
MODELS OF MEMORY SCHEDULING

A. K. Agrawala
R. M. Bryant

University of Maryland

Queueing theoretic models of single and multi-processor computer systems have received wide
attention in the computer science literature. Few of these models consider the effect of finite
memory size of a machine and its impact on the memory scheduling problem. In an effort to for-
mulate an analytical model for memory scheduling we propose four simple models and ex~nine their
characteristics using simulation. In this paper, we discuss some interesting results of these
simulations.

Key Words and Phrases: multiprogramming, scheduling, memory fragmentation, swapping systems,
dynamic memory allocation, first-fit, performance evaluation, computer
system simulation, analytical models.

CR Categories: 4.3.2, 8.1

I. INTRODUCTION.

Computer science literature contains a large
number of reports on analytical and simulation mo-
dels of computer systems. Queueing theory has of-
ten been used in formulating these models. As a
system usually has one or a few processors, a queue-
ing theoretic model with a single server or a few
servers can be used. Various realistic schedul-
ing disciplines may then be studied.

For any program to execute in a system, in ad-
dition to access to the CPU it also requires access
to memory. Therefore, the operating system has to
handle memory scheduling along with the scheduling
of the processors. Unlike the CPU scheduling in
which a CPU may or may not be allocated to a pro-
gram, a number of programs may be occupying the
main memory of the system. This situation is not
easily solvable by queueing theoretic methods.

The question of memory scheduling has re-
ceived little attention in the literature. Such at-
tention has been focused on the analysis of paging
systems for which a number of models and disciplines
have been proposed and analyzed. Most of these mo-
dels concentrate on the time varying memory require-
ments of a program rather than the question of over-
all memory scheduling.

Currently the best results in this area are the
so-called fifty percent rule due to Knuth [i] and

This research was supported in part by the Mathema-
tics and Information Sciences Directorate, Air Force
Office of Scientific Research, Air Force Systems
Command, USAF, under grant AFOSR 71-1982, and in
part by the Control and Automation Branch, Engineer-
ing Division, National Science Foundation, under
grant GK-41602.

some inequalities involvingunused memory and com-
paction [2]. But these results only provide a
qualitative analysis.

This paper reports on initial work aimed at
determining qualitative and quantitative guidelines
for memory scheduling disciplines in multiprogrammed
systems. At first, we are considering a swapping
environment in which a whole program has to be in
core before its execution can he attempted.

It is interesting to note that in spite of a
significant interest in paging systems in academic
and research communities, a large number of systems
in use today do not support paging. Several manu-
facturers offer only swapping machines, and in some
machines, the operating system uses paging only to
avoid external fragmentation while still operating
under the swapping philosophy.

Our research effort is motivated by three types
of questions:

(i) System Design. Given a workload charac-
terization in the sense of arrival rates, memory
requirements, I/O and CPU time distributions, ap-
proximately how much memory should a system have
to process the workload?

(2) Memory Scheduling. In a heavily loaded
system in which several users are competing for
available core, which one should be loaded next?
Are there general guiding rules such as shortest-
processing-time first for the CPU scheduling models,
which can significantly improve waiting time dis-
tributions and throughput?

(3) Quantitative Analysis of Placement Strate-
gies. In a swapping system, determining where to
place the next arrival in memory can be a very com-

217

plex task. Heuristics are usually employed to help
solve the problem. Quantitatively how much better
are such strategies than first fit, which Knuth en-
dorses [i].

Our procedure for answering these questions
consists of three basic steps. We first propose mo-
dels of the simplest types of multiprogrammed sys-
tems in which memory size plays a significant role.
Since even the simplest of such models are analyti-
cally difficult to solve, our second step consists
of creating simulations of those models. From the
simulation results, we hope to determine approxi-
mate answers to the questions above. The third step
is to provide rigorous justification of the approxi-
mate results by formulating and solving suitable
analytical models.

In this paper, the models used in the study
are described in Section II. The simulation of
these models led to a number of interesting results
which are presented in Section III.

II. THE BASIC MODELS

In this study we considered four simple models
of memory scheduling. In these models, a program
once loaded remains in core until the program is
terminated. In each model, the arrival process is
assumed to be a Poisson process. At arrival time,
each customer (program) is assigned a core size
and CPU time. The core size is an integer distri-
buted uniformly between i and i00 blocks. The CPU
time is exponentially distributed and considered
independent of memory size. (In some simulation
runs we have also considered the effects of memory
size and CPU time dependence.) If there is no mem-
ory queue and there is room in memory, the customer
is loaded immediately. Otherwise, the customer is
placed into the memory queue on either first-come-
first-served basis or smallest-memory-size-first
basis, depending on the scheduling discipline be-
ing used.

The first two models considered here are es-
sentially models of I/O bound workloads. We assume
there is no competition for the CPU, and the CPU
time mentioned above is regarded as merely a mem-
ory residence time. As soon as a program's memory
residence time has expired it is unloaded regard-
less of how many other programs are in core. The
difference between these two models is that in the
first model we do not consider memory fragmentation
while in the second one we do. Therefore the first
model is a model of a paged swapping environment
in which a program may be loaded anywhere in the
memory while the second is a model of a swapping
machine with a single base register. A program re-
quires contiguous space for loading in the second
model. The placement strategy for the second model
is first-flt starting at the bottom end of memory.

The third and fourth models which we consider
are models of computation bound workloads. In these
models, competition for use of the CPU determines
how long each customer remains in memory. The CPU
scheduling discipline is the processor sharing dis-
cipline described in [4]. This is the idealized dis-
cipline which results when the quantum of a round
robin type system tends toward zero. We assume that
sharing of the CPU only occurs among those programs

loaded into memory. Thus, if at a given point in
time there are n programs loaded and the remaining
CPU time of a given program is c, then that program
is scheduled to depart in nc time units. A new ar-
rival (or departure) can change the value of n and
cause rescheduling of the departure times of all
currently loaded programs. The third model is
again a model of a paged swapping type system, while
the fourth model simulates memory fragmentation.

To distinguish between the two classes of mo-
dels we have described, we will call the first two
"memory-resldence-tlme models" and the latter two
"processor-sharing models".

The loading time of the programs is not con-
sidered explicitly in these models. At first
glance, this seems to mean that we cannot model a
round robin type system. The round robin schedules
can be incorporated by artificially increasing the
nember of arrivals and decreasing the CPU time as-
signed to each arrival. Thus, if a flve-second
Job of 50K words is to arrive in the round robin
system, and the time slice is one second; we would
model this single arrival as five 50K Jobs of one
second each. Neglecting swapping time, an observer
stationed at the CPU cannot tell the difference be-
tween these two situations unless he is allowed to
tag specific jobs.

III. SIMULATION RESULTS.

A. The Memory-Residence-Time Models.

The memory-resldence-tlme models described
above were executed with main memory sizes of i00,
200,... ,i000 blocks. Each run was executed twice,
once under the flrst-come-flrst-served discipline
and once with the memory queue ordered by smallest
memory size first. The arrival rate was chosen to
be the quantity main memory size divided by fifty
since fifty is the mean memory size of arriving
customers. The service rate was chosen as unity.
(These rates were chosen to guarantee a uniformly
heavy overload on each of the models.)

A variety of statistics were collected during
each simulation run. Tables I and II illustrate
the most interesting of the statistics which we
gathered. The quantities listed are:

N I The mean value of the time integral of
the number of customers in memory at any
given time.

N M The mean number in memory given that the
memory queue was non-empty.

M I The mean value of the time integral of
the number of blocks of memory in use at
any given time.

M Mean memory utilization calculated as the u
percentage M I is of available core.

The first columns of each table llst the values
obtained under the FCFS discipline while the later
columns give corresponding values for smallest-
memory-size first (SMF).

218

Table I. Memory-residence-time paging model.

FCFS
Core N N M I
Size I M

M u

I00 1.39 1.70 71.2 71.2%
200 3.22 3.60 164.4 82.2
300 5.14 5.47 265.2 88.4
400 7.09 7.40 364.3 91.7
500 9.10 i 9.35 467.0 93.4
600 ii.i0 11.36 565.0 i 94.2
700 13.00 13.29 664.1 i 94.9
800 14.94 15.14 673.9 95.5
900 16.90 i 17.11 866.9 96.3

I000 18.90 19.07 966.8 96.7

SMF
N N
I M

1.46 1.85
3.40 3.89
5.61 6.14
7.71 8.15
9.84 10.24

i0.98 ii. 30
14.12 14.48
15.33 15.70
17.15 17.56
18.71 18.96

M I

71.2
164.6
265.2
365.7
466.5
545.9
665.3
763.3
863.6
965.2

M u

71.2 %
82.3
88.4
91.4
93.3
94.5
95.0
95.4
95.9
96.5

Table II. Memory-residence-time fragmentation model.

Core N
Size I

i00 1.33
200 2.67
300 4.30
400 5.88
500 7.47
600 9.12
700 10.83
800 12.68
900 13.92

1000 15.80

FCFS

1.55 66.9
2,68 136.6
4.32 220.4
5.88 ~ 303.8
7.49 383.5
9.20 466.8

10.90 556.7
12.79 651.2
13.94 712.6
15.80 , 808.1

M u N I

66.9%
68.3
73.4
78.5
76.7
77.8
79.5
81.4
79.0
80.8

The first interesting feature of Tables I and II
is that they illustrate the magnitude of wasted mem-
ory in a swapping system. While it is true that our
model of memory size distribution is very simple,
it is still startling to see from ten to thirty per-
cent of memory unused depending on the model and to-
tal amount of core available. (Recall that Che ar-
rival rates are high enough to cause transient be-
havior of the systemso no more memory will be used
regardless of how high the arrival rate becomes.)

The second interesting data presented in Table
I is the magnitude of the difference between N I and
N M. Since the system is heavily loaded one would
expect closer agreement between these two numbers.
Now N M can be evaluated by a simple application of
a basic renewal formula (See Appendix for details).
The values which result from this calculation agree
closely with those of column two of Table I.

The values for N I are not checked so easily.
Since no analytic method seems available we may
take the following indirect approach. If the
values for N I for core size=100 are correct then
each arrival sees 1.39 identical exponential ser-
vers in operation. Thus, while an arrival rate of
2.00 makes the system transient, an arrival rate of
1.30 or so should result in a stable system and
1.39 should be the borderline between stable and
transient behavior. While our simulation results
in this area are very tentative, this does seem to
be the case.

The final feature of Tables I and II which
merits attention is the difference between the

1.35
2.64
4.23
6.30
7.93
9.64

11.31
13.10
15.20
16.66

SMF

1.64
2.76
4.30
6.46
8.09
9.77

11.49
13.24
15.42
16.89

M I

66.2
138.6
217.3
305.2
382.0
462.6
543.7
631.5
725.8
806.4

M u

66.2%
69.3
72.4
76.3
76.4
77.1
77.7
78.9
80.6
80.6

FCFS and SMF disciplines. In most cases (except
for random fluctuations) the SMF discipline serves
customers at a higher rate than does the FCFS dis-
cipline. The slight differences in service rates
can cause significant difference in mean waiting
times between the models. It can be argued, of
course, that because we are testing the models in
situations which cause the memory queue length to
grow with time, that the SMF discipline deposits
large executions at the end of the queue and thus
alters the memory size distribution at the CPU. An
examination of the mean memory size as observed at
departure time shows that the effect of this situa-
tion is minimal in the executions we have conducted.
The effect would undoubtedly be more important in
longer executions.

Table III gives some statistics from the frag-
mentation model under the FCFS discipline which in-
dicate the relationships between the amount of free
core and the size of the largest hole available at
certain times. The statistics listed are the fol-
lowing:

M A

F A

H A

MAF

is the mean memory available as recorded
at arrival time.

is the mean number of holes as recorded
at arrival time.

is the mean size of the largest h01e
available as recorded at arrival time.

is the mean amount of memory available
at fragmentation failure time. (Frag-

219

mentation failure occurs whenever there
is enough free core available to load the
next customer, but the customer cannot be
loaded because the free core is frag-
mented.)

MRF is the mean amount of core requested by
the next customer at fragmentation fail-
ure time.

is the mean size of the largest hole a-
vailable at fragmentation failure time.

F F is the mean number of holes which existed
at fragmentation failure time.

Table III.
del under FCFS discipline.

Memory-residence-time fragmentation mo-

Core M A F A H A MAF
Size

i00 33.1 1.19 30.1 75.6
200 63.4 1.91 43.3 94.6
300 79.6 2.68 45.1 105.3
400 96.2 3.25 49.2 118.6
500 116.5 4.41 50.1 128.7
600 133.2 4.84 53.4 143.3
700 143.3 5.73 50.9 153.2
800 148.8 6.64 49.5 154.4
900 187.4 7.43 55.1 188.9
[000 191.9 7.78 55.4 195.2

MRF H F F F

66.8 52.8 2.01
71.9 57.2 2.32
70.9 55.6 2.99
74.0 57.4 3.52
74.4 54.2 4.57
75.5 56.4 5.00
75.1 53.7 5.86
74.9 51.3 6.70
78.0 56.1 7.45
75.6 54.5 7.89

Several interesting observations can be made
about the data presented in Table III. First of
all, the values of HA, MR~ , and H F are relatively
independent of memory sizE. Also the values for
H A and H F are near the mean (50.0) of the memory
size distributions of arriving customers. This
suggests that the largest hole available occurs
where a single previous customer has departed, and
that adjacent regions are rarely freed simultaneous-
ly. Finally the values for F A and F F are nearly
the same for large core sizes which is surprising
because F F is observed only at fragmentation fail-
ure time. This suggests that fragmentation failure
is not a very special occurrence with regard to
the number of holes which exist at any given time.

Although the data is not presented in Table
III, an interesting feature of the values for F A
and F F is that they appear to be normally distri-
buted with mean values as given in the table and
with standard deviations of 1.5. This observa-
tion becomes more pronounced above core sizes of
400.

When we observed the validity of the fifty
percent rule (i.e. the number of holes is approxi-
mately one-half the number of active segments), an
interesting variant of this rule was also discovered
The mean hole size was slightly less than one-half
the mean value of the largest hole size. All mean
values in this case are those as seen by arrivals.
This data is summarized in Table IV. (Since these
executions took longer to run, only a few core
sizes were tested.)

A final set of executions was run to test the
effect of correlation between a program's memory
size and CPU time. In these executions the memory

Table IV. Mean largest hole size (H A) and mean hole
size (H M) as observed at arrival time in the memory-
residence-time fragmentation model.

Core Size

FCFS

HA

600 53.4
700 50.8
800 49.5
900 54.3

i000 55.4

II SMF

H M HA

27.5 51.8
24.9 54.5
22.4 53.8
24.9 54.2
24.7 55.0

HM

25.8
25.0
25.1
22.5
22.8

size distribution was unchanged but the CPU time
distribution was changed so that larger programs
were assigned longer CPU times. This was done as
follows: If the memory size selected was m, then
the CPU time was selected from an exponential dis-
tribution with mean m/50. Thus a program with the
mean memory size would get an exponentially distri-
buted CPU time chosen from a distribution with mean
1.0. Larger programs would have larger mean CPU
times and smaller programs would have shorter mean
CPU times.

The results of these executions for a selection
of core sizes was given in Table V. A quick com-
parison of Table V with Tables I and II shows that
the N I values are markedly smaller in Table V. The
M I values are relatively the same, although for the
fragmentation model more core is in use than pre-
viously was the case. Returning to Table V we note
that the SMF discipline is now less efficient than
FCFS in the sense that fewer people are now in ser-
vice. Clearly, the problem of optimally ordering
the memory queue does not have a simple solution.

Table V. Memory usage statistics for the memory-
residence time models with CPU time and memory size
dependence.

Core
Size

500
800

i000

500
800

i000

FCFS I SMF

N i I M I I M u N I M I Mu

Pagin~ Model
7.13 464.0 194.8 % 6.99 463.9 92.8 %

11.70 761.7 195"2 11.58 764.5 95.5
14.82 965.6 96.6 14.62 964.3 96.4

FraKmentation Model
I 6.22 400.8 80.1% 6.07 399.3 79.8 %
i0.i0 652.6 81.5 9.94 652.0 81.5
12.79 823.8 82.4 12.63 833.3 83.3

B. The Pr0cessor-Sharing Models.

The processor-sharing models were executed
with main memory sizes of 100,200 ,i000 blocks.
Each memory size was run twice, once under the FCFS
discipline and once under the SMF discipline. In
this case, however, we chose an arrival rate of
0.999999 and a service rate of 1.0. This choice
was made because the statistics of interest in this
case were mean time in queue and mean time in system.
But these numbers are finite only when the queueing
system is stable. Due to our exponential inter-
arrival and service time distributions it follows
that the processor-sharing model is stable when the

220

corresponding M/M/i queueing system is stable. Thus,
we must choose an arrival rate less than the ser-
vice rate. In order to make the results interest-
ing, we have chosen the rates as close together as
possible.

Table Vl summarizes the statistics for the two
processor sharing models under the FCFS discipline.
The results are intuitive and not very surprising.
As main memory size is increased, more programs can
share the CPU at any given time so that the mean
time in queue decreases. On the other hand, it takes
longer for a program to obtain its CPU time require-
ment and depart, this being demonstrated by the in-
creasing values for mean time in system.

Table Vl. Mean time in queue (V) and mean time in
system (W) for the processor-sharing models under
FCFS discipline.

Core
Size

100
200
300
400
500
600
700
800
900

i000

PaRing

V

12.16
10.51
9.72
9.06
7.18
6.51
5.95
3.97
3.09
3.15

Model

W

13.92
13.95
14.74
15.64
15.14
15.93
16.72
16.32
16.70
18.36

Fragmentation
Model

V W

12.26 13.93
10.96 13.97
10.30 14.65
9.93 15.69
8.25 15.14
6.68 15.89
7.49 16.74
5.63 16.41
4.55 16.55
4.74 18.41

We will not present a similar table for the
processor-sharing models under the SMF discipline.
The reason is that the sample variances of the
quantities "time in queue" and "time in system"
in this case are so large that meaningful results
cannot be observed from such a table. In spite of
the fact that we made several executions of these
models with different random number sequences, we
could discern no easily identifiable trends such
as the one present in the FCFS case. More sophis-
ticated statistical methods need to be used in both
the simulation and analysis of these results.

The SMF discipline is clearly the cause for the
large variations. To see why, note that under the
SMF discipline the characteristics of a later ar-
rival can change the time in queue of a previous
arrival. This is because the later arrival may pos-
sibly be inserted ahead of previous arrivals in the
memory queue, thus increasing in a random way the
time in queue of all those previous arrivals.

IV. CONCLUSIONS.

We have argued for more analytic study of mo-
dels of memory scheduling and have presented some
models which we feel are realistic and still should
be analytically solvable. While our current results
are of the simulation type, we hope to place our ob-
servations on a more rigorous foundation.

Further simulation work could be done in com-

bining the memory-residence-time and processor-shar-
ing models into a single model which would be more
representative of the computational and input-output
activities which a real program performs. This could
be done by assigning each customer a CPU and a mem-
ory residence time. Then the CPU scheduling could
be modeled as in the processor sharing model, and
a program could not leave memory until both its CPU
time and memory residence time were completed. The
time spent waiting for memory residence time to ex-
pire after computing requirements had been satisfied
could be interpreted as I/O time.

Thus, in addition to our analytic analysis of
the present models, we may be able to develop an in-
expensive simulation model of real-life program be-
havior in a swapping system. We are currently con-
sidering the latter approach to determine how ac-
curate such models might be.

REFERENCES

i. Knuth, D.C. The Art of Computer Programming,
Vol.l., Addison-Wesley, Reading, Massachuseuts,
1968, pp.445-448.

2. Denning, P.J. "Virtual Memory", Computing Sur-
veys,lO,2 (Sept.1970), pp.153-189.

3. Ross, S.M. Applied Probability Models wit h Opti-
mization Applications, Holden-Day, San Francisco,
California, 1970, pp.32-35.

4. Coffman, E.G., and Denning, P.J. Operating Sys-
tems Theory, Prentice-Hall, Englewood Cliffs,
N.J., 1973, pp.l14-116.

APPENDIX

This appendix describes a simple method of evalu-
ating N M (The mean number of customers in memory gi-
ven that the memory queue was non-empty) for the
memory-residence-time paging model. The definitions
and notation used here are taken largely from [3].

We first need some basic definitions:

Def. A stochastic process ~(t),t~0} is said to be
a counting process if N(t) represents the num-
ber of events which have occurred up to time t.

Def. A counting process for which the inter-arrival
times are independent and identically distri-
buted random variables is called a renewal
process.

Thus a Poisson process is a renewal process for
which the inter-arrival times are exponentially dis-
tributed.

Def. If X and Y are random variables with distribu-
tions F and G respectively, then the distribu-
tion of the random variable X+Y is given by
the convolution of F and G, written F'G, and
defined as:

(FeG)(t) = ff dF(x)dG(y) =f G(t-x)dF(x).
x+y~t -~o

221

Def. ing N I values are listed in Table A-i. Let'{N(t),t~0} be a renewal process. Then the
expected number of events which have occurred
at time t will he given by m(t) = E{N(t)}.

We may now state a basic proposition:

Proposition: Let" {N(t),t_>0} he a renewal process
with inter-arrival time distribution F(t).
Then

m(t) = E Fn(t)
n=l

where F n = F*Fn_ 1 and Fi=F.

Further m(t)K~for all t>0 provided F(0)< I.

Pf: See [3], pages 32-33.

This proposition allows us to estimate N .
Let us suppose we have a core size of i00 blocks
which is initially empty, customers l,...,n
will be loaded provided

n

E X i <_ i00 ,
i=l

where X i is the memory size of the ith customer.
(Here we are neglecting departures since we are in-
terested in estimating the mean number in memory
at a given time.) If

n+l
E X i > i00

i=l

then precisely n customers will fit into memory.

Now consider a renewal process with inter-ar-
rival times Xi. If

n

E X i < i00
i=l

and
n+l
E X i > i00

i=l

then precisely n events occur before time i00.
Thus the number of customers which fit into memory
of size I00 and the number of events which occur
before time I00 are the same.

Therefore Nm when core size is i00 is given
by m(100). Similarly we may estimate Nm when core
size is 200 ,i000 by calculating m(200) m(
m(lO00).

But this would be of little use unless Fi,F2,
...,Fn,...could be calculated. Fortunately if Xi
are integer valued random variables (and we have
assumed that they are), then only Fi,F2,...,Fk are
required for calculation of m(k) since all other
terms will be zero. Actually convergence of the
series for m(t) is much faster than this, and m(k)
can be evaluated by a simple computer program.
These values (for the case where X i are uniformly
distributed on 1 to i00) along with the correspond-

Table A-i.

i00
2O0

[300
' 400

500
600
700
800
900

1000

m(k)

1.70
3.64
5.61
7.60
9.57

11.60
13.50
15.50
17.50
19.50

M I

1.70
3.60
5.47
7.40
9.35

11.36
13.29
15.14
17.11
19.07

222

