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Queueing theoretic models of single and multi-processor computer systems have received wide 
attention in the computer science literature. Few of these models consider the effect of finite 
memory size of a machine and its impact on the memory scheduling problem. In an effort to for- 
mulate an analytical model for memory scheduling we propose four simple models and ex~nine their 
characteristics using simulation. In this paper, we discuss some interesting results of these 
simulations. 

Key Words and Phrases: multiprogramming, scheduling, memory fragmentation, swapping systems, 
dynamic memory allocation, first-fit, performance evaluation, computer 
system simulation, analytical models. 

CR Categories: 4.3.2, 8.1 

I. INTRODUCTION. 

Computer science literature contains a large 
number of reports on analytical and simulation mo- 
dels of computer systems. Queueing theory has of- 
ten been used in formulating these models. As a 
system usually has one or a few processors, a queue- 
ing theoretic model with a single server or a few 
servers can be used. Various realistic schedul- 
ing disciplines may then be studied. 

For any program to execute in a system, in ad- 
dition to access to the CPU it also requires access 
to memory. Therefore, the operating system has to 
handle memory scheduling along with the scheduling 
of the processors. Unlike the CPU scheduling in 
which a CPU may or may not be allocated to a pro- 
gram, a number of programs may be occupying the 
main memory of the system. This situation is not 
easily solvable by queueing theoretic methods. 

The question of memory scheduling has re- 
ceived little attention in the literature. Such at- 
tention has been focused on the analysis of paging 
systems for which a number of models and disciplines 
have been proposed and analyzed. Most of these mo- 
dels concentrate on the time varying memory require- 
ments of a program rather than the question of over- 
all memory scheduling. 

Currently the best results in this area are the 
so-called fifty percent rule due to Knuth [i] and 
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some inequalities involvingunused memory and com- 
paction [2]. But these results only provide a 
qualitative analysis. 

This paper reports on initial work aimed at 
determining qualitative and quantitative guidelines 
for memory scheduling disciplines in multiprogrammed 
systems. At first, we are considering a swapping 
environment in which a whole program has to be in 
core before its execution can he attempted. 

It is interesting to note that in spite of a 
significant interest in paging systems in academic 
and research communities, a large number of systems 
in use today do not support paging. Several manu- 
facturers offer only swapping machines, and in some 
machines, the operating system uses paging only to 
avoid external fragmentation while still operating 
under the swapping philosophy. 

Our research effort is motivated by three types 
of questions: 

(i) System Design. Given a workload charac- 
terization in the sense of arrival rates, memory 
requirements, I/O and CPU time distributions, ap- 
proximately how much memory should a system have 
to process the workload? 

(2) Memory Scheduling. In a heavily loaded 
system in which several users are competing for 
available core, which one should be loaded next? 
Are there general guiding rules such as shortest- 
processing-time first for the CPU scheduling models, 
which can significantly improve waiting time dis- 
tributions and throughput? 

(3) Quantitative Analysis of Placement Strate- 
gies. In a swapping system, determining where to 
place the next arrival in memory can be a very com- 
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plex task. Heuristics are usually employed to help 
solve the problem. Quantitatively how much better 
are such strategies than first fit, which Knuth en- 
dorses [i]. 

Our procedure for answering these questions 
consists of three basic steps. We first propose mo- 
dels of the simplest types of multiprogrammed sys- 
tems in which memory size plays a significant role. 
Since even the simplest of such models are analyti- 
cally difficult to solve, our second step consists 
of creating simulations of those models. From the 
simulation results, we hope to determine approxi- 
mate answers to the questions above. The third step 
is to provide rigorous justification of the approxi- 
mate results by formulating and solving suitable 
analytical models. 

In this paper, the models used in the study 
are described in Section II. The simulation of 
these models led to a number of interesting results 
which are presented in Section III. 

II. THE BASIC MODELS 

In this study we considered four simple models 
of memory scheduling. In these models, a program 
once loaded remains in core until the program is 
terminated. In each model, the arrival process is 
assumed to be a Poisson process. At arrival time, 
each customer (program) is assigned a core size 
and CPU time. The core size is an integer distri- 
buted uniformly between i and i00 blocks. The CPU 
time is exponentially distributed and considered 
independent of memory size. (In some simulation 
runs we have also considered the effects of memory 
size and CPU time dependence.) If there is no mem- 
ory queue and there is room in memory, the customer 
is loaded immediately. Otherwise, the customer is 
placed into the memory queue on either first-come- 
first-served basis or smallest-memory-size-first 
basis, depending on the scheduling discipline be- 
ing used. 

The first two models considered here are es- 
sentially models of I/O bound workloads. We assume 
there is no competition for the CPU, and the CPU 
time mentioned above is regarded as merely a mem- 
ory residence time. As soon as a program's memory 
residence time has expired it is unloaded regard- 
less of how many other programs are in core. The 
difference between these two models is that in the 
first model we do not consider memory fragmentation 
while in the second one we do. Therefore the first 
model is a model of a paged swapping environment 
in which a program may be loaded anywhere in the 
memory while the second is a model of a swapping 
machine with a single base register. A program re- 
quires contiguous space for loading in the second 
model. The placement strategy for the second model 
is first-flt starting at the bottom end of memory. 

The third and fourth models which we consider 
are models of computation bound workloads. In these 
models, competition for use of the CPU determines 
how long each customer remains in memory. The CPU 
scheduling discipline is the processor sharing dis- 
cipline described in [4]. This is the idealized dis- 
cipline which results when the quantum of a round 
robin type system tends toward zero. We assume that 
sharing of the CPU only occurs among those programs 

loaded into memory. Thus, if at a given point in 
time there are n programs loaded and the remaining 
CPU time of a given program is c, then that program 
is scheduled to depart in nc time units. A new ar- 
rival (or departure) can change the value of n and 
cause rescheduling of the departure times of all 
currently loaded programs. The third model is 
again a model of a paged swapping type system, while 
the fourth model simulates memory fragmentation. 

To distinguish between the two classes of mo- 
dels we have described, we will call the first two 
"memory-resldence-tlme models" and the latter two 
"processor-sharing models". 

The loading time of the programs is not con- 
sidered explicitly in these models. At first 
glance, this seems to mean that we cannot model a 
round robin type system. The round robin schedules 
can be incorporated by artificially increasing the 
nember of arrivals and decreasing the CPU time as- 
signed to each arrival. Thus, if a flve-second 
Job of 50K words is to arrive in the round robin 
system, and the time slice is one second; we would 
model this single arrival as five 50K Jobs of one 
second each. Neglecting swapping time, an observer 
stationed at the CPU cannot tell the difference be- 
tween these two situations unless he is allowed to 
tag specific jobs. 

III. SIMULATION RESULTS. 

A. The Memory-Residence-Time Models. 

The memory-resldence-tlme models described 
above were executed with main memory sizes of i00, 
200,... ,i000 blocks. Each run was executed twice, 
once under the flrst-come-flrst-served discipline 
and once with the memory queue ordered by smallest 
memory size first. The arrival rate was chosen to 
be the quantity main memory size divided by fifty 
since fifty is the mean memory size of arriving 
customers. The service rate was chosen as unity. 
(These rates were chosen to guarantee a uniformly 
heavy overload on each of the models.) 

A variety of statistics were collected during 
each simulation run. Tables I and II illustrate 
the most interesting of the statistics which we 
gathered. The quantities listed are: 

N I The mean value of the time integral of 
the number of customers in memory at any 
given time. 

N M The mean number in memory given that the 
memory queue was non-empty. 

M I The mean value of the time integral of 
the number of blocks of memory in use at 
any given time. 

M Mean memory utilization calculated as the u 
percentage M I is of available core. 

The first columns of each table llst the values 
obtained under the FCFS discipline while the later 
columns give corresponding values for smallest- 
memory-size first (SMF). 
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Table I. Memory-residence-time paging model. 

FCFS 
Core N N M I 
Size I M 

M u 

I00 1.39 1.70 71.2 71.2% 
200 3.22 3.60 164.4 82.2 
300 5.14 5.47 265.2 88.4 
400 7.09 7.40 364.3 91.7 
500 9.10 i 9.35 467.0 93.4 
600 ii.i0 11.36 565.0 i 94.2 
700 13.00 13.29 664.1 i 94.9 
800 14.94 15.14 673.9 95.5 
900 16.90 i 17.11 866.9 96.3 

I000 18.90 19.07 966.8 96.7 

SMF 
N N 
I M 

1.46 1.85 
3.40 3.89 
5.61 6.14 
7.71 8.15 
9.84 10.24 

i0.98 ii. 30 
14.12 14.48 
15.33 15.70 
17.15 17.56 
18.71 18.96 

M I 

71.2 
164.6 
265.2 
365.7 
466.5 
545.9 
665.3 
763.3 
863.6 
965.2 

M u 

71.2 % 
82.3 
88.4 
91.4 
93.3 
94.5 
95.0 
95.4 
95.9 
96.5 

Table II. Memory-residence-time fragmentation model. 

Core N 
Size I 

i00 1.33 
200 2.67 
300 4.30 
400 5.88 
500 7.47 
600 9.12 
700 10.83 
800 12.68 
900 13.92 

1000 15.80 

FCFS 

1.55 66.9 
2,68 136.6 
4.32 220.4 
5.88 ~ 303.8 
7.49 383.5 
9.20 466.8 

10.90 556.7 
12.79 651.2 
13.94 712.6 
15.80 , 808.1 

M u N I 

66.9% 
68.3 
73.4 
78.5 
76.7 
77.8 
79.5 
81.4 
79.0 
80.8 

The first interesting feature of Tables I and II 
is that they illustrate the magnitude of wasted mem- 
ory in a swapping system. While it is true that our 
model of memory size distribution is very simple, 
it is still startling to see from ten to thirty per- 
cent of memory unused depending on the model and to- 
tal amount of core available. (Recall that Che ar- 
rival rates are high enough to cause transient be- 
havior of the systemso no more memory will be used 
regardless of how high the arrival rate becomes.) 

The second interesting data presented in Table 
I is the magnitude of the difference between N I and 
N M. Since the system is heavily loaded one would 
expect closer agreement between these two numbers. 
Now N M can be evaluated by a simple application of 
a basic renewal formula (See Appendix for details). 
The values which result from this calculation agree 
closely with those of column two of Table I. 

The values for N I are not checked so easily. 
Since no analytic method seems available we may 
take the following indirect approach. If the 
values for N I for core size=100 are correct then 
each arrival sees 1.39 identical exponential ser- 
vers in operation. Thus, while an arrival rate of 
2.00 makes the system transient, an arrival rate of 
1.30 or so should result in a stable system and 
1.39 should be the borderline between stable and 
transient behavior. While our simulation results 
in this area are very tentative, this does seem to 
be the case. 

The final feature of Tables I and II which 
merits attention is the difference between the 

1.35 
2.64 
4.23 
6.30 
7.93 
9.64 

11.31 
13.10 
15.20 
16.66 

SMF 

1.64 
2.76 
4.30 
6.46 
8.09 
9.77 

11.49 
13.24 
15.42 
16.89 

M I 

66.2 
138.6 
217.3 
305.2 
382.0 
462.6 
543.7 
631.5 
725.8 
806.4 

M u 

66.2% 
69.3 
72.4 
76.3 
76.4 
77.1 
77.7 
78.9 
80.6 
80.6 

FCFS and SMF disciplines. In most cases (except 
for random fluctuations) the SMF discipline serves 
customers at a higher rate than does the FCFS dis- 
cipline. The slight differences in service rates 
can cause significant difference in mean waiting 
times between the models. It can be argued, of 
course, that because we are testing the models in 
situations which cause the memory queue length to 
grow with time, that the SMF discipline deposits 
large executions at the end of the queue and thus 
alters the memory size distribution at the CPU. An 
examination of the mean memory size as observed at 
departure time shows that the effect of this situa- 
tion is minimal in the executions we have conducted. 
The effect would undoubtedly be more important in 
longer executions. 

Table III gives some statistics from the frag- 
mentation model under the FCFS discipline which in- 
dicate the relationships between the amount of free 
core and the size of the largest hole available at 
certain times. The statistics listed are the fol- 
lowing: 

M A 

F A 

H A 

MAF 

is the mean memory available as recorded 
at arrival time. 

is the mean number of holes as recorded 
at arrival time. 

is the mean size of the largest h01e 
available as recorded at arrival time. 

is the mean amount of memory available 
at fragmentation failure time. (Frag- 
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mentation failure occurs whenever there 
is enough free core available to load the 
next customer, but the customer cannot be 
loaded because the free core is frag- 
mented.) 

MRF is the mean amount of core requested by 
the next customer at fragmentation fail- 
ure time. 

is the mean size of the largest hole a- 
vailable at fragmentation failure time. 

F F is the mean number of holes which existed 
at fragmentation failure time. 

Table III. 
del under FCFS discipline. 

Memory-residence-time fragmentation mo- 

Core M A F A H A MAF 
Size 

i00 33.1 1.19 30.1 75.6 
200 63.4 1.91 43.3 94.6 
300 79.6 2.68 45.1 105.3 
400 96.2 3.25 49.2 118.6 
500 116.5 4.41 50.1 128.7 
600 133.2 4.84 53.4 143.3 
700 143.3 5.73 50.9 153.2 
800 148.8 6.64 49.5 154.4 
900 187.4 7.43 55.1 188.9 
[000 191.9 7.78 55.4 195.2 

MRF H F F F 

66.8 52.8 2.01 
71.9 57.2 2.32 
70.9 55.6 2.99 
74.0 57.4 3.52 
74.4 54.2 4.57 
75.5 56.4 5.00 
75.1 53.7 5.86 
74.9 51.3 6.70 
78.0 56.1 7.45 
75.6 54.5 7.89 

Several interesting observations can be made 
about the data presented in Table III. First of 
all, the values of HA, MR~ , and H F are relatively 
independent of memory sizE. Also the values for 
H A and H F are near the mean (50.0) of the memory 
size distributions of arriving customers. This 
suggests that the largest hole available occurs 
where a single previous customer has departed, and 
that adjacent regions are rarely freed simultaneous- 
ly. Finally the values for F A and F F are nearly 
the same for large core sizes which is surprising 
because F F is observed only at fragmentation fail- 
ure time. This suggests that fragmentation failure 
is not a very special occurrence with regard to 
the number of holes which exist at any given time. 

Although the data is not presented in Table 
III, an interesting feature of the values for F A 
and F F is that they appear to be normally distri- 
buted with mean values as given in the table and 
with standard deviations of 1.5. This observa- 
tion becomes more pronounced above core sizes of 
400. 

When we observed the validity of the fifty 
percent rule (i.e. the number of holes is approxi- 
mately one-half the number of active segments), an 
interesting variant of this rule was also discovered 
The mean hole size was slightly less than one-half 
the mean value of the largest hole size. All mean 
values in this case are those as seen by arrivals. 
This data is summarized in Table IV. (Since these 
executions took longer to run, only a few core 
sizes were tested.) 

A final set of executions was run to test the 
effect of correlation between a program's memory 
size and CPU time. In these executions the memory 

Table IV. Mean largest hole size (H A ) and mean hole 
size (H M) as observed at arrival time in the memory- 
residence-time fragmentation model. 

Core Size 

FCFS 

HA 

600 53.4 
700 50.8 
800 49.5 
900 54.3 

i000 55.4 

II SMF 

H M HA 

27.5 51.8 
24.9 54.5 
22.4 53.8 
24.9 54.2 
24.7 55.0 

HM 

25.8 
25.0 
25.1 
22.5 
22.8 

size distribution was unchanged but the CPU time 
distribution was changed so that larger programs 
were assigned longer CPU times. This was done as 
follows: If the memory size selected was m, then 
the CPU time was selected from an exponential dis- 
tribution with mean m/50. Thus a program with the 
mean memory size would get an exponentially distri- 
buted CPU time chosen from a distribution with mean 
1.0. Larger programs would have larger mean CPU 
times and smaller programs would have shorter mean 
CPU times. 

The results of these executions for a selection 
of core sizes was given in Table V. A quick com- 
parison of Table V with Tables I and II shows that 
the N I values are markedly smaller in Table V. The 
M I values are relatively the same, although for the 
fragmentation model more core is in use than pre- 
viously was the case. Returning to Table V we note 
that the SMF discipline is now less efficient than 
FCFS in the sense that fewer people are now in ser- 
vice. Clearly, the problem of optimally ordering 
the memory queue does not have a simple solution. 

Table V. Memory usage statistics for the memory- 
residence time models with CPU time and memory size 
dependence. 

Core 
Size 

500 
800 

i000 

500 
800 

i000 

FCFS I SMF 

N i I M I I M  u N I M I Mu 

Pagin~ Model 
7.13 464.0 194.8 % 6.99 463.9 92.8 % 

11.70 761.7 195"2 11.58 764.5 95.5 
14.82 965.6 96.6 14.62 964.3 96.4 

FraKmentation Model 
I 6.22 400.8 80.1% 6.07 399.3 79.8 % 
i0.i0 652.6 81.5 9.94 652.0 81.5 
12.79 823.8 82.4 12.63 833.3 83.3 

B. The Pr0cessor-Sharing Models. 

The processor-sharing models were executed 
with main memory sizes of 100,200 .... ,i000 blocks. 
Each memory size was run twice, once under the FCFS 
discipline and once under the SMF discipline. In 
this case, however, we chose an arrival rate of 
0.999999 and a service rate of 1.0. This choice 
was made because the statistics of interest in this 
case were mean time in queue and mean time in system. 
But these numbers are finite only when the queueing 
system is stable. Due to our exponential inter- 
arrival and service time distributions it follows 
that the processor-sharing model is stable when the 
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corresponding M/M/i queueing system is stable. Thus, 
we must choose an arrival rate less than the ser- 
vice rate. In order to make the results interest- 
ing, we have chosen the rates as close together as 
possible. 

Table Vl summarizes the statistics for the two 
processor sharing models under the FCFS discipline. 
The results are intuitive and not very surprising. 
As main memory size is increased, more programs can 
share the CPU at any given time so that the mean 
time in queue decreases. On the other hand, it takes 
longer for a program to obtain its CPU time require- 
ment and depart, this being demonstrated by the in- 
creasing values for mean time in system. 

Table Vl. Mean time in queue (V) and mean time in 
system (W) for the processor-sharing models under 
FCFS discipline. 

Core 
Size 

100 
200 
300 
400 
500 
600 
700 
800 
900 

i000 

PaRing 

V 

12.16 
10.51 
9.72 
9.06 
7.18 
6.51 
5.95 
3.97 
3.09 
3.15 

Model 

W 

13.92 
13.95 
14.74 
15.64 
15.14 
15.93 
16.72 
16.32 
16.70 
18.36 

Fragmentation 
Model 

V W 

12.26 13.93 
10.96 13.97 
10.30 14.65 
9.93 15.69 
8.25 15.14 
6.68 15.89 
7.49 16.74 
5.63 16.41 
4.55 16.55 
4.74 18.41 

We will not present a similar table for the 
processor-sharing models under the SMF discipline. 
The reason is that the sample variances of the 
quantities "time in queue" and "time in system" 
in this case are so large that meaningful results 
cannot be observed from such a table. In spite of 
the fact that we made several executions of these 
models with different random number sequences, we 
could discern no easily identifiable trends such 
as the one present in the FCFS case. More sophis- 
ticated statistical methods need to be used in both 
the simulation and analysis of these results. 

The SMF discipline is clearly the cause for the 
large variations. To see why, note that under the 
SMF discipline the characteristics of a later ar- 
rival can change the time in queue of a previous 
arrival. This is because the later arrival may pos- 
sibly be inserted ahead of previous arrivals in the 
memory queue, thus increasing in a random way the 
time in queue of all those previous arrivals. 

IV. CONCLUSIONS. 

We have argued for more analytic study of mo- 
dels of memory scheduling and have presented some 
models which we feel are realistic and still should 
be analytically solvable. While our current results 
are of the simulation type, we hope to place our ob- 
servations on a more rigorous foundation. 

Further simulation work could be done in com- 

bining the memory-residence-time and processor-shar- 
ing models into a single model which would be more 
representative of the computational and input-output 
activities which a real program performs. This could 
be done by assigning each customer a CPU and a mem- 
ory residence time. Then the CPU scheduling could 
be modeled as in the processor sharing model, and 
a program could not leave memory until both its CPU 
time and memory residence time were completed. The 
time spent waiting for memory residence time to ex- 
pire after computing requirements had been satisfied 
could be interpreted as I/O time. 

Thus, in addition to our analytic analysis of 
the present models, we may be able to develop an in- 
expensive simulation model of real-life program be- 
havior in a swapping system. We are currently con- 
sidering the latter approach to determine how ac- 
curate such models might be. 

REFERENCES 

i. Knuth, D.C. The Art of Computer Programming, 
Vol.l., Addison-Wesley, Reading, Massachuseuts, 
1968, pp.445-448. 

2. Denning, P.J. "Virtual Memory", Computing Sur- 
veys,lO,2 (Sept.1970), pp.153-189. 

3. Ross, S.M. Applied Probability Models wit h Opti- 
mization Applications, Holden-Day, San Francisco, 
California, 1970, pp.32-35. 

4. Coffman, E.G., and Denning, P.J. Operating Sys- 
tems Theory, Prentice-Hall, Englewood Cliffs, 
N.J., 1973, pp.l14-116. 

APPENDIX 

This appendix describes a simple method of evalu- 
ating N M (The mean number of customers in memory gi- 
ven that the memory queue was non-empty) for the 
memory-residence-time paging model. The definitions 
and notation used here are taken largely from [3]. 

We first need some basic definitions: 

Def. A stochastic process ~(t),t~0} is said to be 
a counting process if N(t) represents the num- 
ber of events which have occurred up to time t. 

Def. A counting process for which the inter-arrival 
times are independent and identically distri- 
buted random variables is called a renewal 
process. 

Thus a Poisson process is a renewal process for 
which the inter-arrival times are exponentially dis- 
tributed. 

Def. If X and Y are random variables with distribu- 
tions F and G respectively, then the distribu- 
tion of the random variable X+Y is given by 
the convolution of F and G, written F'G, and 
defined as: 

(FeG)(t) = ff dF(x)dG(y) =f G(t-x)dF(x). 
x+y~t -~o 
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Def. ing N I values are listed in Table A-i. Let'{N(t),t~0} be a renewal process. Then the 
expected number of events which have occurred 
at time t will he given by m(t) = E{N(t)}. 

We may now state a basic proposition: 

Proposition: Let" {N(t),t_>0} he a renewal process 
with inter-arrival time distribution F(t). 
Then 

m(t) = E Fn(t) 
n=l 

where F n = F*Fn_ 1 and Fi=F. 

Further m(t)K~for all t>0 provided F(0)< I. 

Pf: See [3], pages 32-33. 

This proposition allows us to estimate N . 
Let us suppose we have a core size of i00 blocks 
which is initially empty, customers l,...,n 
will be loaded provided 

n 

E X i <_ i00 , 
i=l 

where X i is the memory size of the ith customer. 
(Here we are neglecting departures since we are in- 
terested in estimating the mean number in memory 
at a given time.) If 

n+l 
E X i > i00 

i=l 

then precisely n customers will fit into memory. 

Now consider a renewal process with inter-ar- 
rival times Xi. If 

n 

E X i < i00 
i=l 

and 
n+l 
E X i > i00 

i=l 

then precisely n events occur before time i00. 
Thus the number of customers which fit into memory 
of size I00 and the number of events which occur 
before time I00 are the same. 

Therefore Nm when core size is i00 is given 
by m(100). Similarly we may estimate Nm when core 
size is 200 .... ,i000 by calculating m(200) ..... m( 
m(lO00). 

But this would be of little use unless Fi,F2, 
...,Fn,...could be calculated. Fortunately if Xi 
are integer valued random variables (and we have 
assumed that they are), then only Fi,F2,...,Fk are 
required for calculation of m(k) since all other 
terms will be zero. Actually convergence of the 
series for m(t) is much faster than this, and m(k) 
can be evaluated by a simple computer program. 
These values (for the case where X i are uniformly 
distributed on 1 to i00) along with the correspond- 

Table A-i. 

i00 
2O0 

[300 
' 400 

500 
600 
700 
800 
900 

1000 

m(k) 

1.70 
3.64 
5.61 
7.60 
9.57 

11.60 
13.50 
15.50 
17.50 
19.50 

M I 

1.70 
3.60 
5.47 
7.40 
9.35 

11.36 
13.29 
15.14 
17.11 
19.07 

222 


