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Abstract

Multi-view stereo algorithms typically rely on same-
exposure images as inputs due to the brightness constancy
assumption. While state-of-the-art depth results are excel-
lent, they do not produce high-dynamic range textures re-
quired for high-quality view reconstruction. In this paper,
we propose a technique that adapts multi-view stereo for
different exposure inputs to simultaneously recover reliable
dense depth and high dynamic range textures. In our tech-
nique, we use an exposure-invariant similarity statistic to
establish correspondences, through which we robustly ex-
tract the camera radiometric response function and the im-
age exposures. This enables us to then convert all images
to radiance space and selectively use the radiance data for
dense depth and high dynamic range texture recovery. We
show results for synthetic and real scenes.

1. Introduction
Most people capture images with their cameras set to

auto-exposure—and without the use of tripods. Developing
vision algorithms that can cope with and even exploit the
properties of such differently exposed images is therefore
an important practical problem. In this paper we address
the problem of computing stereo depth maps and high dy-
namic range (HDR) textures from images taken at different
viewpoints and with different exposures, and its application
for high-quality view synthesis.

Multi-view stereo algorithms traditionally make use of
the brightness constancy assumption in computing corre-
spondences (with notable exceptions including [2, 10, 17,
7]). Similarly, most methods for computing HDR images
from regular photographs assume a (nearly) stationary cam-
era and a static scene [4, 13, 14]. An approach to pro-
duce HDR video from interleaved long and short exposure
frames was described in [9], but it relies on registration
techniques that would not work well in the presence of large
motion.

In addition to extracting depth and HDR texture, we also

Figure 1. Overview of multi-view multi-exposure stereo.

estimate the radiometric camera response curve and the ex-
posure settings of the camera1. We only assume the camera
intrinsic and extrinsic parameters are known.

2. Overview of our approach
The flow of our approach is depicted in Figure 1. The

inputs are a set of images (different exposures) and their
corresponding camera matrices. The final output is a depth
map and HDR texture for each view, the camera response
function, and the relative exposure values. First, we apply
multi-view stereo using an exposure invariant feature detec-
tor similarity statistic to establish reliable correspondences.
We use these correspondences to compute the camera re-
sponse and relative exposures, after which all image inten-
sities are converted to radiance values. We again run multi-
view stereo, this time in radiance space, to extract dense
depth maps (one per viewpoint).

Our main contribution is the merging of radiometric cal-
ibration techniques with a multi-view stereo algorithm to
handle multiple exposures and output useful dense depth
and HDR textures. In doing so, we have addressed some
key issues that have not been looked at carefully in the past.
First, we show that normalized cross correlation is invariant
to exposure changes that can be characterized linearly or by
gamma (or exponential) functions. In addition, we intro-
duce a weighting scheme to robustly extract the radiometric

1The EXIF tags, if available, should contain the exposure values, but
they are only estimates.
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curve. We also show that applying multi-view stereo on a
common radiance space yields better depth estimates. Once
we have computed a set of view-dependent depth maps and
radiometrically calibrated the camera, we can then view in-
terpolate in both (3D) space and exposure.

3. Previous work
Stereo is one of the most studied areas in computer vi-

sion (an excellent survey on 2-view stereo is given in [16]).
In this section, we limit our discussion to approaches that
extract HDR through motion estimation or stereo. The ap-
proaches closest to ours are those of Kang et al. [9] and Kim
and Pollefeys [10].

In Kang et al.’s system [9], alternating long and short
exposures were captured by their camera system. They pre-
calibrate their camera so that both the exposure values and
radiometric response curve are known a priori. To compute
HDR for a given frame, its immediate neighbors are regis-
tered to it. Registration is facilitated by synthetically map-
ping lower exposures to higher exposures to more closely
match intensity distributions. Artifacts are highly visible in
areas of large motions (where registration fails). There are
two key differences with our method: we do not precali-
brate the camera, and we use all available views. The lat-
ter is possible for us because we assume static scenes, and
Kang et al. necessarily limit the search because both camera
and scene can be dynamic.

Kim and Pollefeys construct a 3D model from a video
sequence under auto-gain [10]. They use correspondences
across the input frames with varying gain to compute the
camera response function and relative exposure ratios be-
tween frames, which are then used to remap color intensi-
ties in the final textured model. We build on their technique
to estimate intensity correspondences and response curves,
but our method is different in the following ways: we use all
possible pairs of input images to obtain intensity correspon-
dences, not just pairs of images that are consecutive in the
input sequence; we use a different weighting in the formu-
lation of the weighted least squares problem that accounts
for the fact that the fit is computed in log-space instead of
linear space; we compute view-dependent depth maps; and
finally, in our approach, once we know the camera response
and exposure ratios, we perform matching in radiance space
to obtain better results.

The problem of radiometric calibration from a sequence
of images has been addressed in various approaches [4, 14,
12, 6, 10, 11]. All of these methods use brightness cor-
respondences between images acquired with different ex-
posures to compute the camera response. These brightness
correspondences define a brightness transfer function (BTF)
[6]. For a pair of images (Ii, Ij), the BTF Ti,j(Bi) = Bj

states that a brightness value Bi in image Ii maps to Bj

in Ij . Under reasonable assumptions, T is semi-monotonic,

T (0) = 0 and depending on the exposure ratio ei,j = ej/ei,
T (B) ≤ B if ei,j ≤ 1 or T (B) ≥ B, otherwise. For images
acquired by a static camera, the BTF is typically computed
from the brightness values of collocated pixels. It can also
be computed from the histograms of the images, as shown
by Grossberg and Nayar in [6]. This histogram based tech-
nique can also be applied to a moving camera provided the
scene radiance stays almost constant. Such a constraint re-
stricts the camera movement and is not desirable for our
application. In addition, theoretical limitations on what is
know about the camera response from an image sequence
are enumerated in Grossberg and Nayar [6], who observed
that it is not possible to recover the camera response and ex-
posure ratios simultaneously and unambiguously from the
BTF alone, without further assumptions. Therefore, most
techniques require some knowledge about the exposures. In
the context of our application, we will see later that this am-
biguity will require us to either provide some information
about the exposures or fix a point in the response curve. In
addition, Grossberg and Nayar [15] developed an empirical
model of camera response (EMOR). This model provides
a low dimensional set of basis functions for describing the
space of camera responses, which we use in our approach.

4. Multi-view multi exposure stereo

The inputs to our system are a collection of images
I = {Ik(x, y), k = 0...K} acquired by a camera with un-
known response function f and unknown exposures E =
{e0, e1, ..., eK}, and their corresponding camera matrices
{Pk, k = 0...K}. Our goal is to recover f , exposures E ,
and depth maps dk(x, y), k = 0...K. To achieve our goal,
we combine the multi-view stereo algorithm of Kang and
Szeliski [8] (part of which is based on the Collins’ plane
sweep algorithm [3]) with the robust radiometric calibration
technique of Kim and Pollefeys [10].

We first obtain a dense set of correspondences by run-
ning the multi-view stereo using normalized cross corre-
lation (NCC) as the similarity statistic. We select, with-
out loss of generality, I0 as a reference image and find the
depth map d0(x, y). From these correspondences we solve
for f and E , after which all input image color intensities are
mapped to radiance space. Finally, we run the multi-view
stereo algorithm again, this time on the radiance space set
of images using sum of squared differences as the similarity
statistic. We run the algorithm K times, on each time using
a different image as the reference, to compute the rest of
dk(x, y)s.

4.1. Cross correlation is (approximately) exposure
invariant

It turns out that normalized cross correlation (NCC) is
invariant to exposure changes when a camera has a gamma
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response function. (This includes the special linear case
where gamma equals one.) Interestingly, while NCC has
been used in the past, its exposure invariance property has
not been observed nor proven (that we are aware of).

Consider a window around a pixel (x, y) over two im-
ages I0 and Ik. The normalized cross-correlation is defined
as

ENCC(I0, Ik) =∑
(I0(u, v)− Ī0)(Ik(u, v)− Īk)√∑

(I0(u, v)− Ī0)2
√∑

(Ik(u, v)− Īk)2
, (1)

where (u, v) are coordinates relative to the window and Ī
is the mean value over the window. Normalized cross cor-
relation yields a value of 1 when the pixel intensities over
the window around (x, y) are in exact correspondence. If
I0 and Ik correspond to the same scene but captured with
different exposures on a camera that has a gamma response,
then pixel intensities are related to sensor irradiance I by

I0(x, y) = (I(x, y)e0)1/γ (2)

and
Ik(x, y) = (I(x, y)ek)1/γ , (3)

from which the following relationship between recorded in-
tensities is derived:

Ik(x, y) = I0(x, y)e1/γ
k0 , (4)

where ek0 is the exposure ratio ek/e0. Using this relation-
ship, the mean over Ik is

Īk =
∑
u,v

e
1/γ
k0 I0(u, v) = e

1/γ
k0 Ī0. (5)

Substituting (5) into (1), we get

ENCC(I0, Ik) =
∑

(I0(u, v)− Ī0)(I0(u, v)e1/γ
k0 − Ī0e

1/γ
k0 )

√∑
(I0(u, v)− Ī0)2

√∑
(I0(u, v)e1/γ

k0 − Ī0e
1/γ
k0 )2

. (6)

Notice that the factor e
1/γ
k0 vanishes; this concludes our

proof that normalized cross correlation is invariant to expo-
sure changes if the radiometric response is exactly a gamma
curve (ignoring noise and quantization effects). While
the real camera response is typically not exactly a gamma
curve, it is close enough that normalized cross correlation is
practically invariant.

4.2. Initial correspondence estimation

For a given reference image Ik in I, the multi-view
stereo algorithm described in [8] computes the depth map

dk(x, y) that maximizes photo consistency between all pix-
els I(x, y) and their corresponding projections on the other
images. For better results near depth boundaries, where
stereo algorithms typically have problems due to some pix-
els in one view being occluded on the other views, shiftable
windows and temporal view selection are used (which we
implemented).

However, rather than using direct sum-of-squared-
differences (SSD), we used normalized cross correlation
(NCC). As shown in the previous section, NCC is invari-
ant to exposure changes for cameras with gamma response
curves. However, there is a price to pay for the invariance:
ambiguity within the equivalence class of gamma response
curves. To handle this problem, once the radiometric curve
has been robustly estimated, we convert all color intensities
to radiance space and re-apply the multi-view stereo algo-
rithm, this time using SSD on radiance values (Section 4.4).

For color images, we compute NCC for each channel
independently and then average. In computing NCC, we
ignore under- and over-exposed pixels (tagged as invalid).
We make an overly-conservative choice of ignoring an en-
tire color band within the window if some pixels are under-
or over-exposed in that band. If all the color bands within
the window have some pixels that invalid, then we ignore
that center pixel (tagged as having unreliable depth). We
use a simple winner-take-all approach to extract an initial
depth map for an arbitrarily chosen reference image.

4.3. Radiometric calibration

We use the depth map computed in the first stage to warp
each input image to the same viewpoint, creating a new set
of stabilized images Î. Pixels are sampled using bicubic in-
terpolation. This set of images is used for radiometric cali-
bration. The view stabilization is done for convenience; all
corresponding pixels now share the same (x, y) coordinate
frame.

The goal of radiometric calibration is to find the mapping
between the amount of light falling on the camera sensor,
or sensor irradiance, and the actual brightness measurement
recorded. This mapping is a non-linear function f of the
scene irradiance and camera exposure given by

B = f(Ie). (7)

This is the image formation equation, with B being the mea-
sured brightness, I the irradiance at the corresponding sen-
sor pixel, and e the camera exposure. The exposure depends
on the lens aperture, shutter speed, and camera gain.

To compute the BTF between a pair of images, all the re-
quired information is given in form of pairs of correspond-
ing intensity values (B1, B2). This intensity correspon-
dences can be collected in a two-variable joint histogram
J , in which a given entry J(B1, B2) stores the number of
pixels that in the first image have an intensity value of B1
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and map to intensity B2 in the second image. These cor-
respondences, however, may be incorrect due to ambiguity
or mismatches using NCC. To estimate the BTF, we imple-
mented the dynamic programming technique of Kim and
Pollefeys that works on the joint histogram to find a BTF T
that satisfies the properties enumerated earlier: semimono-
tonicity, T (0) = 0, and either T (i) ≤ i or T (i) ≥ i. To
decide which of these last two conditions should hold, we
partition the joint histogram J(Bi, Bj) into two triangles
along the line Bi = Bj . We sum over all entries in each of
these triangles, and compare the resulting sums; if the sum
from the upper traingle is larger than the sum from the lower
triangle, then T (i) ≥ i must hold, otherwise, T (i) ≤ i will
be true.

In our approach, we recover two BTFs for each pair of
images in Î. For images (Î1, Î2) we compute the BTFs
T (Î1, Î2) and T (Î2, Î1). Once the BTF functions have been
computed for all pairs of images, we use the EMOR model
of Grossberg and Nayar [5] to find the inverse camera re-
sponse, which describes an empirical basis for camera re-
sponse functions. Using this model, the camera response
can be written as

f(x) = f0(x) +
N∑

i=1

cnhn(x), (8)

where f0 is the mean of a set of measured camera response
functions and hi form a basis obtained through PCA. A
small number of basis functions, between three and five, are
enough to represent the whole space of camera responses
with reasonable accuracy.

To solve for the inverse camera response once the BTF
is known, we invert the image formation equation (7) and
take the logarithm of each side, giving

log f−1(B) = log I + log e. (9)

For simplicity, we will use g to denote log f−1. For a given
pair of images (Îi, Îj) and their corresponding BTF Ti,j , the
following brightness transfer constraint applies:

g(Bi)− g(Ti,j(Bi))− log ei + log ej = 0, (10)

with ei and ej being the unknown exposure values. To solve
for g using the EMOR, we computed the mean and basis
vectors for the space of log inverse camera response func-
tions, to obtain the following model:

g(x) = g0(x) +
N∑

n=1

cnh′n(x). (11)

Replacing this model in the brightness transfer constraint

results in

g0(Bi)− g0(Ti,j(Bi)) +
N∑

n=1

cn(h′n(Bi)− h′n(Ti,j(Bi))

− log ei + log ej = 0. (12)

This is the constraint that we will minimize to find the co-
efficients cn of our model and the set of exposures E . How-
ever, there is an inherent ambiguity in the radiometric cal-
ibration problem, as described in [5]. It is not possible to
compute the exposures and the camera response simultane-
ously without any further assumptions. In our implementa-
tion, we either specify at least one exposure ratio by setting
the values of two exposures ei and ej , or fix the point g(128)
in the inverse response curve to pass through g0(128). Both
of these techniques will break the ambiguity, and the choice
of one over the other depends on the amount of data pro-
vided.

Equation (12) is solved in a weighted least-squares fash-
ion. In [10], a Gaussian weighting scheme with mean 128
and an empirically chosen standard deviation was used.
Through experimentation with ground truth data, we have
found that using this weighting mechanism does not always
yield optimal results. There are several reasons that explain
this observation. Firstly, as pointed by Grossberg and Na-
yar in [5], PCA is not optimal for the log-space model with
regard to least squares in the (linear) space of camera re-
sponses. In addition, the log space model is very sensitive
to variations in the lower range of pixel intensities (typi-
cally having low SNR), which can adversely affect the fit-
ting process. The Gaussian weighting scheme only partially
addresses these issues. We have found that the following
weighting function, as defined by Litvinov and Schechner
in [11], yields better results:

w(Bi, Bj) =
BiBj

(B2
i + B2

j )1/2
, (13)

where Bi and Bj are the corresponding brightness values as
defined by the BTF. We will refer to this weighting scheme
as the product weighting scheme. These weights penalize
lower brightness pixels with a low SNR and emphasizes
those that have a high SNR.

4.4. Final depth map computation

After we have computed the log inverse camera response
function g and the exposure values, we convert all images
into radiance space and run the multi-view stereo algorithm
again, this time using a modified version of sum of squared
differences (SSD) to compute the matching cost. When
computing the SSD for a pair of windows, we cannot just
simply use the radiance values within a window—we must
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also take into account the pixel intensity in the original im-
age to make sure that we do not include radiance values that
came from saturated or under-exposed pixels.

In this stage we run the multi-view stereo algorithm sev-
eral times, every time setting the reference image to be a
different one. The result will be a depth map for each view.

5. Experimental results
To validate our approach, we applied it on images of syn-

thetic and real scenes. Note that all our depth maps were
recovered using simple winner-take-all (taking the depth
associated with the lowest error at each pixel). We ex-
pect cleaner-looking results using global optimization tech-
niques with regularization (e.g., using graph cut[1]).

5.1. Synthetic data

We first tested our algorithm on a synthetic scene that
we built with a ray-tracing package and that is shown in
Figure 2. We generated images from different views and
exposures by applying one of the response functions in the
database used for the EMOR computation; the same re-
sponse was applied to each channel.

First, we ran the radiometric calibration algorithm on a
subset of those images taken from the same viewpoint but
with varying exposure. In our run, we fixed two of the expo-
sures and let the radiometric calibration find the remaining
ones. Then, we repeated the experiment, this time using
images from different views and the correspondences found
after running multi-view stereo using NCC. The computed
curves, plotted against the ground truth data, are shown in
Figure 3. The left and middle graphs show the curves ob-
tained over the fixed-viewpoint set of images (i.e., same
viewpoints at different exposures as done for conventional
HDR computation); the curves in the left graph were ob-
tained using Gaussian weights and the curves in the middle
with the product weighting scheme of equation (13). It can
be seen that the latter scheme results in a better approxima-
tion. The rightmost graph shows the curves that were ob-
tained when running the radiometric calibration over a set
of images from different viewpoints, after warping the im-
ages to the same view using the correspondences computed
in stage 1 of our system. The computed curve is a very good
approximation of the ground truth data.

Figure 4 shows the depth maps obtained for this se-
quence. The leftmost depth map is provided as a reference
and was obtained using a sequence of same exposure im-
ages. The middle is the result obtained over a sequence
of images with varying exposure as obtained after stage 1,
using NCC, and the rightmost is the result of running multi-
view stereo once the camera response had been recovered
and all images were converted to radiance space. Some
pixels in the depth map are completely black, which cor-
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Figure 8. Radiometric calibration curves obtained from the Art se-
quence. Left: over a set images acquired from the same viewpoint;
Right: over a set of viewpoint varying images after running stereo
with NCC.

Figure 9. Depth maps computed for the Reindeer sequence. Left:
computed over a set of images with varying exposure using nor-
malized cross correlation. Right: computed after converting all
images to radiance space and running multi-view stereo with sum
of squared differences.

respond to areas in which the original reference images was
either under- or over-exposed. It should be noted that the
quality of the depth map varies from stage 1 (middle im-
age) to stage 3 (right image). This shows that the radiance
space multiview stereo iteration improves the results.

5.2. Real data

We also tested our system on sets of real images. The
first one is the Art sequence, shown in Figure 5. For this
sequence we used a set of 5 different views acquired by a
translating camera. To create a reference depth map that
could help us evaluate the results, we first ran our system
on a subset of images with a fixed exposure. We then con-
ducted a different experiment, this time allowing the expo-
sures to vary from one view to the next. Figure 6 shows
the resulting depth maps. Once more, it can be seen that
there is an improvement achieved when running the multi-
view stereo algorithm in radiance space using SSD. How-
ever, the final depth map obtained from the varying expo-
sure sequence (right) shows some differences with that ob-
tained using the sequence with fixed exposure (left). These
differences occur in areas where the intensity of blue chan-
nel is very low. The computed response curves are shown
in Figure 8. The left plot shows the inverse response curves
obtained from three images taken from the same view; the
right one shows the curves resulting from stage 2 of our
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Figure 2. Four images of the synthetic scene with varying view and exposure.
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Figure 3. Computed camera inverse response functions plotted against ground truth. Left: result from an input set of images from same
view, equations weighted with Gaussian curve (RGB RMS: 0.51, 0.52, 0.54). Middle: result from an input set of images from same view,
using the product weighting scheme of equation 13 (RGB RMS: 0.27, 0.28, 0.29). Right: result from an input set of images from multiple
views warped to the same viewpoint, using the product weighting scheme (RGB RMS: 0.30, 0.29, 0.28). Note that the left and middle
curves were obtained using the simple condition of multiple exposures at the same viewpoint (correspondences are known exactly); these
curves are used for comparison with our technique under a more difficult condition of multiple exposures at different viewpoints.

Figure 4. Depth maps obtained for the synthetic scene using simple winner-take-all. Left: computed over a set of images with same
exposure using SSD. Middle: computed over a set of images with varying exposure using NCC. Right: computed after converting all
images to radiance space and running multi-view stereo with SSD.

Figure 5. Four of the input images in the art sequence (courtesy of Daniel Scharstein).

multi-view system on a set of five images. Similar results
were obtained from the Reindeer sequence of Figure 7 The
stage 1 and stage 2 depth maps for one of the views are
shown in Figure 9.

6. HDR texture computation

Once we have computed the depth maps we can warp all
input images to the reference view point of the multi-view
stereo stage and create and HDR texture. We compute the
final output value as a weighted combination of the input
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Figure 6. Depth maps computed for the Art sequence. Left: computed over a set of fixed-exposure images, Middle: computed over a set
of images with varying exposure using NCC. Right: computed after converting all images to radiance space and running multi-view stereo
with SSD.

Figure 7. Four of the input images in the Reindeer sequence (courtesy of Daniel Scharstein).

Figure 10. View interpolation results. Three interpolated views obtained from the Art sequence.

Figure 11. View interpolation results. Three interpolated views obtained from the Reindeer sequence.

pixels, using the following weighting function evaluated at
the original pixel intensities:

w(B) = f(B)/f ′(B), (14)

where f is the camera response. This function was intro-
duced in [14], based on the fact that image measurements
can be trusted most when the signal-to-noise ratio (SNR)
and sensitivity to radiance changes are maximum.
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7. View interpolation

From the previous steps, we have obtained an HDR im-
age and a depth map for each input camera. With this rep-
resentation we can generate new views by view interpola-
tion. Our current implementation allows us to trace a path
between two existing views, generating a new frame along
the specified path at a user defined interval. The user fixes
the number of frames to synthesize along the path and the
exposure variation (if any, the exposure can also be kept
constant). To generate a new view, we warp the closest two
real views to the virtual view and then create a weighted
average image. The weight used for each real view is in-
versely proportional to the distance between itself and the
virtual view. Results of our view interpolation are shown
in Figures 10 and 11. These views have been synthesized
from the original Art and Reindeer sequences. The shown
views have been stabilized to the same exposure. (Review-
ers, please see the video sequence submitted as additional
material).

8. Discussion

One problem that could be better treated relates to over-
and under-exposed pixels. We currently handle these pixels
by completely ignoring the offending color channel within
a window if at least a pixel has that color out of range. How-
ever, this approach is very conservative, since these pixels
do provide some information that can be used as constraints
during the radiance space stereo matching. For example, if
a certain pixel is saturated in the reference image, then that
imposes a restriction on the radiance; more specifically, it
cannot be below the radiance associated with the saturated
value at the reference exposure. Our work currently does
not take such constraints into account.

As mentioned earlier, we use the simple winner-take-all
approach to extracting depth maps. We chose this to illus-
trate worst case scenarios, since winner-take-all is sensitive
to noise. Despite this, we were able to recover good depth
maps; obviously, more spatially-coherent depth maps can
be obtained using global optimization techniques in con-
junction with regularization (such as graph cuts [1]).

9. Conclusion

We have described a technique for estimating dense
depth maps and HDR textures from a set of different ex-
posures. Our technique consists of three stages: correspon-
dence using normalized cross correlation (NCC), radiomet-
ric calibration to compute camera response function and ex-
posure values, and view-dependent dense depth maps using
SDD on radiance values. We proved that NCC is practically
exposure-invariant, and showed view interpolation results to
validate our approach.
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