
Designing user-adapted interfaces: the unified
design method for transformable interactions

A. Savidis, A. Paramythis, D, Akoumianakis and C. Stephanidis
Institute of Computer Science,

Foundation for Research and Technology-Hellas (FORTH),
Science and Technology Park of Crete,

P.O. Box 1385, GR 711 10, Heraklion, Crete, Greece,
Tel: +30-8 1-391741, Fax: +30-8 1-391740

E-mails: {as, alpar, demosthe, csl@ics. forth. gr

ABSTRACT
In the interface design process, diverse user requirements
and characteristics lead to alternative dialogue patterns.
User-adapted interfaces, capable of self-adapting to
individual end-user requirements, should encompass
alternative diaiogue components into a single implementation
form. The process of designing user-adapted interactive
applications necessarily engages the manipulation of
alternative design artifacts, while for the implementation
process a single design is needed, as opposed to alternative
design versions. The unified design method is targeted
towards the organization of alternative design artifacts into
a single representation structure. Relationships among
alternative artifacts in user-adapted design, such as
exclusion, compatibility, augmentation and substitution, need
to be explicitly represented.

KEYWORDS: Artifact-oriented design methodologies, user-
adapted interaction, User Interfaces for All, polymorphic
task hierarchies, task-oriented design.

INTRODUCTION
A variety of design approaches have been defined in the
past, such as hierarchical task decomposition [8] or GOMS
analysis [3]. The main purpose of the design information
consolidated during the design process is to support
subsequent development phases, like target implementation
and /or usability evaluation. In this context, driven from the
objective of automating or accelerating the transition
between the design and implementation or evaluation phases,
various alternative design approaches emerged, some of
which have been provided with tool support for
automatically realizing the implementation and evaluation
phases. Examples of such approaches are Task-Action
Grammars (TAGs) [13], asynchronous models of user
actions like CSP [7], the User-Action Notation (UAN) [5],
propositional production systems (PPS) [12], variants or

Permission to make digitallhard copy of part or all this work tor

personal or claswoom use is grented without fee provided that

copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

appeer, and notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish. to post on servers, or to
redistribute to lists, raquires prior specific permission and/or a fee.
DIS ’97 Amsterdam, The Netherlands

@ 1997 ACM 0-89791 -863 -0/97 /0008 . ..$3.50

hybrids of the original task model such as TADEUS [16],
etc. It is argued that new User Interface design methods
emerge when there is a need to capture particular properties
of interactive systems, which cannot be explicitly or
sufficiently represented through existing design approaches.
For instance, the identification of graphical constraints
among interface objects is not normally realized in the
context of a task analysis design process. Hence, if the
explicit representation of graphical constraints is necessary
(e.g. as an input to the implementation phase), a dedicated
design process must be executed for the extraction of such
necessary design information. In situations where a single
design approach does not fuifil the requirements of the
design process, the fusion of alternative techniques is
applied, leading to hybrid design methodologies (e.g.
combination of task analysis and graphic design methods).

The work reported in this paper has been carried out in the
context of realizing the User Interfaces for All objective
[17]. Following this objective, interactive applications should
be designed and implemented in a way ensuring that
potentially all user categories are given equal access and
maintaining high quality of interaction. The ability for
automatic interface individualization / adaptation to the
requirements of individual end-users is of key importance in
this context, demanding methods for designing and
implementing interfaces that a&zpt themselves (knceforth
we will use the term user-adapted to denote this type of
interface behavior). It will be shown that existing design
approaches do not suffice for designing user-aware
interactive applications which can be automatically adapted
to individual users; the unified design method is proposed in
order to address this issue, building upon the foundations of
hierarchical task decomposition.

Ttte transformable Interfaca concept
In general terms, a user-adapted interface is aware of key
user attributes and utilises such knowledge in order to realize
appropriate interaction with each individual end-user (i.e.
automatic adaptation process). End-users exhibiting diverse
attribute values are likely to require radically different
dialogue styles to be chosen. Hence, a user-adapted interface
seems to perform a transformation process for each
individual end-user, relying primarily upon pre-recorded user

323

information; for this reason, the term transformable interface
will be used, reflecting the behavioral dynamics of a user-
adapted interface. In the context of user-adapted interaction
realizing the goal of User Interfaces for All, there is no
“average” user. This gives rise to two issues: (i) a
transformable interface implementation should realize more
than a single interface design, since it is a user-centred
process; and (ii) enumerating all alternative designs is
practically not realistic, since their number is directly related
to all possible combinations of user attribute values (cause
of differentiation among the various design decisions).

Existing design approaches support design processes which
lead to a single artefact. The ability to differentiate and
polymorphose is not embedded within available design
techniques, thus requiring explicit enumeration of the
alternative designs, in order to support representation of the
numerous alternative interactive “faces” that a user-adapted
interface is able to realize (due to the transformation
capability); this inability to unify alternative final design
decisions introduces technical problems when the resulting
designs needs to be implemented as a single interactive
system. The unified interface design method has been
defined in order to: (i) enable expression of the alternative
enumerated designs of a user-adapted interface into a single
unified form, without requiring explicit enumeration; and (ii)
provide a design model for organizing dialogue patterns
which can be easily translated to a software organization
model for the required interface implementation.

Brief overview of the unified design approach
The unified interface design method builds upon the
hierarchical task analysis method. It introduces the notion of
polymorphic task decomposition, through which any task (or
sub-task) may be decomposed in an arbitrary number of
alternative sub-hierarchies. The design process realizes an
exhaustive hierarchical decomposition of user tasks, starting
from the abstract level, by incrementally specializing in a
polymorphic fashion (since different design alternatives are
likely to be associated with differing user attribute values),
towards the physical level of interaction. In a more compact
definition, the unified design process drives an “abstract task
definition with incremental polymorphic physical
special ization”.

POLYMORPHIC TASK HIERARCHIES
The polymorphic task hierarchy decomposition method
combines three fundamental properties: (a) hierarchical
organization, (b) polymorphism, and (c) task operators. The
hierarchical decomposition adopts the original properties of
hierarchical task analysis for incremental decomposition of
user tasks to lower level actions. The polymorphism property
provides the design differentiation capability at any level of
the task hierarchy, according to particular user-centred
design requirements. Finally, task operators, which are based
on the powerful CSP language for describing the behaviour
of reactive systems [7], enable the expression of dialogue
control flow formulas for task accomplishment; these
operators are beji-we (sequencing), or (parallelism), xor

,--------...........................---------..

_-$=K-

F
Direct
Mani ulation.“

\
b*fore

I Select I ~ &

U2%-J~ ygE!?gr) L&J
..................................
P!!!!’vql:a~ipyl,.-,..! 4% : =’ j=’ i]

..
Figure I: The polymorphic task hierarchy concept.

(exclusive completion), * (simple repetition) and + (absolute
repetition). The concept of polymo-~hic task hierarchies is
illustrated in Figure 1, Each alternative task decomposition
is called a decomposition style, or simply a style, and is
given an arbitrary name; the alternative task sub-hierarchies
are attached to their respective styles. The example in Figure
1 shows how two alternative dialogue styles for a “Delete
File” task can be designed: one exhibiting direct
manipulation properties (i.e. “Direct Manipulation” style, file
object is selected prior to operation to be applied) and
another realizing modal dialogue (i.e. “Modal dialogue”
style, the delete operation is selected, followed by target file
selection, followed by confirmation of operation).
Additionally, the example demonstrates the case of physical
specialization. Since “selection” is an abstract task, it is
possible to design alternative ways for physically
instantiating the selection dialogue (see Figure 1, lower-
part): via scanning techniques for motor-impaired users, via
3D hand-pointing on 3D-auditory cues for blind people, via
enclosing areas for sighted able users, and via Braille output
and keyboard input for deaf-blind users.

The unified design method does not impose the designer to
follow the polymorphic task decomposition all the way down
the user-task hierarchy, until primitive actions are met. At
any level, a non-polymorphic task can be specialized
following any design method chosen by the interface
designer; for instance, in Figure 1 (lower-part} graphical

324

illustrations are used to describe each of the alternative
physical instantiations of the abstract “selection” task.
Similarly, the interface designer may choose a more suitable
model for describing user actions for device-level interaction
(e.g drawing, drag-and-drop, concurrent input) than the CSP-
based operators which have been primarily chosen for
expressing task relationships, such as an event-based
representation (e.g. ERL [6], UAN [5]).
. .

1=1

...L- ...:

~ $rm a_ *

~ m)~

;....------------
Figure 2: Multimodality in conjunction to task-level
polymorphism.

The polymorphic task decomposition method is also
appropriate in cases where the design process reveals the
necessity of having multipIe alternative sub-dialogues
available concurrently to the user, for performing a particular
single task. This scenario is related to the notion of
multimodality, which can be more specifically called rask-
level multimodality, in analogy to the notion of multimodal
input which emphasizes pluralism at the input-device level.
In our example of Figure 2 (part A), a task is
polymorphosed with two alternative sub-hierarchies (i.e
styles), a dkect manipulation and a command-based
respectively; a physical specialization design scenario is also
provided in Figure 2 (part B). These two styles are defined
to be compatible, which implies that they may coexist at
run-time (i.e. the end-user may freely use the command-line
or the interactive file manager interchangeably for file
manipulation), In general, combining alternative
decomposition styles may result in high quality interaction,
if the user can benefit from the specific advantages of each

distinct style. For instance, in the example of Figure 2 (part
B), the user may choose the command-line for moving a file
to another folder, while he / she may prefer the interactive
file manager for direct manipulation deletion of a folder (e.g.
click on folder icon and then press “del” key, perform “X”
gesture with a pointing device over the target folder).

The polymorphic task decomposition process
The abstract task definition and polymorphic physical
specialization is a recursive process which involves abstract
/ physical tasks with conventional / polymorphic
decompositions. The overall process is illustrated in Figure
3. The decomposition process-starts from abstract or physical
tasks (depending on whether top-level user tasks can be
defined as abstract or not). The transitions from each of the
four states are described below (see also Figure 3).

\
polymorphose polymorphose

\ / /

‘U’-’’’’-’’’’’”
Figure 3: The polymorphic task decomposition process.

From “abstract task design” state: An abstract task can be

decomposed either in a polymorphic fashion (if design
requirements pose the necessity for alternative dialogue
patterns) or in a conventional manner, following a single
decomposition scheme. In the case of a single decomposition
scheme, the transition is realized via a “decomposition”
action, leading to the “task hierarchy decomposition” state.
In the case of polymorphic decomposition, the transition is
realized via a “polymorphose” action, leading to the “design
alternative sub-hierarchies” state.

From “task hierarchy decomposition” state: The sub-tasks
identified need to be further decomposed. For each such sub-
task, if it is an abstract task, there is a “sub-task” transition
to the “abstract task design” state, eise (it is a physical task)
a similar transition to the “physical task design” state.

From “design alternative sub-hierarchies” state: The sub-
tasks from the top Ievei of each sub-hierarchy defined (the
sub-hierarchy is incrementally built level-by-level) need to
be further decomposed. For each alternative sub-hierarchy,
and for each top-level task, if it is an abstract task, there is
a “sub-hierarchy” transition to the “abstract task design”
state, else (it is a physical task) a similar transition to the
“physical task design” state.

325

From “physical task design” state: The transitions executed
from this state are exactly identical to those from the
“abstract task design” state.

Example. The polymorphic task decomposition for the
example of Figure 1 will be briefly discussed, in view of the
process model shown within Figure 3; the sequence of steps
is illustrated under Figure 4 (states are mentioned with brief
names). The initial state is “abstract state” (step 1), since
“Delete File” is an abstract task. Through the
“polymorphose” transition, two alternative sub-hierarchies
result (step 2). For each sub-hierarchy, and for each top-
Ievel task, we identify whether it is abstract or physical in
order to continue the process (step 3). For instance, both
“Select File” and “Select Delete” are abstract tasks (the rest
are not shown for clarity). We show the next steps for the
“Select Delete” task, which is polymorphosed (step 4),
resulting in two sub-hierarchies (one visual dialogue and
another~or non-visual dialogue). The top-level tasks for each
of the two sub-hierarchies are in this case physical (step 5,
as opposed to step 3, where all tasks are abstract). The
“visual rubber-banding” task is sub-sequently decomposed
(step 6) to a conventional task hierarchy (step 6 could be
realized via any other approach, if required, such as an event
modelling technique).

pOly - a sub-

~ ●☛☛☛

Ml ●t* -Direct \ s019ct

Filo l&anipul‘n ~“b-
Filo

-Modal hierarchy ●***
Dialos!uo

4

Ytask
Solact
Doloto

~ ..**
-vi mlal sub– rubber-lmuling
-Non-visual hierarchy ~

‘-N@*”””
Non-visual
Braillo & kbd

Figure 4: A decomposition process example.

DESIGNING ALTERNATIVE STYLES
The polymorphic task model provides the technique for
organizing all the alternative dialogue patterns of a user-
adapted interface into a unified form. Such a hierarchical
structure realizes the fusion of the various alternative designs
which can be enumerated for a given user-adapted interface.
Apart from the polymorphic organization model, the
following key issues need to be addressed next: (i) when
polymorphism should be applied; (ii) which are the user

attributes that need to be considered; and (iii) how the
design rationale connecting the designed styles with the user
attributes is documented.

Identifying levels of potential polymorphism. In the context
of the unified design method, and as part of the polymorphic
task decomposition process, designers should always assert
that every decomposition step (i.e. those realized either via
the “polymorphose” or through the “decompose” transitions
of Figure 3) fulfils all the combinations of the target user
attribute values. More practically, in case that at any step of
the task analysis process there is a particular decomposition
which does not address some combinations of the target user
attribute values, then the specific end-users with those
attribute values are not considered at this step of the design
process. Hence, a level of potential polymorphism has been
identified and the design gap may be closed by constructing
the necessary alternative sub-hierarchy (-ies) addressing the
excluded user attribute values.

Constructing the space of user attributes. In the unified
design method, the end-user representation technique as a
finite set of attribute values has been chosen because of its
genericity, since it does not pose restrictions on the
employmentof any particularuser modelling approach for
the implementation prwess. There is no predefine / fixed
set of attribute categories. Some examples of attribute
classes are: general computer-use expertise, domain-specific
knowledge, role in an organizational context, motor abilities,
sensory abilities, mental abilities, etc. Also. the value
domains for each attribute class are chosen by interface
designers and human-factors experts as part of the design
process (the value sets need not be finite). The broader the
set of values, the higher the differentiation capability among
various individual end-users; for instance, commercial
systems realizing a single design for an “average” user have
zero differentiation capability.

Task: DeleteFile

Style:DirectManipulation Style:Modal dialogue

Users: Expert, Frequent, Users: Casual, Nawe.
Average.

Targets: Speed, naturalness, Targets Safety, guided
flexibility. steps.

Properties: Object first, Properties Function first,
function next. object next.

ICombinations Exclusive. Combinations Exclusive.

Table I: Example of recording design rationale.

Recording design rationale in polymorphic decomposition.
During the polymorphic task decomposition process, there is
a set of design parameters that need to be explicitly defined
(i.e. given specific values) for each alternative sub-hierarchy
defined. The aim is to capture the design logic for deciding
alternative styles, by directly associating user parameters and

326

design goals with the constructed artefact (style). The
parameters are: (i) users (specific user attribute values
addressed by a style); (ii) targets (concrete design targets for
a style); (iii) properties (the specific differentiating
interaction properties of a style, in comparison to other
styles); and (iv) combinations (compatibility and
relationships with other styles). The values of these
parameters are recorded during the decomposition process
for each style in the form of a table. In Table 1, an example
is shown for the definition of these parameters regarding the
two alternative styles for the “Delete File” task (see Figure
1). The notion of design rationale, as used in the context of
the unified design method has a fundamentally different
objective with respect to well known design space analysis
methods. In the latter case, design rationale mainly
represents argumentation about design alternatives and
assessments [2] before reaching final design decisions, while
in the our case, design rationale records the different user
attributes and design objectives underpinning the already
made (i.e. final) design decisions. The set of five parameters
previously defined serves mostly as an “indexing” method
for organizing final design decisions with primary keys the
“Task” and “Users” parameters, The outcome of the unified
design approach is a single hierarchical artifact, composed
of user-oriented final design decisions associated to directly
computable parameters (i.e. task and user attributes). The
key advantage is that this resulting artifact realizes by itself
a concrete implementation model for user-adapted
interactions.

ENGAGING ABSTRACT INTERACTION OBJECTS IN THE
UNIFIED DESIGN METHOD
During the task decomposition process, some sub-tasks can
be directly related to user-input actions which can be
managed via interaction objects. For instance, selecting from
a list of options, interactively changing the state of a boolean
parameter, providing an arithmetic value, etc, are typical
examples of input tasks which can be realized via the
predefine dialogues implemented by various interaction
objects. In such cases, it is desirable to employ general /
abstract object classes, in order to enable alternative physical
object classes to be selected for differing user-, design- and
domain- requirements. Past approaches for abstract object
categories exist, such as input interaction tasks [4], meta-
widgets [19], virtual objects [14], and more implementation-
oriented models such as interactors [11]. It is argued that
designers primarily think in terms of specific instances and
physical interface scenarios, especially if the task analysis
and graphic design processes are carried out by different
teams, rather than composing interface components via
abstract behaviors and objects. In this context, we have
defined a role-based model (see Figure 5) for “filtering”
aheady made design decisions in order to identify “points”
in which abstract interaction objects can be employed in the
design representation. Three role categories for interaction
objects are identified:

Lexical role, in which case the interaction object is
employed for appearance / presentation needs. If such a role
can be applied independently of physical realization, then an
abstraction can be identified. For example, assume a
“Message” interaction object, which has only one attribute
defining the message content (e.g. a string). It should be
noted that the content could be verbal (i.e. the string is a
phrase), if the user understands natural language, or even
symbolic (i.e. the string is a file name where a symbolic
sequence is stored), if the user understands symbolic
languages. The presentation properties (e.g. emphasizing
with an icon, other visual / auditory effects) concern the
physical implementation that may have alternative
realizations.

-

: ●.. -%...
: %e- inherited from toolkit. ...

Figure 5: Role-based model of interaction objects.

Syntactic /dialogue role, in which case the object serves a
spcific purpose in the design of dialogue sequencing. If the
role can be applied independently of physical realization,
then an abstraction can be identified. For example, a
“continue” button, a “confm” button or a button to initiate
an operation, play the role of a “Command” given by the
user, in the particular dialogue context. Such a “Command”
class may be applied to provide, for instance, execution,
confirmation, cancellation or progress and maybe applicable
for various metaphors. It could be physically realized as a
conventional push-button for the Desk-top metaphor, a
voice-inputcommandobject for non-visual interaction,and
a particularsymbolfor language-impairedusers. The abstract
interaction object “Command” may have only one boolean
attribute to control whether it is accessible or not; the
presentation feedback for indicating accessibility status,
could be different, depending on its physical realization.

Semuntic role, where an interaction object interactively
rea4izes a domain object. For instance, an interaction object
may present a domain object content or provide the means
to enable “editing” of the content by the user. In such cases,
it is always possible to transform the role to a proper
abstract class. A typical example is the provision of a

327

numeric value by the user. A “Valuator” abstract object
could be defined for this purpose, having various properties
related to the type of numeric value required (e.g. range,
discrete or real).

RUN-TIME ARCHITECTURAL PROPERTIES OF
TRANSFORMABLE INTERFACES
In Figure 6, an architectural model for transformable
interfaces is outlined. This model consists of independent
processes / components relying upon the design information
which results from the unified design process. The role of
each comDonent follows:......

4A .*

............................+...
design user dialogue

.....jog{g. ...47......J.......rno*.fgg..j................$onf(q!.

Figure 6: Run-time model for transformable interfaces.

User information server. This module encompasses the
individual profiles of end-users. The initial end-user
identification (upon start-up) is always required (as an input
to this module) in order to begin an interaction session. In
case of desk-top systems with dedicated users, all interactive
applications may gain a fixed “user id”. However, since
today the trend is to enable users to access computer
applications from virtually everywhere, explicit user
identification will be required (i.e. support nomadic use).
The user information server will map the user id to the
corresponding user profile; this profile is a sequence of user
attribute values. The user information server may employ
other additional knowledge-based components for processing
such user profiles, making additional assumptions about the
user or even updating the user profile attribute values; for
instance, systems like BGP-MS [9], PROTUM [18], or USE-
IT [1] could be employed for such intelligent processing
purposes. Apart from the initial manipulation of user
profiles, the user information server may process at run-time
interaction monitoring information for drawing additional
conclusions about the user, Such conclusions may concern:
dynamic assumptions of user interests, loss of orientation in
performing certain tasks, fatigue, inability to complete a
task, etc.

Decision making module. This module realizes the logic for
activating the necessary styles, on the basis of the user
attribute values received from the user information server
(possibly after additional processing and inferences applied
by the user information server). The decision making logic
primarily realizes recorded design rationale (in the form of
tabies) during the polymorphic task decomposition process,

in a rule-based knowledge representation form (e.g. “if user
attribute X has value Y then for polymorphic task T style S
is active”), The user information server will initially export
the user attribute values to the decision making module, thus
resulting on initial style decisions exactly before interaction
starts. During interaction, further updates on particular
parameters or dynamic assumptions made about certain user
attributes (at the user information server) will be also sent to
the decision making module. This process may result in
decisions changing some style decisions made at start-up,
thus dynamically changing aspects of the User Interface. All
drawn decisions are directly communicated to the User
Interface implementation module.

Dialogue control. This module implements all the various
dialogue patterns identified during the polymorphic task
decomposition process. The implementational organization
of the dialogue components should enable externally
originated style activation decisions to be directly applied.
The resulting implementation may reflect the hierarchical
organization of the dialogue components in the context of
the polymorphic task model. Apart from dialogue
components, there are two other layers of functionality: (i)
the decision executor, which communicates with the decision
making module (receives decisions or dynamically requires
decision making); and (ii) the monitoring components which
send interaction monitoring data to the user information
server for further processing (e.g. key-strokes, notifications
for use of interaction objects, task-level monitoring - level
and frequency of monitoring depends on the capabilities of
the employed user modelling tool within the user
information server).

Adaptability and adaptivity: the two faces of the
transformation process
The run-time interface transformation process in user-
adapted interaction can be seen as a combination of two
complementary classes of system initiated actions:
(i) adaptation decisions driven from initial knowledge on
user attribute values available at start-up (i.e. what the
information server knows about the user prior to Interaction),
and (ii) adaptation decisions drawn due to knowledge on
user attribute values inferred during interaction (i.e.
assumptions regarding the user, made by the user
information server on the basis of interaction monitoring
information).

The former behaviour has been attributed as ,Jdaptabiiity,
reflecting the interface capability to automatically} tailor itself
initially to each individual end-user. The latter behaviour has
been defined as adaptivity, and characterizes the interface
capability to cope with the dynamically (during interaction)
changing / emerging user requirements. Pas{ work has
mainly addressed the issue of adaptivity [15], while more
recent work, initially motivated by the need of interface
accessibility by disabled people, has focused on adaptability
[1]. In the context of accessibility, the adaptability behaviour
is of higher importance, since the essence is to Initially

328

..

end-user, end-user !
N!

...1
adaptability adaptivity ~

..
Figure 7: The complementary roles of adaptability and
adaptivity in transformable interfaces.

realize an interface instance that is appropriate (i.e. also
accessible) for the end-user. Instead, adaptivity is applied on
an accessible running interface (i.e. user performs
interaction), since interaction monitoring is required for the
identification of changing / emerging requirements that will
drive dynamic interface enhancements. The complemental
role of adaptability and adaptivity approaches is illustrated
within Figure 7.

THE INTERFACE DIFFERENTIATION EFFECTS FROM
TASK-LEVEL POLYMORPHISM
During the unified design process, polymorphism may be
applied at any level of the task hierarchy and for any task.
The various behavioral / morphological differences which
can be observed among the specific interface instances
resulting from the alternative sub-hierarchies for a given
polymorphic task, depend on the level of this task within the
overall hierarchy. Such evident variations among alternative
interfaces instances (due to the transformation behaviour) are
characterized as differentiation effects. Three main categories
of such interface differentiation effects are distinguished, on
the basis of the level at which polymorphism is applied
(normally, combinations of these effects will be present):

Polymorphism on top-level tasks. These tasks, which belong
at the highest levels of the hierarchy and are called overall
/ main / top-level user tasks, concern what the user has to
accomplish with an interactive application (see Figure 8, -
part A); for instance, edit a document, send an e-mail,
perform spell-checking, construct graphic illustrations, etc.
When polymorphism is applied at this level, the interface
instances are likely to be effected by structural differences,
providing the feel of alternative versions of the same
interactive environment (i.e. effect seems global).

Polymorphism on intermediate tasks. These tasks belong to
the middle hierarchy levels, and concern particular dialogue
states reachable after performing some required sets of
actions (see Figure 8- part B); for instance, dialogue boxes
for setting parameters, executing selected operations, editing
retrieved items, etc. The effect on alternative interface
instances is to have overall similarities, with localized
differences in interactive com~onents and intermediate sub-

ialogues.........

d%?==’ ‘A....... ...
..........

iBI I
.

......se.,.,a*...

.-
.

*A

!C...........
w- “w

..
Figure 8: Levels of task-based polymorphism.

Polymorphism on primitive tasks. These tasks appear at the
lowest levels of the task hierarchy (leaves, see Figure 7-
part C) and concern primitive user actions (i.e. actions which
can be directly supported by the primitive physical
interaction elements); for instance, pressing a button, moving
a slider, defining a stroke with the mouse, etc. The
polymorphism at this level causes differences on device-level
input syntax and / or on the type of interaction objects in
some interface components.

APPLYING THE UNIFIED DESIGN METHOD FOR AN
ADAPTABLE AND ADAPTIVE WEB BROWSER
The application of the unified interface design process will
be discussed in the context AVANTl Project (Adaptable and
Adaptive Interaction in Multimedia Telecommunications
Applications), funded by the ACTS Programme of the
Commission of the European Union (DG XIII). Some key
design artifacts will be discussed, in situations where
polymorphism has been applied, for the design of an
adaptable and adaptive Web browser (for HTML 3.2). The
target user audience for the AVANTI project is: able-bodied,
motor-impaired and blind users, with differing computer-use
expertise, supporting use in various physical environments
(office, home, public terminals at stations/ airports, PDAs,
ete). Some selected design examples will be discussed,
concerning specific tasks, through which the possible
relationships among the alternative styles for a given
polymorphic task will be revealed.

329

Link selection task. In all existing Web browser (e.g.
Netscape Navigatorm, Microsoft Explorerw and SUN
HotJavam), links in Web documents are activated by
pressing the mouse left mouse button while the cursor
resides within the area of a link, In Figure 8, the design of
the link selection dialogue (for textual links) is shown,
realizing polymorphic design. There are two steps in link
selection, according to the new design: (a) actually selecting
a link (which can be done in two alternative ways, S 1 and
S2); and (b) requiring confirmation for loading target
document (also done in two ways, S3 and Se). The Se
denotes an empty alternative sub-hierarchy (i.e. the task is
considered to be directly accomplished without any user
actions). The design rationale for polymorphism is presented
in Figure 9 (only a brief summary is presented for clarity).
The combinations between the designed styles are important
(due to adaptivity, some dynamic style updates need to be
explicitly mentioned):

o S1 mutually exclusive with S2.
o S3 mutually exclusive with Se
o S3 substitutes Se dynamically (if high error rates

are detected)
o Se substitutes S3 dvnamicallv {if in a satisfactory ,

interaction history, ~ink activ&ion has been always
followed by pos~ive confirmation)

.

El
bad target document
XXX ? It will take

Requires confirmation for loading
target selected document. II has

about YYY sees. been designed for:

mm
(i) users with limited computer-
knowledge or Web-use expertise;
and

oS3
(ii) when users gat tired or show

load high error rates during interaction.
confirmation

<1 ink>
k

Link seletiton is done as far as the
mouse cursor is within the text area

o of a link and the left mouse buttin is
S1 link pressed. Designed for frequent and

selection expert users.

m
Link selection is done by pressing
the software graphical button. The
difference from (S1) is that it allows

oS2 cancellation in the middle of the

link
action (by releasin the button while

selection “C?the cursor is outsl e the button area).

(

link (s1)

link selection
dialogue before

< (s2)

load
confirmation=

P.-,-.,., ,. ..,, ...
rgure Y: unit selecuon tasK aecomposmon.

Document loading control task. This task concerns typical

operations that browsers provide to enable users control the
Web page to be loaded and displayed (e.g. forward /
backward, home, reload / stop, book-marking, load options).
In Figure 10, two alternative designs are shown, primarily
designed for casual and naive users, which provide only a

sub-set of the full range of operations (more advanced
functions are only revealed to expert / frequent / average
users). These styles have the following relationships:

I ‘P
SUMfMd by

\

Augmented bv

Hnwto ma Itmn fl&rrt@n~

ClkX any of MO b@fWabalwftW momh?#is@@n,

-“”
Figure 10: Alternative styles for page loading control.

o The top-left style is the style to be initially active
(casual / naive values on application expertise).

o The top-right style is to dynamically substitute the
previous style, in case that during monitoring it is
observed that the user has used the operations
successfully and became familiar with them. The
new style groups logically operations with a title,
and prepares the ground for the more advanced
group called “options” to be included in future
interaction sessions with this user (when the
particular end-user completes a number of uses
that will be considered as an advance to the
“average” application expertise).

o The bottom style augments the particular active
style, and it provides adaptive prompting /
helping [15] for carrying out the operations in
case inability to perform the task or high error
rates are d ynarnically detected.

Document browsing task. The requirement to provide
accessibility of the resulting browsers by motor-impaired
users, necessitated the design of dialogue for enabling
motor-impaired users explore page contents and activate
links. One globally applied technique has been to support
hierarchical scanning of all objects in the interface via binary
switches. In this case, motor impaired users could have
access on the original visual interface designed for able
users, though via alternative input techniques. This approach
proved to be very good for all tasks, except from the case of
page browsing; users spend a lot of time for switching
between the scroll-bar (of the page presentation) and the
visible page contents, in order to identify desirable

330

mnmtesdxatimd tminimstbzoqhlbCkm COlhbol

oftlm

~
rmbrnthnfkwbpmat orb

4
bmdmHmkkm. mpmsudaoleeUinlIm.-.. .-. . ,.,.. .,..+ .-. ,.”

~dq

13iiEl

m

Figure 11: The window on the left provides the summary of links (i.e. all links collected and presented together). The
d~ument context for each link is ~so indicated, by presenting the previous and next lines of text that e~close each
link

b@Et---

4 linkl

--EEl-
.’”..”’..’,..

..:.,

4“ DLoad

Figure 12: Link summary style. The document display
on the left is automatically adjusted, so that the
highlighted link is always visible. Dashed arrows
indicate that document context including the associated
link is above/ below visible portion. Solid arrows are
attached at visible links and point to the exact link
position in the document visible area. The number
displayed above / below the scrollbar of the links’
summary Iistbox indicates how many more links are
included above / below the first / last displayed link
within the listbox.

information / links. This has resulted in the two alternative
styles, illustrated in Figure 11 and Figure 12, which augment
the page presentation style, and are mutually exclusive.

THE UNIFIED DESIGN METHOD VERSUS DESIGN
RATIONALE AND DESIGN SPACE ANALYSIS
Design rationale methods support argumentation about
design alternatives and record the various design suggestions
as well as their associated assessments. They are employed
for the generation of design spaces which capture and
integrate design information [2] from multiple sources, such
as design discussions and diverse kinds of theoretical
analyses. QOC (Questions, Options & Criteria) [10] design
rationale is the most common method for constructing design
spaces, capturing argumentation about multiple possible
solutions to design problems; QOC can be used to
characterize the nature of contributions from diverse
approaches, highlighting the strengths and weaknesses [2].

It is clear that the employment of methods based on design
rationale for constructing design spaces, leads to a
comprehensive collection of alternative solutions (i.e.
candidate design decisions), addressing their respective
design problems, from which the most appropriate for their
purpose will be finally chosen (i.e. final design decisions).
Hence, possible alternatives are likely to exist during the
design process, however, they are removed from the final
design, since only the best choice (for each particular design
problem) should be documented as an input to the

331

implementation phase. This is fundamentally different in
comparison to the unified design method, where alternative
styles directly represent final design decisions associated to
particular user attributes. We will show that the two
approaches have different goals, provide methodologies at
different level of specialization, however, they may perfectly
work in a complementary fashion, combining the benefits of
both approaches. Firstly, we will analyze the scope of design
space analysis for diverse design problems and tasks.

Design space anaiysis is a mete-mociei for cooperative
design processes
The design space analysis method is very flexible with
respect to the subject being studied. For instance, it may be
initiated during atypical hierarchical task analysis method in
order to create a design space for certain artifacts (e.g.
choosing the proper metaphor for operations, deciding
appropriate data visualizations, judging alternative visual
interface designs). Also, we may turn the previous process
up-side down, so that the subject of the design space
analysis could be the formulation of the hierarchical task
model; for example, making argumentation on the abstract
task hierarchy and relevant parameters (e.g. task objectives,
relationships, initiation conditions, feedback design).

In this sense, there is theoretically no restriction on how
systematic, exhaustive, analytic and multidisciplinary a
design space analysis process may become. It is argued that
the justification of such an unlimited scope of design space
analysis techniques is due to its nature of being a powerful
design-process meta-model, rather than a specific design
methodology. Any systematic methodology for cooperative
interface design may be instantiated through the specific
regulations and dynamics of design space analysis.
Moreover, it is believed that this meta-model is expressive
enough to even manage the organization characteristics of
the more general case of group-based decision making. This
property enables design space analysis to be applied for
virtualiy any problem domain; however, it should be used in
conjunction with concrete and specialized design methods
(many of which may be employed simultaneously within a
single design project) when resolving specific design
problems.

This is one good reason why, in practice, design space
analysis techniques have been mainly employed in the
context of scenario-based design, where the key properties
are argumentation, assessment and exchange of ideas over a
collection of multiple concrete design artifacts serving a
common purpose. If speciai purpose design practices are
needed, such as hierarchical task analysis, design verification
(e,g. performed via modei-checking techniques), device-level
interaction design (e.g. employing event-based notations),
etc, the design space analysis provides only the framework
for communicating design ideas, while it clearly does not
provide the concrete design methodologies required.

Process-oriented versus artifact-oriented design
methodologies
As it has been previously discussed, the design space
analysis technique constitutes a design process meta-model.
Hence, it is primarily process-oriented and it gives particular
emphasis on the organization of the design process, by
means of a systematic communication and argumentation
among designers, requiring well formulated and documented
desire suwzestions.. .

PI. Is an explicit strategy provided for the construction of
design alternatives ?

UDM: Yes. The hierarchical polymorphic task analysis.
DSA: No. The design space analysis is a meta-model for

design processes.
P2. Are the design alternatives produced considered finalized

/ under discussion ?
UDM: All design alternatives are final design decisions.
LISA: The design alternatives included are prtmarily under

discussion / argumentation.
P3. What is the primary parameter giving birth to design

alternatives ?
UDM: Different user attribute values.
DSA: Design criteria. It is also natural that neu design ideas

precede the identification of their associated criteria /
properties.

P4. How is the space of design alternatives related to the final
design ?

UDM: All design alternatives (i.e. styles) are part of the final
design outcome.

DSA: The design space includes the final design, and it
extensively encompasses additional information.

P5. How are design alternatives related to each other ?

UDM: Run-time relationships (exclusion, <ompatibility,
substitution, augmentation).

DSA: They have an arbitrary number of design
relationships (criteria-based).

P6. What is the role of design rationale in the space of design
alternatives ?

UDM: Its a semantic “indexing” of the finalizeci alternatives
to be implemented.

DSA: It semantically bridges (non-finahzed) design
alternatives and summarizes design pr~)perties.

P7. How is the size of the design space documentation
practically affected ?

UDM: It is increased by considering new user attribute
values (i.e. polymorphism factor is increased).

DSA: Practically, the design space is enlarged if more
designers are engaged in the design process.

Table 2: Key issues concerning the life-cycle of design
alternatives in: (i) unified design method (UDM); and
(ii) design space analysis technique (DSA).

On the other hand, the unified design method is primarily
targeted on the production of finalized design artifacts into
a form which is meaningful and mostly appropriate for the
implementation of user-adapted interfaces. This is a
fundamental difference between the two methods, which, as
it will be explained later on, can be beneficially exploited
through their combination into a comprehensive design
procedure encompassing both process-oriented and artifact-

332

cross–reference

1 initiation I

Figure

space

.
:.. ..

, produce;
~documentation:.. .

ig

\

dser attributes
(polymorphism
triggered),
polymorphic
task hierarchies)

ied

=111

LE&x-J I ij~&;a;.-J........................
--%%4

13: The fused design process model for combining the unified design technique with the design space analysis

oriented properties. Both the design space analysis and the
unified design method generatedesign spaces consistingof
alternative dialogue patterns. However, significant
differences exist such as: the way design alternativesare
generated, their relationship with respect to the final
interfacedesign, etc. We have identified seven key issues
which concern the life-cycle of design alternatives within
each design technique. We show how these issues are
addressed by the unified design method (UDM) and the
design space analysis method (DSA) in a manner
demonstrating their artifact-oriented and the process-oriented
nature respectively (see Table 2).

Fusing unified design and design space anaiysis
methods
The design space analysis and the unified design method can
be combined into a comprehensive design process. It is
argued that any specialized design technique can benefit by
being combined with the design space anaiysis approach. In
our fused process mociei (see Figure 13), the overali design
process is initiated by the polymorphic task anaiysis method.
The “poiymorphose” action of the unified design method
wili dictate the necessity for designing sub-hierarchies
addressing specific user attsibute values. In this context, such
design decisions are analyzed and discussed by constructing
appropriate design spaces. When finai decisions are reached,
they are fetched to the unified design sub-process, where
they are recorded. Additionaiiy, cross-references exist
between the unified design documentation and the
documentation of design spaces for: (i) elaborating design
decisions (i.e. from the unified design documentation to
design spaces’ documentation); or (ii) summarizing design
decisions (i.e. from design spaces’ documentation to unified
design documentation).

SUMMARY AND CONCLUSIONS
The main purpose of the design information consolidated
during the design process is to support subsequent
development phases iike target implementation and / or
usability evacuation. In the context of user-adapted
interaction, where an interactive application is able to adapt
itseif to individual end-user requirements, the design of
alternative dialogue patterns is necessarily involved,
reflecting the differing requirements and characteristics of
end-users. Such alternative designed artifacts may exciude
each other when designed for the same user tasks, if they are
associated with incompatible user attribute vaiues (e.g.
expert / naive user, abie / motor-impaired user).

The unified design method has been constructed in order to
enabie the expression of the user-adapted interface diaiogue
design artifacts into a singie form. The polymorphic task
structure, in combination with the expiicit representation of
user attributes and the expression of the selection logic for
diaiogue alternatives, is directly mapped to a moduiar
component-based architectural modei for user-adapted
interfaces. The unified design approach, even though it
explicitly introduces the notion of user representation and
seiection logic for alternative artifacts, it does not restrict the
employment of any availabie user modelling tool or
knowiedge representation framework for design iogic.

ACKNOWLEDGEMENTS
The work reported has been partialiy funded by:

(i) The ACTS Programme of the Commission of the
European Union (DG XIII), under the project AVANTI
AC042 (Aabptable and Adaptive Interaction in Multimedia
Telecommunications Applications). The partners of the
AVANTI consortium are: ALCATEL Itaiia (Siette division);

333

IROE-CNR, Italy; Institute of Computer Science-FORTH,
Greece; GMD, Germany; VTT, Finland; University of
Sienna, Italy; TECO Systems, Italy; STUDIO ADR, Italy;
MA Systems and Control, UK.

(ii) The TIDE Programme of the Commission of European
Union (DG XIII), under the project ACCESS TP 1001
(Development Pla~orm for Unijled Access to Enabling
Environments). The partners of the ACCESS consortium are:
IROE-CNR, Italy; Institute of Computer Science-FORTH,
Greece; University of Athens, Greece; RNIB, UK;
University of Hertfordshire, UK; SELECO, Italy; MA
Systems & Control, UK; Hereward College, UK; National
R&D Centre for Welfare and Health, Finland; V’IT, Finland;
Pikomed, Finland.

REFERENCES
1. Akoumianakis, D., Savidis, A., Stephanidis, C. An Expert
User Interface Design Assistant for Deriving Maximally
Preferred Lexical Adaptability Rules, In Proceedings of the
3rd World Congress on Expert Systems, Seoul (Korea), 5-9
February 1996, 1298-1315.

2. Belloti, V. Integrating Theortecians’ and Practitioners’
Perspectives with Design Rationale. In proceedings of the
lNTERCHI ’93 conference on Human Factors in Computing
Systems (April 24-29), Amsterdam, Netherlands, 101-106.

3. Card, S., Moran, T., Newell, A. The psychology of
Human-Computer Interaction, Hillsdale, NJ, Lawrence
Erlbaum,

4. Foley, J. D., Wallace, V, L., Chan, P.. The human factors
of computer graphics interaction techniques. IEEE Computer
Cr. & Appl, 4, 11 (November 1984), 13-48.

5. Hartson, H. Rex., Siochi, Antonio. C., and Hix, Deborah.
The UAN: A User-Oriented Representation for Direct
Manipulation Interface Design. ACM Trans. Inform. Syst. 8,
3 (July 1990), 289-320.

6. Hill, R,D. Supporting Concurrency, Communication, and
Synchronization in Human-Computer Interaction - The
Sassafras UIMS, ACM Trans. Cr. 5, 3 (July 1986), 179-
210.

7. Hoare, C. A. R. Communicating Sequential Processes. In
Commun. ACM 21, 8 (Aug, 1978), 666-677.

8, Johnson, P., Johnson, H., Waddington, P, Shouls, A.
Task-related knwoeldge structures: analysis. modelling, and
applications. In Jones, D. M.; Winder, R. (Eds), People and
computers: from research to implementation, Cabridge
University Press, 1988, 35-62.

10. McLean, A., McKerlie, D. Design Space Analysis and
Use-Representations. Technical Report EPC- 1995-102, Rank
Xerox, 1995,

11. Myers, B. A. A New Model for Handling Input. ACM
Trans. Inform. Syst. 8, 3 (July 1990), 289-320.

12. Olsen, D. JR. Propositional Production Systems for
Dialog Description. In Proceedings of the CHI’90
Conference on Human Factors in Computing .!!,ystems(April
1990), 57-63, ACM, New York.

13. Payne, S., J., Green, T. R. G. The user’s perception of
the interaction language: a two-level model. In Proceedings
of the ACM CHI’83 Conference on Human Factors in
Computing Systems, New York, 202-206.

14. Savidis, A., Stephanidis, C, Developing Dual Interfaces
for Integrating Blind and Sighted Users: the HOMER UIMS.
In proceedings of the ACM CHI’95 conference in Human
Factors in Computing Systems, Denver, Colorado, May 7-11,
106-113.

15. Schneider-Hufschmidt, M., Kuhme, T,, Malinowski, U.
Adaptive User interfaces (Eds). North Holland, 1993,

16. Stary, C. Integrating workflow representations into User
Interface design representations, In Software Concepts and
Tools, Vol. 17, December 1996.

17, Stephanidis, C. Towards User Interfaces for All: some
critical issues. Panel session on User Inte?jtices for All:
Everybody, Everywhere, and Anytime, In proceedings of the
HCI International’95, Tokyo, Japan, July 9-14. Vol 1, 137-
142.

18. Vergara, H. PROTUM - A Prolog basal tool for user
modelling. Bericht Nr. 55/94 (WIS-Memo 10), University of
Kostanz, Germany, 1994.

19. Wise, G. B., Glinert, E. P. Metawidgets f{}rmultimodal
applications. In proceedings of the RESNA ‘9.~ conference,
Vancouver, Canada, June 9-14, 455-457.

9. Kobsa, A. Modelling the user’s conceptual knowledge in
BGP-MS, a user modelling shell system. Computational
Intelligence 6, 1990, 193-208,

334

