A CONCURRENT ALGORITHM FOR AVOIDING DEADLOCKS IN
MULTIPROCESS MULTIPLE RESOURCE SYSTEMS

Rafael O. ¥ontao

Visiting Scholar *
Digital Systems Laboratory
Stanford University

Summary :

In computer systems in which resources are allocated dynamically, algorithms must be executed whenever

resources are assigned to determine if the allocation of these resources could possibly result in a deadlock, a

situation in which two or more processes remain in an idle or blocked state indefinitely.

In previous research, execution of the process requesting resources is suspended while an algorithm is exe-

cuted to determine that the assignment could not cause a deadlock,

In this paper, an algorithm is used to calcu~

late all possible safe requests before they are made, This algorithm is executed concurrently with other processes

between requests for resource allocations, If the determination of all safe requests has been completed and a prooc-

ess makes a request, the calculations required by the resource allocation are trivial.

In order to use this algorithm it is necessary to have a priori knowledge of the maximum resource require-

ments of each process. This is a standard requirement for deadlock avoidance algorithms (dynamic avoidance). In

addition, requests are restricted so that a process may request only units from a singleAresource class., Given

these requirements, the determination of the safe requests can be formed with a complexity of second-order in n,

where n is the number of processes in the system,

A scheduler using this algorithm can reduce the in-line system time if there are sufficient idle CPU cycles

available between requests to execute the algorithm as, for example, in the case of an I/0 bound system. In addi-

tion effective deadlocks may be prevented and non-sequential processes can be accepted,

I. Introduction

In multiprocess multiple resource systems, if cer-
tain behavioral assumptions on the allocation of resour-
ces persist, a deadlock situation may arise in which two
or more processes'remain in an idle or blocked state in-
definitely.

Solutions to the deadlock problem have been clas-
sified as prevention techniques and detection and re-
covery techniquesS, For deadlock prevention, the sched-
uler allocates resources so that the deadlocks will nev-
er occur, With deadlock detection and recovery, the
scheduler gives resources to the processes as soon as
they are available and when a deadlock is detected the
scheduler preempts some resources in order to recover
the system from the deadlock situation. Deadlock detec-
tion and recovery techniques will not be considered

here, Prevention techniques, have been grouped accord-

>

ing to two major classifications: static and dynamic”.

% The author is a Teaching Assistant at the Electrical
Engineering Dept., Universidad Nacional del Sur, Bahia
Blanca, Argentina. This paper was supported by a grant
of Consejo Nacional de Investigaciones Cient{ficas y

Técnicas of Repﬁblica Argentina,

72

Certain conditions can be shown to be necessary if
deadlocks are to occur, By restricting the behavior of
the processes so that one of the necessary conditions
for the occurrence of a deadlock is violated, deadlocks
will never occur. This approache’h

>

ic prevention”, since the rule for allocatihg resources

has been called stat-

does not depend upon the current state of the system.
Dynamic prevention methods, on the other hand, attempt
to allocate resources depending upon the current state
of the system, These methods lead to a better resource
utilization; however, they need some information about
the resource requirements for each process. The algo-
rithm presented in this paper is a new approach for

dynamic prevention,

I, Preliminaries

The resource allocation system:

A resource allocation system (RAS) is formed by
a set of independent processes Pl’P2""’Pn (n >1),
a set of different types of resources Rl’R2""’Rm
(m>1) each with a fixed number of units (two units
are considered to be equal if they can perform the same

task), and a scheduler that allocates the resources to

the processes according to certain rules fulfilling some

specified criteria.

The system state:

The system state of an RAS is defined by a 3~tuple
(W,A,T) where;
1) W= 51,32,...,Wn) is the want matrix (nxm), The
entry W(i,j) = Wi(j) is the maximum number of addi-
tional units of resource Rj that the process Pi will
need at one time to complete its task. wk is the want
vector for the process Pk'

2) A =(;1’32""’En) is the allocation matrix (nxm)

The entry A(1,3) = ;i(j) 1is the number of units of
resource R, allocated to process Pi' ;k is the alloca-
tion vector for the process Pk'

3) ¢

the number of available units of the resource Rj'

is the free resource vector, The jth component is

When A = O (matrix full of zeros) the system is
in the initial state. In that case D = W is called the

demand matrix and ¢ = T is the system capacity vector,

Basic assumptions:

1) Before it enters the system, a process is required to
specify for each resource the maximum number of resource
units it will ever need,

2) If a process is allocated resources, only the process
can release them i.e,, there is no preemption,

3) If a process is allocated all of the claimed resources
it will release them after it completes its task,

4) The demand vector of every process is less than or

equal to the system capacity vector,

Definition I: A sequence of processes Pe(l)Pe(E)"'Pe(k)

is called a terminating sequence for (W,A,¥) (where

e(j) is the index of the process in the jth place) if:
1) e(1
2) we(i) <E+

) <% and,
i1
- for I i <k,
J Te(d) =
A terminating sequence is called complete if for all Pi
there exists j (1< j < k) such that e(j) = i. In

other words, all processes are in the sequence.

Definition II: The system state (W,A,f) is safe if

there exists a complete terminating sequence for it,

In other words, the system is in a safe state if

there is a way to allocate the resources claimed by the

processes so that all of them can finish their task.

A, N, Habermann1 has shown that when no process

releases resources until the end of its exemption,proc-

esses will not get into deadlock if and only if the al-
location state (or system state) is safe.

73

He also proved the following important theorem,

Theorem (Habermann)

Let (W,A,T) be a safe state, and (W',A',F')
the transformed state after a request by the process Pi
is granted. If there exists a terminating sequence for
(w,A",T') containing P, then the system state de-

fined by (W',A",T') is safe,

The scheduler for Habermann's method works as fol-
lows: when a process wants additional resources, it calls
the scheduler and goes into a wait state, the scheduler
then decides if granting the request could cause a dead-
lock, If not, the process gets the resources requested.
Otherwise, it remain waiting and later its claim is re-
congidered by some scheduling rule, Figure 1 shows the
timing of the procedure., It is assumed that only one

process requires additional resources

request

continue
Process wait
wait
Scheduler deciding idle
T
—_—— time working

——————— idle

Figure 1

Timing of the use of process and scheduler in a previous
nethod,

In a parallel sense, dynamic prevention methods

may be classified as concurrent and non-concurrent, de-

pending upon the concurrency of the working time between

the process, involved in a request, and the scheduler.

III. On Concurrent Algorithms

In order to devise concurrent algorithms, two al-
ternatives may be considered: 1) know as early as possi-
ble when a request will be made, then run the scheduler
concurrently with the process (concurrency-before-re-
quest), and 2) know before a request is made if it can
be granted safely. If the request is granted, then run
concurrently the process (continuing its task) and the
scheduler (updating for new requests) (concurrency-
after-request).

The figures 2(a) and 2(b) show the timing behavior
of these alternatives The first alternative uses addi-
tional information (advanced request) and it will not

be considered here. The algorithm that this paper deals

with uses the second alternative.

Advanced request

information
raquest :
continue
Process ,__wait
| _vait
Scheduler I deciding i idle
T
(a)
request
continue
1
Process
wal
Il -_-—__-_E ------- 2
| updating 1
Schedulefl |
| _igte 2

1: request granted, 2: request denied
(v)

Figure 2

2(a); Timing of concurrency-before-request,
2(b); Timing of concurrency-after-request.

At first glance, it seems to be a tremendous task
since all possible requests for each resource and for
each process must be dealt with, However, if the requests
are restricted to be single, i.e., for only one type of
resource, then the task can be done with the same com-

plexity as Habermann's method; second-order in n,

The safe regquest matrix

Clearly each process can safely request (single
request) only a finite number of units (possibly ze—
ro). Let R be a matrix (nxm) defined by: the entry
R(i1,J) is the maximum number of units of resource j,
that can be granted safely if the process i requests

them, The matrix R is called the safe request matrix,

Thus R(2,1) = 1, Similar, if P, requests only one unit
of R, (P1P3P2
ing P,). Thus R{ 2,2) A

the same time one unit of R1 and one unit of R2, the re-~

would be a terminating sequence contain-

1. However, if P, requires at
quest can not be granted safely.

This example shows that the matrix R can be used
only for single requests, If a process requires more
than one resource, a rule stating the order in which the

resources will be requested must be defined,

When a request of q units of a resource can be

granted safely, in fact, it means that any request of k
units (k <a) can be granted safely. Thus if the matrix
R is known at the time a request is made, the process
requesting only needs to check if the number of units
claimed, is less than or equal to the corresponding entry
in the matrix R, If the test is positive the process gets
the claimed resources and continues its task, In this
case, the scheduler runs concurrently (see Fig. 2(b))
in order to form thematrix R for the transformed state.
If the test is not positive then; 1) the process gets
the maximum number of units, given by the entry at R,
and re-requests the difference later, or 2) it is put
into the wait state.

The approach 1) may be used to prevent the effective
deadlocks pointed out by R. Holt3 and it will be dis-
cussed later, Now we present the algorithm,

IV. A Concurrent Algorithm

Let (W,A,T) be the current state of an RAS, For
all q (g < £(J)) let ?i be a vector formed from the
free resource vector as follows:

1) fg(k) =f(k) forall k#j(1l<j<m)

(k) - q for k = j

2) fi(k)

In other words, ?ﬂ is the free resource vector after g

units of resource j are deleted from ¥,

Definition 1: A process P, is in the set Hi (head

i

The single request restriction: An example,

Let (W,A,T) be the state of a system defined by:

(3 processes and 2 types of resources)

0
A=10 O T=(1,1)
1

[ORES \VERS

The system is in a safe state since P is a

If P2

the system will be in a safe state since in

17372

complete terminating sequence. requests only one

unit of Rl,

that case P3P P,

1P, is a terminating sequence containing P,.

74

set) if there exists a terminating sequence for
(W,A,?g) containing P..

In other words, Hg is the set of processes which
can be still completed even though q units of resource

j are deleted from the free resource vector,
in yd

Let Pi in Hq and ?E 1)Pe(2)"'Pe(k) be a

terminating sequence for (W,A,f]) where e(k) = i. For

PO, |

allt (1<t<k) pe(t) is in Hi.

It follows directly from definition,

Lemma 1:

Proof:

Definition 2:
set) if;

A process P, is in the set Ti (tail

J

is not in Hq and,

j _ —
where hq = E ak

J
P € Hq

i

= 7.7
2) Wy ST+ B

Lemma 2: If Pi is in T; then the transformed state af-
ter allocation of q units of resource j to P; is safe,

Proof;

Let (W‘,A',T;) be the transformed state after
allocating q units of resource j to P;. In this case
W' and A' differ from W and A only in the (i,j) entry

as follows;

w(i,j) - q
A(1,5)+ 4q

wi(4,3)
A'(1,5)

i

Let Ee(l)Pe(E)"'Pe(k) be a terminating sequence
for (W,A,T;
Lemma 1 can be proved that such a sequence always ex—

) containing all processes in H;. From

ists. In fact, that sequence is terminating for the

transformed state (W‘,A‘,?i) since by hypothesis Pi

N . Jj
is not in Hq

written as,

. From definition, condition 2) may be re-

w, <@+ 0
1-q q
Therefore, the sequence Pe(l)Pe(2)"'Pe(k)Pi

(1)
(P, in
the tail) is a terminating sequence for (W',A',?a)
since after Pe(k) finishes its task it will release all
its allocated resources and the free resource vector
will be ?g + Fg , thus by (1) P, can request all its
claimed resources. Therefore by Habermann's theorem the
system state (W',A',?g) is safe.

Q.E.D.

Theorem
Let (W,A,?) be a safe state. If a process P; re-
quires q units of resource j, then the request can be

safely granted if and only if P, € Hg U T; .

Proof: <--) If P, € H; then by definition there exists

a terminating sequence for (W,A,?;
Clearly the same sequence will be terminating for

) containing P,.

(W',A',?é) where q units of resource j, deleted from
T, are allocated to P;. Thus by Habermann's theorem the
request can be safely granted, If Pi € Té by Lemma 2 the

request can be safely granted.

~--->) If the request can be safely granted, then there
exists a terminating sequence for (W',A',?é) contain~
L . ‘e be th h.
ing Pi Let Pe(l)PeSE) Pe(k) at sequence, where
e(k) = i, If P, € Hy then the theorem holds. Let

J 1
P, ¢ Hy (3)

75

Clearly for all t (1<t <k) Pe(t

may be completed desregarding the q units of resource j

3o
) € Hq since Pe(t)

taken out from the free resource vector., Let H'; be the

2 o)

set of those P and T'° =
e(t) q

Since H’a = Hg and all components are non-negative num-
bers, s s
n'? < B (2)
q-= 4q

From hypothesis,

w'. =

= 5 . wd
1 =% - (0,0,00050,...,0) < Es b

jth 4

may be rewritten as, Wi <T+ E'g and by (2)

= o F LT
w, < T+ hq (3)
from (1) and (3) P, is in Tg.

Q.E.D.

The above theorem states that the head and tail
sets play an important role in constructing the matrix
R, i.e., the objective. Clearly, R(i,j) is the max-

imum number q so that Pi € Hg U Té.

In order to facilitate the understanding of the
algorithm, ALGOL-like versions to calculate these sets
are presented first with a correctness proof, then a

complete program for calculating the matrix R.

An algorithm for calculating the head set runs as

follows:
BEGIN H:i=¢ ;
P := { set of all processes } ;
ace := T
acc(j) := ace(j) - q ;
NumberP := n ;
FailP := 0 ;
Loop: BEGIN
candidate := index member in P ;
IF (W[candidate] Sace) THEN
BEGIN H :=HU { P[candidate] } o
P =P~ { P[candidate] b
Bee := Fee + E[candidate] i
NumberP ;= NumberP - 1 ;
FailP := 0O
END
ELSE FailP := FailP + 1 ;
IF (FailP = NumberP) THEN GO TO Hdone ;
GO TO Loop
END
Hdone: (H = Hg)
END.

Correctness: H is intended to be the head set (ini-
tially empty), P is the set of potential candidates
(initially is the set of all processes). The vector

acc is used to simulate the free resource vector after

each process terminating its task releases its allocated

resources (initially acc is T). After the instruction
acc(j) := ace(j) - q

is executed, acc will contain ?;
as required to evaluate the head set Hé.

NumberP is used to point out the cardinallity of the set

of potential candidates (at first it is n), FailP is
used to count the number of processes failing to be in
Hi after an increasing in the vector acc.
that the rule for choosing "candidate" is done in such
a way that no failing process will be chosen again, un-
less an increase in acc has occurred. Initially FailP

is set to zero. Therefore the initialization of the al-
gorithm is correct., Now, assume that H, P, acc, NumberP
and FailP are true before enter to Loop. At this point

the set of potential candidates is not empty (clearly

at first P # ¢).
candidate may be satisfied by the free resource vector
(w[candidate] =
ess can be completed disregarding the q units of re-

The fact that the want vector of the
acc) means that this particular proc-

source j deleted from ?, in other words it is a member
of Hj. Thus it must be added to H and deleted from P.

Sincg the process will release all of its allocated re-
sources, they are summed to acc. Clearly Number?P is

one unit less and FailP is set to zero. When the test

(W[qandidate] < ace) fails, the candidate may not be
in HJ. In that case H, P, and NumberP remain the same,

indeed FailP is increased by one, Thus the state of
affairs is correct after the first IF instruction is
executed.

if (FailP

NumberP) is true it means that all
members in the set of potential candidates fail to be
in the head set, then by Lemma 1 the set Hi (in H)
has been calculated. Otherwise, there are (NumberP -
- FailP) processes in P as possible candidates to he
in Hg . Thus P is not empty when Loop is entered again.
Since the last test does not change the state of H, P,
NumberP and FailP, then they are true when Loop is en-

tered again. Therefore the algorithm is correct.

Now an algorithm for calculating the tail set is
presented. Since Ti must be evaluated after Hg the fol-
lowing algorithm runs after the algorithm for calculat-
ing Hi. Therefore it is assumed that this algorithm is

inserted &t the label Hdone of the previous one.

It is assumed

76

BEGIN
9 3

BEGIN
acc(j) := acc(d) + q ;
WHILE (P # ¢) DO

BEGIN
candidate := index member in P ;
IF (W[candidate] < acec) THEN
T :=TU { P[candidate]} i
Pi=P-{ Pl candidate] }
END
END
Tdone: (T = Ti)
END, .
Correctness:

By previous calculation (evaluating Hé)
q units of resource j were deleted from f. The instruc-

tion ace(j) :=

ace(j) + q is intended to restore

them., Assume that P # ¢ (1f P = ¢ so is Tg), clearly
a candidate is chosen from the set of processes not in

H; (condition 1 from definition). If the test

(w[candidate] < acc) is true (condition 2 from defi-

nition) the candidate is a member of T;’ otherwise it

is not a member of T:

and in both cases it must be de-
leted from P since in this algorithm acec is never in-

creased. Therefore the algorithm is correct.

An algorithm for constructing the matrix R

This algorithm uses a logical matrix related to R

as follows: the semaphore matrix S is a logical matrix

(nxm) where S(1,5)

true if R(i,j) has been cal-
culated by the algorithm, and it is false otherwise.

Furthermore a new vector has been introduced; the sur-

plus vector , The surplus vector of an RAS is defined

by; for j (1< <m) surplus(j) = q where

J

q is the maximum number so that Hq = { set of all proc-
esses] . For any particular state, the jth component
of this vector shows the number of "surplus" units of
resource j i.e., it shows the number of units of re-
source j that can be deleted from the system without
introducing a deadlock. Clearly, for deleting resource
units according to the surplus vector information, the

single resource restriction still holds.

The following algorithm calculates the matrix R,
the surplus vector and the safeness for a system state.

It may run each time there is a change in the system,

Repeat: FOR j = 1 STEP 1 UNTIL m DO PARALLEL

BEGIN
(vector full of false's)

s(3)

*(3) :=
surplus(j) :=
T :=

H :=

q :=

‘ace := f ;
NumberP :=
WHILE (¢ > O
BEGIN

and H # {set of all processes})DO

ace(j) := ace(d) - a ;
P := {set of all processes} - H ;
FailP := O ;

Loop: BEGIN

candidate := index member in P ;

IE(w[candidate] <'ace) THEN
BEGIN

H .
P

i

BU { P[candidate] b

]

P P[candidate] i

ace + # candidate] ’
NumberP - 1 ;

il

ace

NumberP :=
FailP := O ;

1F(8(candidate,j) = false) THEN

BEGIN

R(candidate,j) := q ;

S(candidate,j) := true
END

END
ELSE FailP := FailP + 1 ;
IF(FailP = NumberP) THEN GO TO Hdone ;

GO TO Loop
END

Hdone: BEGIN

P:i=P-T;
acc(j) := ace(d) + q ;
WHILE (P # ¢) DO
BEGIN
IR (W[candidate]
BEGIN

candidate := index member in P ;

< acc) THEN

Ti=TU {P[candidate]};
R(candidate,j) := q ;
S(candidate,j) :=
END

P :=P -

END
END

true
{P[candidate]}

q :=q~1
END
IF(H = {set of all processes})THEN

surplus (j) :=q + 1 ;

ELSE

"

unsafe state, the processes not in H may be

blocked "

y

END .

77

Block Hdone:

Remarks: The algorithm starts calculating H = H%(j)’

then H = Hi(j)—l and so on., When H = Hé, since for all
q Hi < Hé-l , the algorithm attempts to evaluate Hg_l

only considering "candidate' in the set of processes not
yet in H;. Furthermore, it may be easily proved that if

R | 3 s pd J
a process Pt is in Hq U Tq, then Pt is in Hq—l U Tq_1
i,e., if Pt can safely request ¢ units of resource j, it

can safely request -1 units as well. This fact has been
considered in choosing "'candidate' for evaluating the

set T; Note that if a process is in Tg then it may be

but if it is in H)

. |
1 it is in Hq_1
The instruction "IF(S(candidate,j) = false)
THEN ..."
HJ
-
R(t,j) and S(t,j) had been evaluated.

in HJ too.
q-

is intended to test if a process Pt
J

. If the test is positive, it means that

Just in
1 was in T
The instruction "IF(H = {set of all processes})

THEN ,..", just before the end of the algorithm, is
intended to evaluate the surplus and the safeness of

the current state as follows: if the algorithm terminates

because H is the set of all processes before q > 0 is

false, then the system has a surplus of g+l units of

the resource being dealt (note that q was decreased

by one). If the algorithm terminates because q > Q

(by construction would be ¢ = -1) is false, then

J
0]
processes, in this case the surplus is zero and it is

there are two alternatives: 1) H = H, is the set of all
correctly given by the algorithm, or 2) H = Hg is not
the set of all processes, then it means that there are
processes (not in H) that could be deadlocked and the
system state is unsafe.

The algorithm permits a parallelism of m, since

each resource can be dealt independently.

Block Loop; Suppose that the system is in a state so un-

fortunate that Hj is the set of all processes and there
is only one compgete terminating sequence for it, Let
Pe(l)Pe(2)"'Pe(n) be that sequence, Assume in the worse
case that ''candidate is chosen in such a way that it is
the inverse order of the sequence. At first Loop will be
entered n times to find Pe(l)’ then n-1 times to find
Pe(z)’ then n-2 times to find Pe(3) and so on to Pe(n)‘
In other words, in the worst case Loop will be entered
n+nl+n2+,,,+2+1=nx(ntl)/2 tines,
Since the blocks inside Loop have constant complexity,

the complexity of this block is second-order in n.

Clearly each time the test (P #¢) is
true a member in P is deleted. Thus the maximum number

of true tests is n, then the complexity of this block

is first-order in n,

Each time the test (¢ > 0) is true q is de~
creased by one, thus the maximum number of times that
this test is true (1 + £(j)) is not dependent on n.
Therefore the complexity of the algorithm, in the worst

case, is second-order in n.

Example: Let (W,A,?) be the system state defined by;

(4 processes and 2 resources),

¥=(3))"')

=
]
N0 W
w H O
H O KR B

F M HF D

the application of the algorithm for this state yields,

surplus = (0,1)

oW Ww O
w & E e

If one unit of resource 2 is deleted from the system,

then the response of the algorithm would be,

surplus = (0,0)

= Ww w O
N Ww w O

If twb units of resource 2 are deleted from the system
i.e., the free resource vector would be (3,2), then

the algorithm yields,

" unsafe state, the processes 1 and 4 may be blocked "

V. The Scheduler

The above algorithm is only a part of a scheduler
for an RAS. In order to design a scheduler using this al-
gorithm, the designer must consider:

1) A rule for deciding what process will be considered
first if more tham one is waiting for resources.

2) A rule for deciding what resource will be considered
first if a process requires more than one resource class.
3) A rule stating what to do when a request (single) is
denied, i.e., if the number of units requested is larger

than the corresponding entry in the matrix R,

The first rule is considered by any scheduler, the
second one introduces no additional problems and may be
handled without difficulty. Any scheduler needs the
third rule, In those schedulers using the previous al-
gorithms, this rule has the following form: if a request

is denied send it into a queue for a later attempt.

78

The requests are kept in their original form, A sched-
uler using the algorithm presented here will have the

following features:

Reservation of units (effective deadlock prevention)

Although, the number of units requested by a pro-
cess in a resource is larger than the corresponding en-
try in matrix R i.e., the request can not be safely
granted, the process can get, without introducing a
deadlock, the number of units specified by the entry in
R. The process can enter a queue and re-request the
difference at a later time, In other words, a process

requesting units of a resource completes its demand by

collecting all available units for it, each time it

uses the algorithm. In that sense the use of the al-

gorithm is never unsuccessful. This "put in reserve"

property prevents the effective deadlocks pointed out
by R. C. Holt3.

As was shown by Holt the scheduler may introduce
deadlocks not prevented by methods using the safe state
concept alone. When the requests are ordered in a queue
by a FIFO discipline this kind of deadlock may arise.
Fortunately, these deadlocks can be easily avoided by
breaking the priority rule; the scheduler passes down
the queue granting those requests which are safe.

More important, indeed, is the fact that a process
may be blocked for a "long time' if its request is never
granted because others processes claiming less units,
make their requests in such a way that the units re-

quested by the process are never available for it, In

1

that case the process is a "victim'' of an effective

deadlock.

This necessary condition for an effective dead-
lock can be avoided if at the time a process requires
units of a resource, it gets them according to the in-
formation given by the matrix R, instead of waiting for
all of the required units. In other words, a process
claiming a large demand will decrease it, by reserving

all possible units, each time it uses the algorithm.

Consider the following example (from Holt3):
assume a system containing only two units of a resource

and three processes P,,P,. and P3 demanding one, one

1’72
and two units respectively. Assume initially that P1 has

allocated one unit and P

3

the request can not be granted, simply, because two

f P
£ Py

P1 releases its allocated unit, later P

requests two units, Clearly,

units are not available, requests one unit before

1 releases it

> releases its

unit and this behavior is mantained by the processes

and re-requests the unit again before P

P1 and Py, then the process P, can never fulfill its

3

task because at no time are two units available. In this

case P3 is"victim" of an effective deadlock.

In the notation of this paper the initial state

is described by:

0 1
w=4j1) A=]0 T=(1)
2 0

The application of the algorithm to this example yields,

1
R=]|1 surplus = (0)
1

If at the time P3 requests two units, it gets at

least one unit as given by the entry R(3,1), then the

effective deadlock will never occur because P3 will
request later only one unit, just the same as P_ will

2
need,

Accepting non-sequential processes

Assume that there are processes in the system or-

ganized in such a way that their tasks depend on the

availability of the resources, For example a process may

want one unit, at least, but it will run faster if it

gets more units, If the processes get the resources ac-

cording to the information given by the matrix R, those

processes can be accepted by the system and they will
run with a resource utilization nearly optimal., Those
processes must specify before entering the system the
minimum number of units that they will need at one ti-
me in order to fulfill their tasks.

Added to the previous feature§ a scheduler using
this algorithm will have the basic characteristic of
the algorithm; it can reduce the in-line system time if

there are sufficient idle CPU cycles available between

resource requests toexecute the algorithm as, for exam-

ple, in the case of an I/0 bound system,

VI. Conclusion

A new approach for avoiding deadlocks in computer

system has been presented. By evaluating the safe re-

quests before they are made, this method can increase

the resource utilization, provided there are sufficient

idle CPU cycles available between resource requests to

execute the algorithm, as in the case of an I/O bound
system,
With this approach effective deadlocks can be

avoided and non-sequential processes can be accepted,

Furthermore, the algorithm evaluates the units of "sur-

plus" of the system, According to the definition, the

79

surplus vector of a system shows the number of units of
each resource that can be deleted from the system with-
out introducing a deadlock, The information given by
the surplus vector could be used by a scheduler of a
network of computers to assign the resources among

them,

Acknowledgment

The author wishes to thank Proff Edward J.McCluske:
and Thomas H, Bredt of the Digital Systems Laboratory,
Stanford University, for their helpful suggestions and

discussions,

References
1) HABERMANN, A.N. Prevention of System Deadlocks.
Comm, ACM 12,7 (July 1969), 373-37T.

2) HAVENDER, J.W. Avoiding Deadlocks in Multi-tasking
Systems. IBM Systems Journal 2,7 (1968), TL-8k.

*¥3) HOLT, R.C, Comments on Prevention of System Dead-

locks, Comm, ACM 14,1 (January 1971), 36-38.

4) MURPHY, J.E. Resource Allocation with Interlock De-
tection in Multi-task Systems. Proc. AFIPS 1968
FJCC, Vol, 33, Pt, 2, 1169-1176,

5) RUSSELL, R.D. A Model for Deadlock-Free Resource
Allocation, Tech, Memos No., 93, 94 and 116 (June,
Oct., and Dec. 1970 respectively), Stanford Linear
Accelerator Center, Computer Group, Stanford Univer-

sity.

6) SHOSHANI, A. and E. G. COFFMAN Detection, Prevention
and Recovery from Deadlocks in Multiprocess, Multiple
Resource Systems. Tech, Rep. No, 80, Dept. of Elec.
Eng., Comp, Sc, Lab., Princeton University, (Oct.

1969).

*Note: Reference 3 was published before in Tech.
Report No. 70-5- (January 1970) Department of Computer
Science, Cornell University, Ithaca, New York

