
Roosta, Foundations of
Programming Languages

Foundations of
Programming Languages
Seyed H. Roosta

Chapter Four
Syntax Specification

Formal specification of a
programming language

Help language comprehension
Supports language standardization
Guides language design
Aids compiler and language system
writing
Supports program correctness
verification
Models software specification

The only restriction on a language is
that each string must be finite length
and must contain characters chosen
from some fixed finite alphabet of
symbols

Ex:
n If a<b then x else y fi.
n Keyword: if,fi,else,then
n Symbols {a,b,x,y}

Any programming language description
can be classified
n Syntax– formation of phrases
n Semantics– meaning of phrases
n Pragmatics– practical use of phrases

A programming language definition
enable us to determine whether the
program is valid and understand its
underlying meaning

Syntax : similar to the grammer of
natural language
semantics: interaction
Pragmatics: translator

Mechanism describe the design
and implementation of
programming languages

Regular expressions
Formal grammars
Attribute grammars

Regular expression

Invented by Stephen Kleene 1950
The alphabet of the language is a finite
set of symbols athat are assembled to
form the strings or sentences of the
language

Regular expression

Alternation (a+b)
Concatenation (a*b)
Kleene closure a*
Positive closure a+

Empty
Atom {a}

ex

L1L2={01,1001} and L2={11,00,1}
L1L2={0111,0100,011,10011,100100,1
0011}
L1+L2={01,1001,11,00,1}

ex

{00}
(0+1)*
(0+1)*00(0+1)*
(1+10)*
0*1*2
0+1+2+

11*22*

Formal grammars

Each programming language has a
vocabulary of symbols and rules for
how these symbols may be put together
to form phrases.

Formal Grammars

while expression do command
if (expression)
n Statement1

else
n statement2

SYNTAX SPECIFICATION

A grammar defines the set of all
possible phases that constitute
programs in the subject language
together with their syntactic structures.

The grammar of a programming language
consists of four components
n A set symbols known as terminal symbols that are

the atomic symbols in the language.
n A set of nonterminal symbols known as variable

symbols
n A set of rules known as production rules that are

used to define the formation of the constructs.
n A variable symbol, or distinguished symbol, called

start symbol.

Each string in the derivation is called a
sentential form.
A language is formally defined as the set of
sentential forms wherein each form consists
solely of terminal symbols that can be derived
from the initial symbol of a grammar.
The derivation continues until the sentential
form contain no variable.

C programming language contains more
than 150 rules.

p.112

The length of a string is the number of
symbols in it. The empty string
denoted ,has length 0
The notation Sn is used for the set od
strings over S with length n(n>0)
The notation S* is used for the set of all
finite strings over S of any length,or

Classification of grammars

Type 0 grammar
Type 1 Grammar
Type 2 Grammar
Type 3 Grammar

Type 0 grammar

Unrestricted grammar
Recursively enumerable
Phrase structured

Exmaple
A unrestricted grammar for describing strnig aaaa can be defined as
G=(V,T,P,S) where
V={S,A,B,C,D,E}
T={a, }
S={S}
The production rules are as follows
1. S=> ACaB
2. Ca=> aaC
3.CB=>DB
4.CB=>E
aD=>Da
AD=>AC
aE=>Ea
AE=>

Type 1 Grammar

Context-sensitive grammar
A Thing => Thing a b.

ex

G=(V,T,P,S)
V={Sentence,Thing,Other}
T={a,b,c}
S={Sentence}
P:
n Sentence =>a b c
n Sentence => a Thing b c
n Thing b => b thing
n Thing c => Other b c c
n a Other a a
n a Other a a Thing
n b Other => Other b

a a b b c c ?

Type 2 Grammar

Context-free grammar
n Expression => Value + Expression

Backus-Naur Form(BNF)
Chomsky’s type 2 garmmar

<expression> ::=<value>+<expression>
Left side of a production rule is a single
variable symbol.
Right side is a combination of ternimal and
variable symbols

ex

G=(V,T,P,S)
V={Real-Number,Integer-Part,Fraction,Digit}
T={0,1,2,3,4,5,6,7,8,9}
S={Real-Number}
P:
n Real-Number=>Integer-Part.Fraction
n Ineger-Part=>Digit
n Integer-Part=>Integer-Part Digit
n Fraction=>Digit
n Fraction=>Digit Fraction
n Digit=>0|1|2|3|4|5|6|7|8|9

ex

125.78

ex

Grammar for a calculator language in
BNF notation

Figure 4.1 Tree representation for 12 + 25 =

© 2003 Brooks/Cole Publishing / Thomson Learning™

Ex:

S=>0S|1A
A=>0S|1B
B=>0S|1C|1
C=>1C|0C|1|0
011101011?

Type3 grammar

Regular grammar
Restrictive grammar
Only one terminal or one terminal and
one variable on the right side of the
production rules
Right-linear/left –linear grammar

Right-linear grammar
n A=>xB or A=>x

Left-linear grammar
n A=>Bx or A=>x

A complete grammar is a set of production
rules that together define a hierarchy of
constructs leading to a synatactic category,
which for a programming language is called a
program.
Ex:
n Thing =>a Thing
n Thing =>Thing a

SYNTAX Tree

The syntax of a programming language
is commonly divided into two parts:
n The lexical syntax that describes the

smallest units with significance called token,
n the phrase-structure syntax that explains

how the token are arranged into programs

Grammar-oriented compiling technique –
syntax-oriented translation
Lexical analyzer (scanner)
n Convert the stream of input characters to a stream

of tokens that becomes the input to the second
phase of the process

Syntactic analyzer
n Is a combination of a parser and an intermediate

code generator and forms a derivation tree from
the token list based on the syntax definition of the
programming language

Basic approaches:
n Top-down parsers
n Bottom-up parsers

Figure 4.3 Program translation by scanner and parser

© 2003 Brooks/Cole Publishing / Thomson Learning™

© 2003 Brooks/Cole Publishing / Thomson Learning™

Figure 4.4 A top-down parse tree for the real number 125.78

Figure 4.5 A bottom-up parse tree for the real number 125.78

© 2003 Brooks/Cole Publishing / Thomson Learning™

Well-known UNIX tools
n LEX
n YACC

Derivation tree has the following properties
n Each terminal node is labeled with a terminal

symbol
n Each internal node is labeled with a variable

symbol
n The label of an internal node is the left side of the

production rule, and the labels of the children of
the node, from left to right, and the right side of
that production rule

n The root of the tree is labeled with the start
symbol

If the phrase can be successfully
represented, it belongs to the language
Determining whether the phrase is valid
is called recognition or representation

Ambiguity

A grammar that represents a phrase
associated with its language in two ore
more distinct derivation trees is known
as a syntactically ambiguous grammar.

Ex:

Assignment =>identifier =Expression
Expression => expression +expression
Expression => expression+expression
Expression=>identifier
Identifier=> x|y|z

Figure 4.6 Two derivation
trees for the assignment
statement x = x + y * z

© 2003 Brooks/Cole Publishing / Thomson Learning™

Deciding whether grammar is
ambiguous is a theoretically difficult
task
In practice , ambiguities can be avoided

Assignment => identifier=expression
Expression => element +expression
Expression => element* expression
Expression => element
Element =>identifier
Identifier=>x|y|z

BNF Variations

a grammar written in BNF may be
expressed in many other notation
Two popular notational variations of
BNF are the Extended BNF grammar
and Syntax Diagram

extended BNF grammar

Doesn’t enhance the descriptive
powerof BNF
Merely increases the readability and
writability of the production rules

Recommand notation

Braces {}
n represent a sequence of zero or more

instance of elements

Brackets[]
n Used to represent an optional element

Parenthese
n Used to represent a group of elements

Figure 4.7 Revision of the grammar
for the assignment x = x + y * z

© 2003 Brooks/Cole Publishing / Thomson Learning™

Figure 4.8 Introducing a new variable for
the assignment statement x = x + y * z

© 2003 Brooks/Cole Publishing / Thomson Learning™

Syntax diagram

1970, definition of pascal programming
language

Figure 4.10 Syntax Diagram representation for
the Real-Number grammar

© 2003 Brooks/Cole Publishing / Thomson Learning™

Attribute grammars

1968 Knuth
Are powerful and elegant mechanisms that
formalize both the context-free and context-
sensitive aspects of a language syntax
Ex:
n Used to determine whether a variable has been

declared and whether the use of the variable is
consistent with its declaration

Figure 4.11 (a) An attributed syntax
tree expressing the value attribute.

© 2003 Brooks/Cole Publishing / Thomson Learning™

Figure 4.11 (b) An attributed syntax tree
expressing the actual-type attribute

© 2003 Brooks/Cole Publishing / Thomson Learning™

Figure 4.12 Syntax tree for string aaabbb

© 2003 Brooks/Cole Publishing / Thomson Learning™

Figure 4.13 Syntax tree for string aabbb

© 2003 Brooks/Cole Publishing / Thomson Learning™

Figure 4.14 Attributed syntax tree for the string aaabbb

© 2003 Brooks/Cole Publishing / Thomson Learning™

