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S u m m a r y :  

I n  c o m p u t e r  s y s t e m s  i n  w h i c h  r e s o u r c e s  a r e  a l l o c a t e d  d y n a m i c a l l y ,  a l g o r i t h m s  m u s t  b e  e x e c u t e d  w h e n e v e r  

r e s o u r c e s  a r e  a s s i g n e d  t o  d e t e r m i n e  i f  t h e  a l l o c a t i o n  o f  t h e s e  r e s o u r c e s  c o u l d  p o s s i b l y  r e s u l t  i n  a d e a d l o c k ,  a 

s i t u a t i o n  i n  w h i c h  two  o r  m o r e  p r o c e s s e s  r e m a i n  i n  a n  i d l e  o r  b l o c k e d  s t a t e  i n d e f i n i t e l y .  

In previous research, execution of the process requesting resources is suspended while an algorithm is exe- 

cuted to determine that the assignment could not cause a deadlock. In this papers an algorithm is used to calcu- 

late all possible safe requests before they are made. This algorithm is executed concurrently with other processes 

between requests for resource allocations. If the determination of all safe requests has been completed and a proc- 

ess makes a request, the calculations required by the resource allocation are trivial. 

In order to use this algorithm it is necessary to have a priori knowledge of the maximum resource require- 

ments of each process. This is a standard requirement for deadlock avoidance algorithms ( dynamic avoidance ). In 

addition, requests are restricted so that a process may request only units from a single resource class. Given 

these requirements, the determination of the safe requests can be formed with a complexity of second-order in n, 

where n is the number of processes in the system. 

A scheduler using this algorithm can reduce the in-line system time if there are sufficient idle CPU cycles 

available between requests to execute the algorithm as, for examples in the case of an I/0 bound system. In addi- 

tion effective deadlocks may be prevented and non-sequential processes can be accepted. 

I. Introduction 

In multiprocess multiple resource systems~ if cer- 

tain behavioral assumptions on the allocation of resour- 

ces persist 2 a deadlock situation may arise in which two 

or more processes remain in an idle or blocked state in- 

definitely. 

Solutions to the deadlock problem have been clas- 

sified as prevention techniques and detection and re- 

covery techniques 9. For deadlock preventions the sched- 

uler allocates resources so that the deadlocks will nev- 

er occur. With deadlock detection and recovery, the 

scheduler gives resources to the processes as soon as 

they are available and when a deadlock is detected the 

scheduler preempts some resources in order to recover 

the system from the deadlock situation. Deadlock detec- 
6 

tion and recovery techniques will not be considered 

here. Prevention techniques have been grouped accord- 

ing to two major classifications: static and dynamic ~. 
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Certain conditions can be shown to be necessary if 

deadlocks are to occur. By restricting the behavior of 

the processes so that one of the necessary conditions 

for the occurrence of a deadlock is violated, deadlocks 

will never occur. This approach 2'4 has been called stat- 

ic prevention ~, since the rule for allocatihg resources 

does not depend upon the current state of the system. 

Dynamic prevention methods, on the other hand, attempt 

to allocate resources depending upon the current state 

of the system. These methods lead to a better resource 

utilization; however, they need some information about 

the resource requirements for each process. The algo- 

rithm presented in this paper is a new approach for 

dynamic prevention. 

II. Preliminaries 

The resource allocation system: 

A resource allocation system ( RAS ) is formed by 

a set of independent processes Pl,P~,...,Pn ( n ~ i ), 

a set of different types of resources Ri,R2,...,R m 

( m > 1 ) each with a fixed number of units ( two units 

are considered to be equal if they can perform the same 

task )~ and a scheduler that allocates the resources to 

~he processes according to certain rules fulfilling some 
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specified criteria. 

The system state: 

The system state of an RAS is defined by a 3-tuple 

( W,A,~ ) where; 

I) W = ( Wl,W 2 .... '~n ) is the want matrix ( nxm ). The 

entry W( i3j ) = wi( j ) is the maximum number of addi- 

tional units of resource R. that the process P. will 
J i 

need at one time to complete its task. Wk is the want 

vector for the process Pk" 

2) A = ( al,a 2 ..... ~n ) is the allocation matrix ( nxm ) 

The entry A( i,j ) = ai( j ) is the number of units of 

resource R. allocated to process Pi" ~k is the alloca- 
J 

tion vector for the process Pk" 

3) ~ is the free resource vector. The jth component is 

the number of available units of the resource R.. 
3 

When A = 0 ( matrix full of zeros ) the system is 

in the initial state. In that case D = W is called the 

demand matrix and ~ = ~ is the system capacity vector. 

Basic assumptions: 

i) Before it enters the systems a process is required to 

specify for each resource the maximum number of resource 

units it will ever need. 

2) If a process is allocated resources, only the process 

can release them i.e., there is no preemption. 

3) If a process is allocated all of the claimed resources 

it will release them after it completes its task. 

4) The demand vector of every process is less than or 

equal to the system capacity vector. 

D efiniti___~n I: A sequence of processes Pe(i~Pe(2) " ' .  "Pe(k).. 

is called a terminating sequence for ( W~A,~ ) ( where 

e(j) is the index of the process in the jth place ) if: 

1) ~e(1) --< ~ and, 
i-1 

2) <'~ a . for l< i < k. ~e~ij' ' -- + j e(j) -- 

1 

A terminating sequence is called complete if for all P. 
1 

there exists j (l < j < k ) such that e(j) = i. In 

other words~ all processes are in the sequence. 

Definition If: The system state ( W,A~ ) is safe if 

there exists a complete terminating sequence for it. 

In other words, the system is in a safe state if 

there is a way to allocate the resources claimed by the 

processes so that all of them can finish their task. 

A. N. Habermann I has shown that when no process 

releases resources until the end of its exemption~proo- 

esses will not get into deadlock if and only if the al- 

location state ( or system state ) is safe. 

He also proved the following important theorem, 

Theorem ( Habermann ) 

Let ( W,A,~ ) be a safe state, and ( W',A',~' ) 

the transformed state after a request by the process P. i 

is granted. If there exists a terminating sequence for 

( W',A',~' ) containing Pi' then the system state de- 

fined by ( W',A',~' ) is safe. 

The scheduler for Habermann's method works as fol- 

lows: when a process wants additional resources, it calls 

the scheduler and goes into a wait state, the scheduler 

then decides if granting the request could cause a dead- 

lock. If not, the process gets the resources requested. 

Otherwise, it remain waiting and later its claim is re- 

considered by some scheduling rule. Figure 1 shows the 

timing of the procedure. It is assumed that only one 

process requires additional resources 

request continue 

Process ~ wait 

S c h e d u l e r  deciding 

wait 

idle 

-- > time - -  w o r k i n g  

........ idle 

Figure 1 

Timing of the use of process and scheduler in a previous 
method. 

In a parallel sense~ dynamic prevention methods 

may be classified as concurrent and non-concurrent, de- 

pending upon the concurrency of the working time between 

the process~ involved in a request, and the scheduler. 

III. On Concurrent Algorithms 

I n  o r d e r  t o  d e v i s e  c o n c u r r e n t  a l g o r i t h m s ,  two a l -  

t e r n a t i v e s  may be c o n s i d e r e d :  1) know as  e a r l y  as  p o s s i -  

b l e  when a r e q u e s t  w i l l  be made, t h e n  run  t h e  s c h e d u l e r  

c o n c u r r e n t l y  w i t h  t h e  p r o c e s s  ( c o n c u r r e n c y - b e f o r e - r e -  

q u e s t  )~ and 2) know b e f o r e  a r e q u e s t  i s  made i f  i t  can 

be g r a n t e d  s a f e l y .  I f  t he  r e q u e s t  i s  g r a n t e d ,  t h e n  run  

c o n c u r r e n t l y  t h e  p r o c e s s  ( c o n t i n u i n g  i t s  t a s k  ) and t h e  

s c h e d u l e r  ( u p d a t i n g  f o r  new r e q u e s t s  ) ( c o n c u r r e n c y -  

a f t e r - r e q u e s t  ) .  

The figures 2(a) and 2(b) show the timing behavior 

of these alternatives The first alternative uses addi- 

tional information ( advanced request ) and it will not 

be considered here. The algorithm that this paper deals 

with uses the second alternative. 
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Process 

Advanced r e q u e s t  
i n f o r m a t i o n  

,l 
I 
I 

-s-~-h-~-dL'-~-%r ............ 1 

request __~ I cOntiNue 

wait 

I 
deciding t --~2--- 

(a) 

Process 

r e q u e s t  
c o n t i n u e  

[ ..... ~ ....... 2 

I 
I u p d a t i n g  1 

ScheduleTl I 

I ..... ~ ....... 2 

I: request granted, 2: request denied 

(h) 

Figure 2 

2(a); Timing of concurrency-before-request. 
2(b); Timing of concurrency-after-request. 

At first glance, it seems to be a tremendous task 

since all possible requests for each resource and for 

each process must be dealt with. However, if the requests 

are restricted to be single, i.e., for only one type of 

resource, then the task can be done with the same com- 

plexity as Habermann's method; second-order in n. 

The safe request matrix 

Clearly each process can safely request ( single 

request ) only a flhite number of units ( possibly ze- 

ro ). Let R be a matrix ( nxm ) defined by: the entry 

R( i,J ) is the maximum number of units of resource J, 

t h a t  can be g r a n t e d  s a f e l y  i f  t h e  p r o c e s s  I r e q u e s t s  

them. The m a t r i x  R i s  c a l l e d  t h e  s a f e  r e q u e s t  m a t r i x .  

The s i n g l e  r e q u e s t  r e s t r i c t i o n :  An example .  

Let  ( W,A,~ ) be t h e  s t a t e  o f  a s y s t e m  d e f i n e d  by:  

( 3 p r o c e s s e s  and 2 t y p e s  o f  r e s o u r c e s  ) 

w: 2 A= ~ = ( l , 1 )  
0 

The system is in a safe state since PiP3P2 is a 

complete terminating sequence. If P2 requests only one 

unit of Ri, the system will be in a safe state since in 

that case P3PlP2 is a terminating sequence contalning Ps" 

Thus R( 2,1 ) = i. Similar, if P2 requests only one unit 

of R 2 ( PiP3P2 would be a terminating sequence contain- 

ing P2 )" Thus R( 2,2 ) = i. However, if P2 requires a_~ 

the same time one unit of R 1 and one unit of RS, the re- 

quest can not be granted safely. 

This example shows that the matrix R can be used 

only for single requests. If a process requires more 

than one resource, a rule stating the order in which the 

resources will be requested must be defined. 

When a r e q u e s t  o f  q u n i t s  o f  a r e s o u r c e  can be 

g r a n t e d  s a f e l y ,  i n  f a c t ,  i t  means t h a t  any r e q u e s t  o f  k 

u n i t s  ( k < q ) can be g r a n t e d  s a f e l y .  Thus  i f  t h e  m a t r i x  

R i s  known a t  t h e  t ime  a r e q u e s t  i s  made, t h e  p r o c e s s  

r e q u e s t i n g  o n l y  needs  t o  check i f  t h e  number o f  u n i t s  

c l a i m e d ,  i s  l e s s  t h a n  o r  e q u a l  t o  t h e  c o r r e s p o n d i n g  e n t r y  

i n  t h e  m a t r i x  R. I f  t h e  t e s t  I s  p o s i t i v e  t h e  p r o c e s s  g e t s  

t h e  c l a i m e d  r e s o u r c e s  and c o n t i n u e s  i t s  t a s k .  In  t h i s  

c a s e ,  t h e  s c h e d u l e r  r u n s  c o n c u r r e n t l y  ( s e e  F i g .  2 ( b )  ) 

i n  o r d e r  to  fo rm t h e  m a t r i x  R f o r  t h e  t r a n s f o r m e d  s t a t e .  

I f  t h e  t e s t  i s  n o t  p o s i t i v e  t h e n ;  1) t h e  p r o c e s s  g e t s  

t h e  maximum number o f  u n i t s ,  g i v e n  by t h e  e n t r y  a t  R, 

and r e - r e q u e s t s  t h e  d i f f e r e n c e  l a t e r ,  o r  2)  i t  i s  pu t  

i n t o  t h e  w a i t  s t a t e .  

The a p p r o a c h  1) may be u s e d  t o  p r e v e n t  t h e  e f f e c t i v e  

d e a d l o c k s  p o i n t e d  o u t  by R. H o l t  B and i t  w i l l  be d i s -  

c u s s e d  l a t e r .  Now we p r e s e n t  t h e  a l g o r i t h m .  

IV. A C o n c u r r e n t  A l g o r i t h m  

Let  ( W,A,~ ) be t h e  c u r r e n t  s t a t e  o f  an RAS. Fo r  

all q ( q < f(j) ) let ~J be a vector formed from the -- q 

free resource vector as follows: 

i) f~(k) : f (k )  for  a l l  k# J ( l < j  <m) 

f ~ ( k )  : f ( k )  - q for k = j . 

A 

2) 

I n  o t h e r  w o r d s ,  ~J i s  t h e  f r e e  r e s o u r c e  v e c t o r  a f t e r  q 
q 

u n i t s  o f  r e s o u r c e  j a r e  d e l e t e d  f rom ~ .  

Definition I: A process Pl is in the set H j ( head 
q 

set ) if there exists a terminating sequence for 

( W,A,~ ) containing Pi" 

In other words, H~ Is the set of processes which 

can be still completed even though q units of resource 

j are deleted from the free resource vector. 

Lemma. l: Let Pi in H~ and Pe(1)Pe(2)...Pe(k) be a 

terminating sequence for ( W,A,~ ) where e(k) : i. For 

allt ( l ~ t < k  ) P c ( t )  is inH~. 

Proof: It follows directly from definition. 
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Definition 2: 

set ) if; 

A process Pi is in the set T j ( tail 
q 

I) P. is not in H j and, 1 q 

2) ~i <f + ~J-- q where hJ k~E ~ k q  =P H 

Lemma 2: If Pi is in T j then the transformed state af- q 
ter allocation of q units of resource j to Pi is safe. 

Proof; 
4 

Let ( W'jA',~ ) be the transformed state after 
I 

allocating q units of resource j to Pi" In this case 

W' and A' differ from W and A only in the ( i,j ) entry 

as follows; 

W'( i , j  ) = W( i , j  ) - q 

A' (  i , j  ) = A( i , j  ) +  q 

Let P ,,~P ,~...P _~ be a terminating sequence 
e~±) e ~ )  e(K) 

f o r  ( W , A , ~  ) c o n t a i n i n g  a l l  p r o c e s s e s  i n  H J .  From 
q 

Lemma 1 can be p roved  t h a t  such  a s e q u e n c e  a lways  ex -  

i s t s .  In facts that sequence is terminating for the 

transformed state ( W',A',~J ) since by hypothesis Pi 

is not in H~. From definition, condition 2) may be re- 

written as 2 

~ ' .  < ~J + ~J (1) 
i-- q q 

T h e r e f o r e ,  the s e q u e n c e  Pe(1)Pe(2)...Pe(k)Pi ( Pi i n  

the tail ) i s  a terminating sequence for ( W ' ,A ' / f Jq  ) 

since after Pe(k~ finishes its task it will release all 
% # 

its allocated resources and the free resource vector 

will be -jfq + ~Jq , thus by (i) Pi can request a l l  its 

claimed resources. Therefore by Habermann's theorem the 

~J ) is safe. system state ( W'jA', q 

Q.E.D. 

Theorem 

Let  ( W,A~  ) be a s a f e  s t a t e .  I f  a p r o c e s s  Pi  r e -  

q u i r e s  q u n i t s  o f  r e s o u r c e  j ,  t h e n  t h e  r e q u e s t  can be 

s a f e l y  g r a n t e d  i f  and o n l y  i f  P i  6 H J U T J . 
q q 

P r o o f :  ~ - - )  I f  P i  E H j t h e n  by d e f i n i t i o n  t h e r e  e x i s t s  q 
a terminating sequence for ( W,A,~ ) containing Pi" 

Clearly the same sequence will be terminating for 

( W',A',~ ) where q units of resource j, deleted from 

~, are allocated to Pi" Thus by Habermann's theorem the 

request can be safely granted. If Pi 6 T J by Lemma 2 the 
q 

request can be safely granted. 

---> ) If the request can be safely granted, then there 

exists a terminating sequence for ( W',A',~ ) contain- 

ing Pi" Let Pe(1)Pe(2)...Pe(k) be that sequence, where 

e(k) = i. If Pi E Hq j then the theorem holds. Let 

Pi / (1) 

g 

C l e a r l y  f o r  a l l  t ( 1 _< t < k ) Pe(t).. E H Jq s i n c e  P e ( t )  

may be comple t ed  d e s r e g a r d i n g  t h e  q u n i t s  o f  r e s o u r c e  j 

t a k e n  o u t  f rom t h e  f r e e  r e s o u r c e  v e c t o r .  Let  H ' J  be t h e  
q 

set of those Pe(t) and ~'J = 
q ~e(t) 

Pe(t)E R~ 

Since H 'j ~ H j and all components are non-negative num- q q 

bars, g 'J  < ~J (2) 
q - -  q 

From hypothesis~ 

~' ~i ( 0,0 . . . .  ,q,...,0 ) <YJ + h'J 
i = - -- q q 

jth 

may be rewritten as, 'w. < f + ~'J and by (2) 
i-- q 

~ < ~ + ~J (3) 
I-- q 

from (1) and (3) Pi is in T j q" 

Q.E.D. 

The above  t heo r em s t a t e s  t h a t  t h e  head and t a i l  

s e t s  p l a y  an i m p o r t a n t  r o l e  i n  c o n s t r u c t i n g  t h e  m a t r i x  

R, i . e . ,  t h e  o b j e c t i v e .  C l ea r l y~  R( i j j  ) i s  t h e  max- 

imum number q so t h a t  P. ~ H 3 U T 3. 
I I 

1 q q 

I n  o r d e r  t o  f a c i l i t a t e  t h e  u n d e r s t a n d i n g  o f  t h e  

a l g o r i t h m ,  ALGOL-like v e r s i o n s  t o  c a l c u l a t e  t h e s e  s e t s  

a r e  p r e s e n t e d  f i r s t  w i t h  a c o r r e c t n e s s  p r o o f ,  t h e n  a 

c omp le t e  p rog ram f o r  c a l c u l a t i n g  t h e  m a t r i x  R. 

An a l g o r i t h m  f o r  c a l c u l a t i n g  t h e  head  s e t  r u n s  as  

follows: 
BEGIN 

H := ¢ ; 

P := [ set of all processes } ; 

~ e c  := ¥ ; 

ace( j )  := ace( j )  - q ; 

NumberP := n ; 

FailP := 0 ; 

Loop: BEGIN 
candidate := index member in P ; 

IF ( W[candidate] ~ ~cc ) THEN 

BEGIN H := H U [ PKcandidate ] } ; 
I 

P := P - [ PFcandidate~ } ; 

~cc := ~cc + ~[candidate] ; 

NumberP := NumberP - 1 ; 

FailP := 0 
END 

ELSE FailP := FailP + 1 ; 

IF ( FailP = NumberP ) THEN GO TO Hdone ; 

GO TO Loop 
END 

Hdone: ( H  = H j ) 
q 

END. 
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Correctness: H is intended to be the head set ( ini- 

tially empty ), P is the set of potential candidates 

( initially is the set of all processes ). The vector 

~ec is used to simulate the free resource vector after 

each process terminating its task releases its allocated 

resources ( initially ~cc is ~ ). After the instruction 

ace(J) := ace(j) - q is executed, ~cc will contain ~J 

as required to evaluate the head set H j. q 
q 

NumberP is used to point out the cardinallity of the set 

of potential candidates ( at first it is n ). FailP is 

used to count the number of processes failing to be in 

H j after an increasing in the vector ~cc. It is assumed 
q 

that the rule for choosing "candidate" is done in such 

a way that no failing process will be chosen again, un- 

less an increase in ace has occurred. Initially FailP 

is set to zero. Therefore the initialization of the al- 

gorithm is correct. Now, assume that H, P, ace, NumberP 

and FailP are true before enter to Loop. At this point 

the set of potential candidates is not empty ( clearly 

at first P ~ ~ ). The fact that the want vector of the 

candidate may be satisfied by the free resource vector 

( ~[eandidate] ~ ~cc ) means that this particular proc- 

ess can be completed disregarding the q units of re- 

source j deleted from 7, in other words it is a member 

of H j. Thus it must be added to H and deleted from P. 
q 

Since the process will release all of its allocated re- 

sources, they are summed to ~cc. Clearly NumberP is 

one unit less and FailP is set to zero. When the test 

( W[candidate] ~ ~cc ) fails, the candidate may not be 

in H~. In that case H~ P, and NumberP remain the same,  

i n d e e d  F a i l P  i s  i n c r e a s e d  by one .  Thus t h e  s t a t e  o f  

a f f a i r s  i s  c o r r e c t  a f t e r  t h e  f i r s t  IF  i n s t r u c t i o n  i s  

e x e c u t e d .  

I f  ( FailP = NumberP ) is true it means that all 

members in the set of potential candidates fail to be 

in the head set, then by Lemma 1 the set H j ( in H ) 
q 

has been calculated. Otherwise, there are ( NumberP - 

- FailP ) processes in P as possible candidates to be 

in H j . Thus P is not empty when Loop is entered again. 
q 

Since the last test does not change the state of H, P, 

NumberP and FailP, then they are true when Loop is en- 

tered again. Therefore the algorithm is correct. 

Now an algorithm for calculating the tail set is 

presented. Since T J must be evaluated after H J the fol- 
@ 

q q 
lowing algorithm runs after the algorithm for calculat- 

ing H j . Therefore it is assumed that this algorithm is 
q 

inserted at the label Hdone of the previous one. 

BEGIN 

BEGIN 

T :=¢ ; 

ace(j) := ace(j) + q ; 

W~ILE(P~, ) DO 
BEGIN 

candidate := index member in P ; 

IF ( W[candidate ] Z ~ec ) THEN 

T := T U [ P[candidate]] ; 

P := P- [ P[candidate] ] 

END 
END 

Tdone : 

END. 

( T = T  j ) 
q 

Correctness: By previous calculation ( evaluating H j ) 
q 

q units of resource j were deleted from f. The instruc- 

tion ace(j) := ace(j) + q is intended to restore 

them. Assume that P # $ ( if P = ~ so is T j ), clearly 
q 

a candidate is chosen from the set of processes not in 

H j ( condition 1 from definition ). If the test 
q 

( ~[candidate] ~ ~cc ) is true ( condition 2 from defi- 

nition ) the candidate is a member of TJ, otherwise it 
q 

is not a member of T J and in both cases it must be de- 
q 

leted from P since in this algorithm ~cc is never in- 

creased. Therefore the algorithm is correct. 

An algorithm for constructing the matrix R 

This algorithm uses a logical matrix related to R 

as follows: the semaphore matrix S is a logical matrix 

( nxm ) where S( i,j ) = true if R( i,j ) has been cal- 

culated by the algorithm, and it is false otherwise. 

Furthermore a new vector has been introduced; the sur- 

plus vector . The surplus vector of an RAS is defined 

by; for j ( i < j < m ) surplus(j) = q where 

q is the maximum number so that H j = [ set of all proc- 
q 

esses} . For any particular state, the jth component 

of this vector shows the number of "surplus" units of 

resource j i.e., it shows the number of units of re- 

source j that can be deleted from the system without 

introducing a deadlock. Clearly, for deleting resource 

units according to the surplus vector information, the 

single resource restriction still holds. 

The following algorithm calculates the matrix R, 

the surplus vector and the safeness for a system state. 

It may run each time there is a change in the system. 
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Repeat: FOR j = i STEP i UNTIL m DO PARALLEL 

BEGIN 
~(j) := ~alse ; ( vector full of false's ) 

~ ( j )  : = U  ; 

surplus(j) := 0 ; 

T:=¢; 

H :=¢ ; 

q : =  f ( j )  ; 

~ c c  := ~ ; 

NumberP := n ; 

WHILE ( q ~ 0 and 

BEGIN 

L o o p :  

Hdone: 

END . 

END 

H / [set of a l l  processes} )DO 

acc(j) := acc(j) - q ; 

P :=  [ s e t  o f  a l l  p r o c e s s e s ]  - H ; 

FailP := 0 ; 

BEGIN 
candidate := index member in P ; 

IF (  W[candidate ] ~ ace ) THEN 
BEGIN 

H := H U { P[candidate] } ; 

P := P - { P [ c a n d i d a t e ]  ] ; 

~CC := acc+ aFcandidatel ; 

NumberP := NumberP- 1 ; 

FailP := 0 ; 

IF( S( eandidate, j ) = false ) THEN 

BEGIN R( candidate, j ) := q ; 

S( candidate, j ) := true 
END 

END 

ELSE FailP := FailP + 1 ; 

IF( FailP = NumberP ) THEN GO TO Hdone ; 

GO TO Loop 
END 

BEGIN 
P := P- T ; 

acc(j) := acc(j) + q ; 

WHILE ( P # ¢ ) DO 

BEGIN candidate := index member in P ; 

IF( W[eandidate ] < ~ce ) THEN 

BEGIN 

T := T U {P[candidate]]; 

R( candidate,j ) := q ; 

S( candidate, j ) := true 

END 

P := P- {PFcandidate]} 

END 
END 

q :=q- 1 

IF( H = {set of all processes)~HEN 

surplus (j) := q + 1 ; 

ELSE 

" unsafe state, the processes not in H may be 

blocked " ; 

J Remarks: The algorithm starts calculating H = Hf/j~,~ J 

_ H j then. H -j f(j)-I and so on. When H = H 3,q since for all 

H Jq_C Hq_ I , the algorithm attempts to evaluate HJc_ I. q 

only considering "candidate" in the set of processes not 

yet in H j. Furthermore, it may be easily proved that if 

q H j T j T j a process Pt is in q U q, then Pt is in H j q-i U q-I 

i.e.~ if Pt can safely request q units of resource j, it 

can safely request q-1 units as well. This fact has been 

considered in choosing "candidate" for evaluating the 

set T. Note that if a process is in T j then it may be 
.q 

in H j but if it is in H j it is in H J too. 
q-1 q q-i 

The instruction "IF( S(candidate, j ) = false ) 

THEN ..." is intended to test if a process Pt just in 

H j was in T j. If the test is positive, it means that 
q-i q 

R( t~j ) and S( t,j ) had been evaluated. 

The instruction "IF( H = {set of all processes] ) 

THEN ... • just before the end of the algorithm, is 

intended to evaluate the surplus and the safeness of 

the current state as follows: if the algorithm terminates 

because H is the set of all processes before q > 0 is 

false• then the system has a surplus of q+l units of 

the resource being dealt ( note that q was decreased 

by one ). If the algorithm terminates because q ~ 0 

( by construction would be q = -1 ) is false, then 

there are two alternatives: i) H = H~ is the set of all 

processes, in this case the surplus is zero and it is 

correctly given by the algorithm• or 2) H = H~ is not 

the set of all processes, then it means that there are 

processes ( not in H ) that could be deadlocked and the 

system state is unsafe. 

The algorithm permits a parallelism of m, since 

each resource can be dealt independently. 

C o m p l e x i t y  

B l o c k  L o o p ;  S u p p o s e  t h a t  t h e  s y s t e m  i s  i n  a s t a t e  s o  u n -  

f o r t u n a t e  t h a t  H j i s  t h e  s e t  o f  a l l  p r o c e s s e s  a n d  t h e r e  
q 

i s  o n l y  o n e  c o m p l e t e  t e r m i n a t i n g  s e q u e n c e  f o r  i t .  L e t  

P e ~ i ~ P e C 2 ~ . . . P e C n ~  be  t h a t  s e q u e n c e .  Assume i n  t h e  w o r s e  

c a s e  t h a t  " c a n d i d a t e "  i s  c h o s e n  i n  s u c h  a w a y  t h a t  i t  i s  

t h e  i n v e r s e  o r d e r  o f  t h e  s e q u e n c e .  A t  f i r s t  L o o p  w i l l  b e  

e n t e r e d  n t i m e s  t o  f i n d  P e ( l ~ '  t h e n  n - 1  t i m e s  t o  f i n d  

PeC2~',, t h e n  n - 2  t i m e s  t o  f i n d  Pe~3~,, a n d  so  on  t o  PeCn~',, 

I n  o t h e r  w o r d s ,  i n  t h e  W o r s t  c a s e  L o o p  w i l l  b e  e n t e r e d  

n + n - 1  + n - 2  + . . .  + 2 + 1 = n x ( n + l  ) / 2  t i m e s .  

S i n c e  t h e  b l o c k s  i n s i d e  L o o p  h a v e  c o n s t a n t  c o m p l e x i t y ,  

t h e  c o m p l e x i t y  o f  t h i s  b l o c k  i s  s e c o n d - o r d e r  i n  n .  

B l o c k  H d o n e :  C l e a r l y  e a c h  t i m e  t h e  t e s t  ( P ~ ¢ ) i s  

t r u e  a m e m b e r  i n  P i s  d e l e t e d .  T h u s  t h e  m a x i m u m  n u m b e r  

o f  t r u e  t e s t s  i s  n ,  t h e n  t h e  c o m p l e x i t y  o f  t h i s  b l o c k  

i s  f i r s t - o r d e r  i n  n .  
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Each time the test ( q ~ 0 ) is true q is de- 

creased by one, thus the maximum number of times that 

this test is true ( I + f(j) ) is not dependent on n. 

Therefore the complexity of the algorithm, in the worst 

case, is second-order in n. 

Example: Let ( W,A,~ ) be the system state defined by; 

( 4 processes and 2 resources ), 

W = 3 i A= 

2 2 

4 4 

2 i 

0 i 

i 0 

3 1 

~:(3,4) 

t h e  a p p l i c a t i o n  o f  t h e  a l g o r i t h m  f o r  t h i s  s t a t e  y i e l d s ,  

0 i 

3 4 
R = 3 4 ~urplus = ( 0, i ) 

1 3 

If one unit of resource 2 is deleted from the system, 

then the response of the algorithm would be, 

0 0 

3 3 
R = ~urplus = ( 0,0 ) 

3 3 

i 2 

If two units of resource 2 are deleted from the system 

i.e., the free resource vector would be ( 3,2 ), then 

the algorithm yields, 

" unsafe state, the processes I and 4 may be blocked " 

The  r e q u e s t s  a r e  k e p t  i n  t h e i r  o r i g i n a l  f o r m .  A s c h e d -  

u l e r  u s i n g  t h e  a l g o r i t h m  p r e s e n t e d  h e r e  w i l l  h a v e  t h e  

f o l l o w i n g  f e a t u r e s :  

R e s e r v a t i o n  o f  u n i t s  ( e f f e c t i v e  d e a d l o c k  p r e v e n t i o n  ) 

A l t h o u g h ,  t h e  n u m b e r  o f  u n i t s  r e q u e s t e d  by  a p r o -  

c e s s  i n  a r e s o u r c e  i s  l a r g e r  t h a n  t h e  c o r r e s p o n d i n g  e n -  

t r y  i n  m a t r i x  R i . e . ,  t h e  r e q u e s t  c a n  n o t  b e  s a f e l y  

g r a n t e d ,  t h e  p r o c e s s  c a n  g e t ,  w i t h o u t  i n t r o d u c i n g  a 

d e a d l o c k ,  t h e  n u m b e r  o f  u n i t s  s p e c i f i e d  b y  t h e  e n t r y  i n  

R. The  p r o c e s s  c a n  e n t e r  a q u e u e  a n d  r e - r e q u e s t  t h e  

d i f f e r e n c e  a t  a l a t e r  t i m e .  I n  o t h e r  w o r d s ,  a p r o c e s s  

r e q u e s t i n g  u n i t s  o f  a r e s o u r c e  c o m p l e t e s  i t s  d e m a n d  by  

c o l l e c t i n g  a l l  a v a i l a b l e  u n i t s  f o r  i t ,  e a c h  t i m e  i t  

u s e s  t h e  a l g o r i t h m .  I n  t h a t  s e n s e  t h e  u s e  o f  t h e  a l -  

g o r i t h m  i s  n e v e r  u n s u c c e s s f u l .  T h i s  " p u t  i n  r e s e r v E '  

p r o p e r t y  p r e v e n t s  t h e  e f f e c t i v e  d e a d l o c k s  p o i n t e d  o u t  

b y  R. C. H o l t  3 .  

As w a s  s h o w n  b y  H o l t  t h e  s c h e d u l e r  may i n t r o d u c e  

d e a d l o c k s  n o t  p r e v e n t e d  by  m e t h o d s  u s i n g  t h e  s a f e  s t a t e  

c o n c e p t  a l o n e .  When t h e  r e q u e s t s  a r e  o r d e r e d  i n  a q u e u e  

b y  a F IFO d i s c i p l i n e  t h i s  k i n d  o f  d e a d l o c k  may a r i s e .  

F o r t u n a t e l y ,  t h e s e  d e a d l o c k s  c a n  b e  e a s i l y  a v o i d e d  by  

b r e a k i n g  t h e  p r i o r i t y  r u l e ;  t h e  s c h e d u l e r  p a s s e s  down 

t h e  q u e u e  g r a n t i n g  t h o s e  r e q u e s t s  w h i c h  a r e  s a f e .  

More  i m p o r t a n t ,  i n d e e d ,  i s  t h e  f a c t  t h a t  a p r o c e s s  

may b e  b l o c k e d  f o r  a " l o n g  t i m e "  i f  i t s  r e q u e s t  i s  n e v e r  

g r a n t e d  b e c a u s e  o t h e r s  p r o c e s s e s  c l a i m i n g  l e s s  u n i t s ,  

make  t h e i r  r e q u e s t s  i n  s u c h  a way  t h a t  t h e  u n i t s  r e -  

q u e s t e d  b y  t h e  p r o c e s s  a r e  n e v e r  a v a i l a b l e  f o r  i t .  I n  

that case the process is a "victim' of an effective 

deadlock. 

V. The  S c h e d u l e r  

The  a b o v e  a l g o r i t h m  i s  o n l y  a p a r t  o f  a s c h e d u l e r  

f o r  a n  RAS. I n  o r d e r  t o  d e s i g n  a s c h e d u l e r  u s i n g  t h i s  a l -  

g o r i t h m ,  t h e  d e s i g n e r  m u s t  c o n s i d e r :  

1 )  A r u l e  f o r  d e c i d i n g  w h a t  p r o c e s s  w i l l  be  c o n s i d e r e d  

f i r s t  i f  m o r e  t h a n  o n e  i s  w a i t i n g  f o r  r e s o u r c e s .  

2 )  A r u l e  f o r  d e c i d i n g  w h a t  r e s o u r c e  w i l l  b e  c o n s i d e r e d  

f i r s t  i f  a p r o c e s s  r e q u i r e s  m o r e  t h a n  o n e  r e s o u r c e  c l a s s .  

3 )  A r u l e  s t a t i n g  w h a t  t o  do w h e n  a r e q u e s t  ( s i n g l e )  i s  

d e n i e d ,  i . e . ,  i f  t h e  n u m b e r  o f  u n i t s  r e q u e s t e d  i s  l a r g e r  

t h a n  t h e  c o r r e s p o n d i n g  e n t r y  i n  t h e  m a t r i x  R. 

The  f i r s t  r u l e  i s  c o n s i d e r e d  b y  a n y  s c h e d u l e r ,  t h e  

s e c o n d  o n e  i n t r o d u c e s  no  a d d i t i o n a l  p r o b l e m s  a n d  may b e  

h a n d l e d  w i t h o u t  d i f f i c u l t y .  Any s c h e d u l e r  n e e d s  t h e  

t h i r d  r u l e .  I n  t h o s e  s c h e d u l e r s  u s i n g  t h e  p r e v i o u s  a l -  

g o r i t h m s ,  this rule has the following form: if a request 

is denied send it into a queue for a later attempt. 

This necessary condition for an effective dead- 

lock can be avoided if at the time a process requires 

units of a resource, it gets them according to the in- 

formation given by the matrix R, instead of waiting for 

all of the required units. In other words, a process 

claiming a large demand will decrease it# by reserving 

all possible units, each time it uses the algorithm. 

Consider the following example ( from Holt 3 ): 

assume a system containing only two units of a resource 

and three processes Pi,P2 and P3 demanding one, one 

and two units respectively. Assume initially that Pl has 

allocated one unit and P3 requests two units. Clearly, 

the request can not be granted, simply, because two 

units are not available. If P2 requests one unit before 

Pl releases its allocated unit, later Pl releases it 

and re-requests the unit again before P2 releases its 

unit and this behavior is mantained by the processes 

Pl and P2' then the process P3 can never fulfill its 
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task because at no time are two units available. In this 

case P3 is"victim" of an effective deadlock. 

In the notation of this paper the initial state 

is described by: 

0 1 

W= 1 A= 0 ~= ( i ) 

2 0 

The application of the algorithm to this example yields, 

R = 1 "surplus = (0) 

1 

If at the time P3 requests two units, it gets at 

least one unit as given by the entry R( 3,1 ), then the 

effective deadlock will never occur because P will 
3 

request later only one unit, just the same as P2 will 

need. 

Accepting non-sequential processes 

Assume that there are processes in the system or- 

ganized in such a way that their tasks depend on the 

availability of the resources. For example a process may 

want one unit, at least, but it will run faster if it 

gets more units. If the processes get the resources ac- 

cording to the information given by the matrix R, those 

processes can be accepted by the system and they will 

run with a resource utilization nearly optimal. Those 

processes must specify before entering the system the 

minimum number of units that they will need at one ti- 

me in order to fulfill their tasks. 

Added to the previous feature~ a scheduler using 

this algorithm will have the basic characteristic of 

the algorithm; it can reduce the in-line system time if 

there are sufficient idle CPU cycles available between 

resource requests to execute the algorithm as, for exam- 

ple, in the case of an I/O bound system. 

VI. Conclusion 

A new approach for avoiding deadlocks in computer 

system has been presented. By evaluating the safe re- 

quests before they are made, this method can increase 

the resource utilization, provided there are sufficient 

idle CPU cycles available between resource requests to 

execute the algorithm, as in the case of an I/O bound 

system. 

With this approach effective deadlocks can be 

avoided and non-sequential processes can be accepted. 

Furthermore, the algorithm evaluates the units of "sur- 

plus" of the system. According to the definition, the 

surplus vector of a system shows the number of units of 

each resource that can be deleted from the system with- 

out introducing a deadlock. The information given by 

the surplus vector could be used by a scheduler of a 

network of computers to assign the resources among 

them. 
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