terminating sequence for (W,A,~) containing Pi"

Clearly the same sequence will be terminating for

(W',A',~) where q units of resource j, deleted from

~, are allocated to Pi" Thus by Habermann's theorem the

request can be safely granted. If Pi 6 T J by Lemma 2 the
q

request can be safely granted.

--->) If the request can be safely granted, then there

exists a terminating sequence for (W',A',~) contain-

ing Pi" Let Pe(1)Pe(2)...Pe(k) be that sequence, where

e(k) = i. If Pi E Hq j then the theorem holds. Let

Pi / (1)

g

C l e a r l y f o r a l l t (1 _< t < k) Pe(t).. E H Jq s i n c e P e (t)

may be comple t ed d e s r e g a r d i n g t h e q u n i t s o f r e s o u r c e j

t a k e n o u t f rom t h e f r e e r e s o u r c e v e c t o r . Let H ' J be t h e
q

set of those Pe(t) and ~'J =
q ~e(t)

Pe(t)E R~

Since H 'j ~ H j and all components are non-negative num- q q

bars, g 'J < ~J (2)
q - - q

From hypothesis~

~' ~i (0,0 ,q,...,0) <YJ + h'J
i = - -- q q

jth

may be rewritten as, 'w. < f + ~'J and by (2)
i-- q

~ < ~ + ~J (3)
I-- q

from (1) and (3) Pi is in T j q"

Q.E.D.

The above t heo r em s t a t e s t h a t t h e head and t a i l

s e t s p l a y an i m p o r t a n t r o l e i n c o n s t r u c t i n g t h e m a t r i x

R, i . e . , t h e o b j e c t i v e . C l ea r l y~ R(i j j) i s t h e max-

imum number q so t h a t P. ~ H 3 U T 3.
I I

1 q q

I n o r d e r t o f a c i l i t a t e t h e u n d e r s t a n d i n g o f t h e

a l g o r i t h m , ALGOL-like v e r s i o n s t o c a l c u l a t e t h e s e s e t s

a r e p r e s e n t e d f i r s t w i t h a c o r r e c t n e s s p r o o f , t h e n a

c omp le t e p rog ram f o r c a l c u l a t i n g t h e m a t r i x R.

An a l g o r i t h m f o r c a l c u l a t i n g t h e head s e t r u n s as

follows:
BEGIN

H := ¢ ;

P := [set of all processes } ;

~ e c := ¥ ;

ace(j) := ace(j) - q ;

NumberP := n ;

FailP := 0 ;

Loop: BEGIN
candidate := index member in P ;

IF (W[candidate] ~ ~cc) THEN

BEGIN H := H U [PKcandidate] } ;
I

P := P - [PFcandidate~ } ;

~cc := ~cc + ~[candidate] ;

NumberP := NumberP - 1 ;

FailP := 0
END

ELSE FailP := FailP + 1 ;

IF (FailP = NumberP) THEN GO TO Hdone ;

GO TO Loop
END

Hdone: (H = H j)
q

END.

75

Correctness: H is intended to be the head set (ini-

tially empty), P is the set of potential candidates

(initially is the set of all processes). The vector

~ec is used to simulate the free resource vector after

each process terminating its task releases its allocated

resources (initially ~cc is ~). After the instruction

ace(J) := ace(j) - q is executed, ~cc will contain ~J

as required to evaluate the head set H j. q
q

NumberP is used to point out the cardinallity of the set

of potential candidates (at first it is n). FailP is

used to count the number of processes failing to be in

H j after an increasing in the vector ~cc. It is assumed
q

that the rule for choosing "candidate" is done in such

a way that no failing process will be chosen again, un-

less an increase in ace has occurred. Initially FailP

is set to zero. Therefore the initialization of the al-

gorithm is correct. Now, assume that H, P, ace, NumberP

and FailP are true before enter to Loop. At this point

the set of potential candidates is not empty (clearly

at first P ~ ~). The fact that the want vector of the

candidate may be satisfied by the free resource vector

(~[eandidate] ~ ~cc) means that this particular proc-

ess can be completed disregarding the q units of re-

source j deleted from 7, in other words it is a member

of H j. Thus it must be added to H and deleted from P.
q

Since the process will release all of its allocated re-

sources, they are summed to ~cc. Clearly NumberP is

one unit less and FailP is set to zero. When the test

(W[candidate] ~ ~cc) fails, the candidate may not be

in H~. In that case H~ P, and NumberP remain the same,

i n d e e d F a i l P i s i n c r e a s e d by one . Thus t h e s t a t e o f

a f f a i r s i s c o r r e c t a f t e r t h e f i r s t IF i n s t r u c t i o n i s

e x e c u t e d .

I f (FailP = NumberP) is true it means that all

members in the set of potential candidates fail to be

in the head set, then by Lemma 1 the set H j (in H)
q

has been calculated. Otherwise, there are (NumberP -

- FailP) processes in P as possible candidates to be

in H j . Thus P is not empty when Loop is entered again.
q

Since the last test does not change the state of H, P,

NumberP and FailP, then they are true when Loop is en-

tered again. Therefore the algorithm is correct.

Now an algorithm for calculating the tail set is

presented. Since T J must be evaluated after H J the fol-
@

q q
lowing algorithm runs after the algorithm for calculat-

ing H j . Therefore it is assumed that this algorithm is
q

inserted at the label Hdone of the previous one.

BEGIN

BEGIN

T :=¢ ;

ace(j) := ace(j) + q ;

W~ILE(P~,) DO
BEGIN

candidate := index member in P ;

IF (W[candidate] Z ~ec) THEN

T := T U [P[candidate]] ;

P := P- [P[candidate]]

END
END

Tdone :

END.

(T = T j)
q

Correctness: By previous calculation (evaluating H j)
q

q units of resource j were deleted from f. The instruc-

tion ace(j) := ace(j) + q is intended to restore

them. Assume that P # $ (if P = ~ so is T j), clearly
q

a candidate is chosen from the set of processes not in

H j (condition 1 from definition). If the test
q

(~[candidate] ~ ~cc) is true (condition 2 from defi-

nition) the candidate is a member of TJ, otherwise it
q

is not a member of T J and in both cases it must be de-
q

leted from P since in this algorithm ~cc is never in-

creased. Therefore the algorithm is correct.

An algorithm for constructing the matrix R

This algorithm uses a logical matrix related to R

as follows: the semaphore matrix S is a logical matrix

(nxm) where S(i,j) = true if R(i,j) has been cal-

culated by the algorithm, and it is false otherwise.

Furthermore a new vector has been introduced; the sur-

plus vector . The surplus vector of an RAS is defined

by; for j (i < j < m) surplus(j) = q where

q is the maximum number so that H j = [set of all proc-
q

esses} . For any particular state, the jth component

of this vector shows the number of "surplus" units of

resource j i.e., it shows the number of units of re-

source j that can be deleted from the system without

introducing a deadlock. Clearly, for deleting resource

units according to the surplus vector information, the

single resource restriction still holds.

The following algorithm calculates the matrix R,

the surplus vector and the safeness for a system state.

It may run each time there is a change in the system.

76

Repeat: FOR j = i STEP i UNTIL m DO PARALLEL

BEGIN
~(j) := ~alse ; (vector full of false's)

~ (j) : = U ;

surplus(j) := 0 ;

T:=¢;

H :=¢ ;

q : = f (j) ;

~ c c := ~ ;

NumberP := n ;

WHILE (q ~ 0 and

BEGIN

L o o p :

Hdone:

END .

END

H / [set of a l l processes})DO

acc(j) := acc(j) - q ;

P := [s e t o f a l l p r o c e s s e s] - H ;

FailP := 0 ;

BEGIN
candidate := index member in P ;

IF (W[candidate] ~ ace) THEN
BEGIN

H := H U { P[candidate] } ;

P := P - { P [c a n d i d a t e]] ;

~CC := acc+ aFcandidatel ;

NumberP := NumberP- 1 ;

FailP := 0 ;

IF(S(eandidate, j) = false) THEN

BEGIN R(candidate, j) := q ;

S(candidate, j) := true
END

END

ELSE FailP := FailP + 1 ;

IF(FailP = NumberP) THEN GO TO Hdone ;

GO TO Loop
END

BEGIN
P := P- T ;

acc(j) := acc(j) + q ;

WHILE (P # ¢) DO

BEGIN candidate := index member in P ;

IF(W[eandidate] < ~ce) THEN

BEGIN

T := T U {P[candidate]];

R(candidate,j) := q ;

S(candidate, j) := true

END

P := P- {PFcandidate]}

END
END

q :=q- 1

IF(H = {set of all processes)~HEN

surplus (j) := q + 1 ;

ELSE

" unsafe state, the processes not in H may be

blocked " ;

J Remarks: The algorithm starts calculating H = Hf/j~,~ J

_ H j then. H -j f(j)-I and so on. When H = H 3,q since for all

H Jq_C Hq_ I , the algorithm attempts to evaluate HJc_ I. q

only considering "candidate" in the set of processes not

yet in H j. Furthermore, it may be easily proved that if

q H j T j T j a process Pt is in q U q, then Pt is in H j q-i U q-I

i.e.~ if Pt can safely request q units of resource j, it

can safely request q-1 units as well. This fact has been

considered in choosing "candidate" for evaluating the

set T. Note that if a process is in T j then it may be
.q

in H j but if it is in H j it is in H J too.
q-1 q q-i

The instruction "IF(S(candidate, j) = false)

THEN ..." is intended to test if a process Pt just in

H j was in T j. If the test is positive, it means that
q-i q

R(t~j) and S(t,j) had been evaluated.

The instruction "IF(H = {set of all processes])

THEN ... • just before the end of the algorithm, is

intended to evaluate the surplus and the safeness of

the current state as follows: if the algorithm terminates

because H is the set of all processes before q > 0 is

false• then the system has a surplus of q+l units of

the resource being dealt (note that q was decreased

by one). If the algorithm terminates because q ~ 0

(by construction would be q = -1) is false, then

there are two alternatives: i) H = H~ is the set of all

processes, in this case the surplus is zero and it is

correctly given by the algorithm• or 2) H = H~ is not

the set of all processes, then it means that there are

processes (not in H) that could be deadlocked and the

system state is unsafe.

The algorithm permits a parallelism of m, since

each resource can be dealt independently.

C o m p l e x i t y

B l o c k L o o p ; S u p p o s e t h a t t h e s y s t e m i s i n a s t a t e s o u n -

f o r t u n a t e t h a t H j i s t h e s e t o f a l l p r o c e s s e s a n d t h e r e
q

i s o n l y o n e c o m p l e t e t e r m i n a t i n g s e q u e n c e f o r i t . L e t

P e ~ i ~ P e C 2 ~ . . . P e C n ~ be t h a t s e q u e n c e . Assume i n t h e w o r s e

c a s e t h a t " c a n d i d a t e " i s c h o s e n i n s u c h a w a y t h a t i t i s

t h e i n v e r s e o r d e r o f t h e s e q u e n c e . A t f i r s t L o o p w i l l b e

e n t e r e d n t i m e s t o f i n d P e (l ~ ' t h e n n - 1 t i m e s t o f i n d

PeC2~',, t h e n n - 2 t i m e s t o f i n d Pe~3~,, a n d so on t o PeCn~',,

I n o t h e r w o r d s , i n t h e W o r s t c a s e L o o p w i l l b e e n t e r e d

n + n - 1 + n - 2 + . . . + 2 + 1 = n x (n + l) / 2 t i m e s .

S i n c e t h e b l o c k s i n s i d e L o o p h a v e c o n s t a n t c o m p l e x i t y ,

t h e c o m p l e x i t y o f t h i s b l o c k i s s e c o n d - o r d e r i n n .

B l o c k H d o n e : C l e a r l y e a c h t i m e t h e t e s t (P ~ ¢) i s

t r u e a m e m b e r i n P i s d e l e t e d . T h u s t h e m a x i m u m n u m b e r

o f t r u e t e s t s i s n , t h e n t h e c o m p l e x i t y o f t h i s b l o c k

i s f i r s t - o r d e r i n n .

77

Each time the test (q ~ 0) is true q is de-

creased by one, thus the maximum number of times that

this test is true (I + f(j)) is not dependent on n.

Therefore the complexity of the algorithm, in the worst

case, is second-order in n.

Example: Let (W,A,~) be the system state defined by;

(4 processes and 2 resources),

W = 3 i A=

2 2

4 4

2 i

0 i

i 0

3 1

~:(3,4)

t h e a p p l i c a t i o n o f t h e a l g o r i t h m f o r t h i s s t a t e y i e l d s ,

0 i

3 4
R = 3 4 ~urplus = (0, i)

1 3

If one unit of resource 2 is deleted from the system,

then the response of the algorithm would be,

0 0

3 3
R = ~urplus = (0,0)

3 3

i 2

If two units of resource 2 are deleted from the system

i.e., the free resource vector would be (3,2), then

the algorithm yields,

" unsafe state, the processes I and 4 may be blocked "

The r e q u e s t s a r e k e p t i n t h e i r o r i g i n a l f o r m . A s c h e d -

u l e r u s i n g t h e a l g o r i t h m p r e s e n t e d h e r e w i l l h a v e t h e

f o l l o w i n g f e a t u r e s :

R e s e r v a t i o n o f u n i t s (e f f e c t i v e d e a d l o c k p r e v e n t i o n)

A l t h o u g h , t h e n u m b e r o f u n i t s r e q u e s t e d by a p r o -

c e s s i n a r e s o u r c e i s l a r g e r t h a n t h e c o r r e s p o n d i n g e n -

t r y i n m a t r i x R i . e . , t h e r e q u e s t c a n n o t b e s a f e l y

g r a n t e d , t h e p r o c e s s c a n g e t , w i t h o u t i n t r o d u c i n g a

d e a d l o c k , t h e n u m b e r o f u n i t s s p e c i f i e d b y t h e e n t r y i n

R. The p r o c e s s c a n e n t e r a q u e u e a n d r e - r e q u e s t t h e

d i f f e r e n c e a t a l a t e r t i m e . I n o t h e r w o r d s , a p r o c e s s

r e q u e s t i n g u n i t s o f a r e s o u r c e c o m p l e t e s i t s d e m a n d by

c o l l e c t i n g a l l a v a i l a b l e u n i t s f o r i t , e a c h t i m e i t

u s e s t h e a l g o r i t h m . I n t h a t s e n s e t h e u s e o f t h e a l -

g o r i t h m i s n e v e r u n s u c c e s s f u l . T h i s " p u t i n r e s e r v E '

p r o p e r t y p r e v e n t s t h e e f f e c t i v e d e a d l o c k s p o i n t e d o u t

b y R. C. H o l t 3 .

As w a s s h o w n b y H o l t t h e s c h e d u l e r may i n t r o d u c e

d e a d l o c k s n o t p r e v e n t e d by m e t h o d s u s i n g t h e s a f e s t a t e

c o n c e p t a l o n e . When t h e r e q u e s t s a r e o r d e r e d i n a q u e u e

b y a F IFO d i s c i p l i n e t h i s k i n d o f d e a d l o c k may a r i s e .

F o r t u n a t e l y , t h e s e d e a d l o c k s c a n b e e a s i l y a v o i d e d by

b r e a k i n g t h e p r i o r i t y r u l e ; t h e s c h e d u l e r p a s s e s down

t h e q u e u e g r a n t i n g t h o s e r e q u e s t s w h i c h a r e s a f e .

More i m p o r t a n t , i n d e e d , i s t h e f a c t t h a t a p r o c e s s

may b e b l o c k e d f o r a " l o n g t i m e " i f i t s r e q u e s t i s n e v e r

g r a n t e d b e c a u s e o t h e r s p r o c e s s e s c l a i m i n g l e s s u n i t s ,

make t h e i r r e q u e s t s i n s u c h a way t h a t t h e u n i t s r e -

q u e s t e d b y t h e p r o c e s s a r e n e v e r a v a i l a b l e f o r i t . I n

that case the process is a "victim' of an effective

deadlock.

V. The S c h e d u l e r

The a b o v e a l g o r i t h m i s o n l y a p a r t o f a s c h e d u l e r

f o r a n RAS. I n o r d e r t o d e s i g n a s c h e d u l e r u s i n g t h i s a l -

g o r i t h m , t h e d e s i g n e r m u s t c o n s i d e r :

1) A r u l e f o r d e c i d i n g w h a t p r o c e s s w i l l be c o n s i d e r e d

f i r s t i f m o r e t h a n o n e i s w a i t i n g f o r r e s o u r c e s .

2) A r u l e f o r d e c i d i n g w h a t r e s o u r c e w i l l b e c o n s i d e r e d

f i r s t i f a p r o c e s s r e q u i r e s m o r e t h a n o n e r e s o u r c e c l a s s .

3) A r u l e s t a t i n g w h a t t o do w h e n a r e q u e s t (s i n g l e) i s

d e n i e d , i . e . , i f t h e n u m b e r o f u n i t s r e q u e s t e d i s l a r g e r

t h a n t h e c o r r e s p o n d i n g e n t r y i n t h e m a t r i x R.

The f i r s t r u l e i s c o n s i d e r e d b y a n y s c h e d u l e r , t h e

s e c o n d o n e i n t r o d u c e s no a d d i t i o n a l p r o b l e m s a n d may b e

h a n d l e d w i t h o u t d i f f i c u l t y . Any s c h e d u l e r n e e d s t h e

t h i r d r u l e . I n t h o s e s c h e d u l e r s u s i n g t h e p r e v i o u s a l -

g o r i t h m s , this rule has the following form: if a request

is denied send it into a queue for a later attempt.

This necessary condition for an effective dead-

lock can be avoided if at the time a process requires

units of a resource, it gets them according to the in-

formation given by the matrix R, instead of waiting for

all of the required units. In other words, a process

claiming a large demand will decrease it# by reserving

all possible units, each time it uses the algorithm.

Consider the following example (from Holt 3):

assume a system containing only two units of a resource

and three processes Pi,P2 and P3 demanding one, one

and two units respectively. Assume initially that Pl has

allocated one unit and P3 requests two units. Clearly,

the request can not be granted, simply, because two

units are not available. If P2 requests one unit before

Pl releases its allocated unit, later Pl releases it

and re-requests the unit again before P2 releases its

unit and this behavior is mantained by the processes

Pl and P2' then the process P3 can never fulfill its

78

task because at no time are two units available. In this

case P3 is"victim" of an effective deadlock.

In the notation of this paper the initial state

is described by:

0 1

W= 1 A= 0 ~= (i)

2 0

The application of the algorithm to this example yields,

R = 1 "surplus = (0)

1

If at the time P3 requests two units, it gets at

least one unit as given by the entry R(3,1), then the

effective deadlock will never occur because P will
3

request later only one unit, just the same as P2 will

need.

Accepting non-sequential processes

Assume that there are processes in the system or-

ganized in such a way that their tasks depend on the

availability of the resources. For example a process may

want one unit, at least, but it will run faster if it

gets more units. If the processes get the resources ac-

cording to the information given by the matrix R, those

processes can be accepted by the system and they will

run with a resource utilization nearly optimal. Those

processes must specify before entering the system the

minimum number of units that they will need at one ti-

me in order to fulfill their tasks.

Added to the previous feature~ a scheduler using

this algorithm will have the basic characteristic of

the algorithm; it can reduce the in-line system time if

there are sufficient idle CPU cycles available between

resource requests to execute the algorithm as, for exam-

ple, in the case of an I/O bound system.

VI. Conclusion

A new approach for avoiding deadlocks in computer

system has been presented. By evaluating the safe re-

quests before they are made, this method can increase

the resource utilization, provided there are sufficient

idle CPU cycles available between resource requests to

execute the algorithm, as in the case of an I/O bound

system.

With this approach effective deadlocks can be

avoided and non-sequential processes can be accepted.

Furthermore, the algorithm evaluates the units of "sur-

plus" of the system. According to the definition, the

surplus vector of a system shows the number of units of

each resource that can be deleted from the system with-

out introducing a deadlock. The information given by

the surplus vector could be used by a scheduler of a

network of computers to assign the resources among

them.

Acknowledgment

The author wishes to thank Prof9 Edward J.McCluske[

and Thomas H. Bredt of the Digital Systems Laboratory,

Stanford University, for their helpful suggestions and

discussions.

References

i) HABERMANN, A.N. Prevention of System Deadlocks.

Comm. ACM 12,7 (July 1969), 373-377.

2) HAVENDER, J.W. Avoiding Deadlocks in Multi-tasking

Systems. IBM Systems Journal 2,7 (1968), 74-84.

e3) HOLT, R.C. Comments on Prevention of System Dead-

locks. Comm. ACM 14, i (January 1971), 36-38.

4) MURPHY, J.E. Resource Allocation with Interlock De-

tection in Multi-task Systems. Proc. AFIPS 1968

FJCC, Vol. 33, Pt. 2, 1169-1176.

~) RUSSELL, R.D. A Model for Deadlock-Free Resource

Allocation. Tech. Memos No. 93, 94 and 116 (June,

Oct. and Dec. 1970 respectively), Stanford Linear

Accelerator Center, Computer Group, Stanford Univer-

sity.

6) SHOSHANI, A. and E. G. COFFMAN Detection, Prevention

and Recovery from Deadlocks in Multiprocess, Multiple

Resource Systems. Tech. Pep. No. 80, Dept. of Elec.

Eng., Comp. Sc. Lab., Princeton University~ (Oct.

1969).

~Note: Reference 3 was published before in Tech.
Report No. 70-5- (January 1970) Department of Computer
Science, Cornell University, Ithaca, New York

79

