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Abstract 
Wormhole routing, the latest switching technique to be 
utilized by massively parallel computers, enjoys the 
distinct advantage of  a low latency when compared to 
other switching techniques. More simulation tools would 
prove beneficial to the communication research 
community to aid in evaluating wormhole routed 
algorithms. These tools should reveal the optimum use of 
the network resources, which will allow for new 
algorithms to be compared against previously proven 
algorithms. Some of  these resources include topology, 
buffers, virtual channels, and message size. The 
contribution of  this research is a simulator that simulates 
network activity for three selected wormhole routed 
algorithms. The simulator provides an optimal network 
setting for each of  the three simulated algorithms. The 
simulator will allow for settings other than reported in the 
literature. Thus allowing for new results for each 
algorithm to be achieved. Experimental results with 
various settings will be shown, to coincide with previous 
observations that will substantiate the integrity of  the 
simulator. These results will then be used to deduce an 
optimal setting for each algorithm. These settings differ 
from previous reports in the literature for each algorithm. 

1 Introduction 
Since the inception of  computers, the need has continually 
arisen for more and more processing power along with 
more storage space. This leads to joining multiple 
processors together so a group of  processors may act like 
a single processor. Super computers address this need in 
the form of  a parallel architecture or massively parallel 
computer, MPC. The communication subsystem for these 
processors is known as the interconnection network [7]. 
A node is referred to as a computing device on an 
interconnection network. Figure 1 illustrates the typical 
configuration for a node on an interconnection network. 
Each node contains its own processor, memory, and 
router. A router  handles the communication functions. 
These nodes communicate with each other by passing 
messages. Therefore the performance of  the parallel 
system is dependent on the interconnection network. 
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A direct network is the most popular classification of  
interconnection networks because it scales well. A set of  
nodes is connected to a subset of other nodes in this form 
of network [7][10]. Switching refers to the manner in 
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which data are routed through an interconnection network 
of  nodes. One of the main reasons for switching is that 
not all the nodes have a direct connection from the Source 
to the destination node. Various switching techniques 
exist for data routing, such as circuit switching, packet 
switching which is also called store and forward (SAF), 
virtual cut-through, and wormhole routing. These 
techniques differ in the relationship between the size of  
physical unit of  data and the size of  the message flow 
control unit [7][8][17]. 

Wormhole routing splits a message into smaller units 
than packets, which are called flits. Each message 
contains one header flit which carries the routing and 
control information and the remaining data for t h e  
message is stored in the trailer flits. The header flit 
always goes first to allocate a path for the trailer flits. If  
the header flit encounters a wait, the message is not stored 
in the current node's memory but blocked in place on the 
network. Thus, smaller memory requirements exist for 
each node on the network. For this to occur small, fast, 
and compact touters had to be developed to allow for the 
flits of a message to remain on the network. Therefore, 
wormhole routing does not have to incur the delay of  
storing and retrieving the components of  a message when 
an output channel is not available. If  an output channel is 
available, the header flit is routed and the remaining 
trailer flits follow in a pipeline style fashion. During any 
instance of  a message traversing a network, the flits of  a 
message will be located in multiple routers. Figure 2 
illustrates how these flits from a single message may be 
located in multiple nodes on a network. A positive 
attribute of  this switching technique is the nearly distance 
insensitive trait it exhibits for the latency [7][10]. 
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Figure 2 Flits from a message in multiple routers 

2 Wormhole Routing as a Switching 
Technique 
The main metric utilized to evaluate the performance of 
communication networks is communication latency 
[1][3][4][7][12][13][14][16]. This time begins when a 
message enters the network and ends once the message is 
received at the destination node. One of  the most 
important factors to determine the communication latency 
is the switching technique employed by the network. The 
most popular switching technique today for a MPC is 
wormhole routing [10]. Some examples of  commercial 

systems that utilize wormhole routing are the Cray T3D, 
Arnetek 2010, and the J-machine, which was constructed 
at the Massachusetts Institute of  Technology [7][10][11]. 

The resources in a wormhole switched direct network are 
the physical channels and buffer space [10]. For the 
header flit to be passed to the next node from the current 
node, it has to acquire both a channel and buffer space for 
the next node. Once the resources are acquired, they are 
not relinquished until the final flit of  the message has 
exited a node. This fact leads to one of  the challenges of  
wormhole routing, the possibility for deadlock. A 
deadlock occurs when a set of  processes has resources 
allocated and the processes will never complete due to 
other processes having the remaining resources allocated 
[18]. Deadlock is avoided in wormhole routed networks 
by virtual channels and the routing algorithm used to route 
the flits through the network [7][11]. Virtual channels 
allow a single physical channel to be utilized by more than 
one message [6]. A good routing algorithm must allocate 
these virtual channels and buffer space in a manner that 
relieves the possible contention between multiple 
messages for these resources [7][11]. Virtual channels 
allows several messages to gain access to the physical 
channel which allows for blocked messages to be passed 
by non-blocked messages that have access to the 
necessary resources [10]. Virtual channels also allow for 
the network to be logically disjointed into multiple 
subnetworks. A disadvantage of  virtual channels is the 
routing complexity that is added to each router. After a 
break-even point, additional v ~ l  channels will only add 
to the latency [6][7]. 

A topology may be classified by the number of  
neighbors for each node. A popular classification of  
direct networks is an n-dimensional mesh. A node in a 
mesh network has either n or 2n neighbors depending on 

its position in the network. A torus is a special instance 
of  a mesh that features a wrap-around strategy. Figure 3 
illustrates a 3X3 mesh. A torus has both top to bottom 
along with right to left side wraps. As an example in 
figure 3, nodes one, two, and three have direct links to 
nodes seven, eight, and nine respectively. And, nodes 
one, four, and seven have direct links to nodes three, six, 
and nine respectively. 
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Topologies may be compared on the basis of  their 
bisection width. Bisection width is the minimum number 
of  channels that must be removed from a network to 
partition the original network into two equal subnetworks 
[7][10]. Figure 4 illustrates the bisection of  a mesh 
network by removing three links. The heavy dark line 

Figure 4 Bisection of a mesh network 
Routing algorithms determine the path taken by a message 
while traversing the network. These algorithms may be 
classified by various levels. Unieast routing occurs 
when a message only has one destination and multieast 
routing is when a single message may be delivered to 
multiple addresses. 
Dimension ordered routing is a classification of  routing 
algorithms that dictates all paths in one dimension must be 
traversed before paths in another dimension are visited. 
Adaptivity is an algorithm's ability to route messages 
along other paths which are dependent on network 
conditions. Deterministic algorithms will always yield 
the same output channel regardless of  the network 
activity. Oblivious algorithms will make a random 
selection to determine the output channel when a choice 
of output channel is available. Minimal routing 
algorithms will supply paths that will carry the message 
closer to the intended destination. Nonminimal 
algorithms may supply paths that take the message 
further away from the intended destination in the presence 
of  faults or heavy traffic. A fully adaptive minimal 
algorithm may select from all the available minimal paths 
based on current network conditions [7][10]. 

In the past, most wormhole routed algorithms were 
developed as deterministic and unicast based. The current 
trend is to develop adaptive algorithms that support 
multicast message passing techniques. More tools are 
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needed that will allow for the study of  different network 
settings for wormhole routed networks. These settings 
include the number of  virtual channels, the size and 
number of  flit buffers, the topology, and message size. 
These tools should also address the trade off when 
additional virtual channels become prohibitive due to 
greater communication latency [7] [ 10] [ 11 ]. 

3 Research Goals 
The primary contribution of  this research is a simulator 
that models selected wormhole routed algorithms and 
through the use of  various input parameters, yields an 
optimum network setting for each algorithm. The 
simulator allows for other network configurations than 
reported in the literature, thus achieving new results. The 
simulator was written in C++. Other simulators have been 
developed and used to achieve simulated results for 
wormhole routing [1][3][4][7][12][13][14][16]. The 
input parameters simulate resources on the network. 
Some of  the parameters include topology, message size in 
flits, number of  buffers and size of  the buffers in flits, 
number of  virtual channels, the percentage of  faulty 
nodes, and the number of  messages. A structure variable 
is the central processing element for the simulator. The 
structure variable is used in C to group fields into a 
record structure [9]. This structure variable keeps track of 
the data as it pertains to each flit on the network during 
the simulation. Flits are simulated traversing the network 
by updating the value of  these variables. Some of  these 
variables include the message and flit identification 
number, address information, the number of  walt cycles, 
and the current number of  hops. The wait cycles variable 
is incremented by one when a lock on a resource is 
unsuccessful. The latency is a function of  the number of 
hops and the wait cycles incurred by all the messages for a 
given simulation. The simulator injects messages and 
determines message destinations in a random fashion. 
The simulator also allows for a manual injection of 
messages to simulate hotspots. 

4 Selected Wormhole Routed 
Algorithms 
All wormhole routed algorithms address the two global 
issues facing this switching technique, deadlock and flow 
control. The manner in which each algorithm addresses 
these issues are the differentiating factor between the 
algorithms. In other words, each algorithm differs in how 
the flits are routed through the network and how resources 
are allocated to a message [10][11]. The objective of this 
study is to develop a flit level simulator that simulates the 
network activity of  selected wormhole routed algorithms. 
The simulator accepts input parameters, which are the 
resources for a wormhole routed network. Some of the 
output parameters of  the simulator include latency, virtual 
channel utilization, and bisection utilization. The range of 
input parameters are constructed such that various 
network settings may be utilized for experimentation 

purposes to arrive at an optimal configuration for each 
simulated algorithm. The simulator has provided some 
previously established results for wormhole networks. 
These results will be displayed as evidence of  the integrity 
of the simulator. And, these results will also be used to 
determine the most efficient use of  the network resources 
to provide an optimal setting for each simulated 
algorithm. A survey of  the literature was conducted to 
arrive at three wormhole routed algorithms. The selected 
algorithms display the current trends in wormhole routed 
networks. The algorithms are *Channels, NHop, and f- 
cube2. Each of these algorithms uses a dependency graph 
to detect deadlock [1][3][4]. 

*Channels was selected because it is a fully adaptive 
minimal deadlock free algorithm that is not dependent on 
the size of  the network or the size of  the message. The 
*Channels algorithm was developed for the N 
dimensional toms. The number of  virtual channels 
utilized is not dependent on the dimensions of  the toms. 
*Channels avoids deadlock by way of  using two 
subnetworks. These two subnetworks are actually a 
means of  segregating the virtual channels associated with 
a physical channel into two groups. The two groups are 
the nonstar virtual channels and the star Virtual 
channels. A message initially utilizes the nonstar 
subnetwork by way of the noustar virtual channels. While 
traversing the nonstar subnetwork a message is fully 
adaptive minimal. I f  a message encounters a deadlock 
while being classified as a nonstar message, the message 
is simply converted to a star message and begins to utilize 
the star subnetwork through the star virtual channels. A 
wait is recorded for the message during the conversion 
process. Star network messages do not carry the fully 
adaptive minimal privilege. These messages employ 
dimension ordered routing beginning with the x-axis. A 
nonstar message may also be converted to a star message, 
if the message encounters a wrap-around, which is 
associated with the toms topology. Twenty-five percent 
of  the virtual channels are used to compose the nonstar 
subnetwork and the remainder of  the virtual channels 
makes up the star subnetwork [1]. 

The negative hop algorithm, NHop, was selected due to 
its investigation into the possibility of  developing 
wormhole algorithms from previously proven SAF 
algorithms. The flexibility of  NHop is demonstrated in its 
ability to segregate a physical channel into multiple virtual 
channels based on the topology. The formula used to 
derive the necessary number of virtual channels per node 
for the mesh is [n (k - 1) / 21+1, and [n (k/2) / 21+1 for 
the toms, where k is the number of  nodes and n is the 
number of dimensions. These formulas must provide at 
least one more virtual channel than the total number of 
negative hops possible for a topology for the algorithm to 
guarantee deadlock free routing. Hop schemes refer to 
the current number of  hops of a message. The NHop 
algorithm labels nodes in a fashion that allows for a 
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message to take a hop from a node with a higher label to a 
node with a lower label or, from a lower labeled node to a 
higher labeled node almost "intermittently. Figure 5 
illustrates this concept. A negative hop occurs when a 
message goes from a node of  a higher label to a node with 
a lower label. Otherwise, a hop is deemed a non- 
negative hop. 

( 

( 

( 
Figure 5 A possible labeling of a 3X3 2D mesh for the 
NHop algorithm 
Each time a message takes a negative hop the class of the 
message is incremented by one. The virtual channels are 

segregated by class. A message will always use the 
corresponding class of  the virtual channel as the message 
itself. This means if a message has taken three negative 
hops, it will have a class of  three. And hence attempt a 
lock on a virtual channel of  class three for its next hop. 
An unsuccessful lock on a virtual channel will lead to a 
wait being recorded. This algorithm has deficiencies of  
not favoring hot spots and possibly necessitating the need 
for too many ~ channels for most networks [3]. 

The f-cube2 algorithm was selected to model since it 
displays resiliency in the face of  network faults. The 
algorithm is also fully adaptive minimal however, this 
requirement is relaxed in the face of network faults. A 
network fault(s) is described to be a fault set during any 
instance of  the algorithm. A fault set may be described as 
an inoperable node, or a link, which connects two nodes. 
A message traverses the network until a fault set is 
encountered. Once a fault set is encountered the message 
is merely routed around the faulty region or f-region. To 
aid in the routing of  messages around the f-region the 
f-cube2 algorithm uses fault rings and fault chains, f-rings 
and f-chains respectively. These rings are actually the 
non-faulty links and non-faulty nodes that are around a 
faulty node or a faulty link. Figure 6 illustrates the 
concept of  f-rings for a 5X5 2D mesh and figure 7 
illustrates an f-chain for a 3X3 2D mesh. 
. ,  , ~ ~ , . a n o n  faultynode 
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! It • • w a non-faulty link 
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Figure 6 Formation of f-rings 
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f-chain 
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Figure 7 Formation of f chains 
The fr ing may only resemble a rectangular region 
Routing on the boundary of  the network is accomplished 
by the formation of  f chalus An f chain is the non faulty 
links around a faulty link, which exists on the boundary of  
the network. An f-chain from one fault set may not 
overlap with the f-chains or the f-rings of  another fault set. 
The algorithm mandates that at least two virtual channels 
are available per node to accommodate fault tolerance and 
non-overlapping fault rings. Each virtual channel is 
labeled as being within a class as either horizontal or 
vertical. A message also has a type of either horizontal or 
vertical. A message may only use the class of  virtual 
channels to coincide with the type of  the message. Since 
virtual channels will aid in the overall network 
performance [6], f-cube2 allows for a pool of  virtual 
channels to be available at each node. A message will 
first attempt to lock a virtual channel that coincides with 
its class. If  this virtual channel is not available, then a 
request is made to obtain a virtual channel from the free 
pool. If  this request is unsuccessful, a wait is recorded for 
the message [4]. 

5 Simulation Results 
Some results obtained from the simulator will be 
presented in this section. Some of  these results coincide 
with results obtained from other simulators with the same 
settings, thus providing integrity for this simulator. The 
presented results will provide a relationship between the 
network setting and latency. These results will then be 
used to arrive at an optimal setting for each algorithm. 

The *Channels algorithm was simulated in [1] with a 
(31,2) toms, 250 flits per buffer, sixteen virtual channels 
per router, message sizes of  fifteen and thirty one flits, 
and the network volume was increased up to sixty 
messages. The simulator extends these network 
configurations to include a (50,2) torus, fifty to 500 flits 
per buffer, from four to fifty two virtual channels per 
router, and up to 100 messages for the network volume. 
The buffer space is segregated evenly into the input and 
output buffers [1]. The experimental process was divided 
into four groups where the flit size of  the messages and 
the number of  nodes for the topology differentiated the 
groups. Within each group six experiments were 
performed. In these six experiments, the flits per buffer 
and the number of virtual channels were varied. The 
simulator was executed at various levels of  network traffic 
and at each level an average was taken to arrive at the 
latency for a given setting. The latency increased as the 
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network volume increased [1][7]. This is due to more flits 
being on the network competing for resources and thus the 
model is recording more wait states. This denotes 
messages as they are converted from a nonstar message to 
a star message. When the size of the topology increases, 
more nodes exist on the network. Thus, each message has 
the possibility of traveling a further distance to reach its 
destination. By traveling a filrther distance a message has 
to lock more resources and may encounter more wait 
cycles in an attempt to lock these resources. If  resource 
contention were not encountered, then the latency for a 
small topology would be nearly the same as a larger 
topology, since the simulator simulates a wormhole routed 
network. Figure 8 illustrates that more wait cycles were 
encountered by the larger 2500 node topology than the 
smaller 961 node topology. 

latency •(31,2) torus 961 nodes 

135180~90 ~ + ÷  + (50,2) torus 2500 nodes 

configuration, was the same topology but the network 
volume was doubled. And, in an effort to reduce the 
expected increase in latency for the extra volume, the 
buffers per router were increased to forty eight. The 
initial configuration continued to produce a lower latency, 
which means more network traffic can not necessarily be 
compensated for by more buffers for this algorithm. Next, 
a (16,2) mesh with the same flits per message and buffers 
per router was compared against the initial configuration. 
The initial configuration again displayed a lower latency 
than the new configuration. This reveals the importance 
of the wrap around strategy of the torus [7]. Also, the 
distance insensitive routing traits of wormhole routing are 
evident here by traversing 512 nodes with a lower latency 
than traversing 256 nodes [1][3][4][7]. These results 
were also achieved in [3] for the literature settings. 
Figure 9 illustrates how a toms with a small message size 
may out perform other configurations that have more 
buffers per router and less nodes for the topology for the 
NHop algorithm. 

latency • (8,3) torus 
4, T 160" I- . / *  20 messages 

I I I Imessages t / / +  16 buffers 
" I I I I 120 * (8,3) torus 

15 30 45 60 40 messages 
Figure 8 Effect of number of nodes on 8 0 T  ~ + "  / •  48buffers 
latency for the *Channels algorithm ~ + (16,2) mesh 
To provide an optimal setting, all twenty four 40 20messags 
experiments were compared to select the setting that 16 buffers 
provided the overall lowest latency for the *Channels message size in flits 
algorithm. This was a fifteen flit message size, (31,2) 
topology, 150 flit buffer space, and five virtual channels. 

The literature settings for the NHop algorithm are an 
(8,3) mesh, an (8,3) toms, a (16,2) toms, either sixteen, 
eighteen, or twenty four buffers per router, a message size 
of twenty flits, and four flits per buffer [3]. The simulator 
extends these configurations to include a (16,2) mesh, 
either eight, thirty six, or forty eight buffers per router, a 
message size from five flits to forty flits in increments of 
five, and from one to 100 messages for the network 
volume. The empirical structure for the NHop 
experiments were structured to evaluate the latency and 
the virtual channel utilization. The fn'st latency 
experiment began with an (8,3) toms that featured twenty 
messages for the network volume and sixteen buffers per 
node. As expected, the latency increased with the 
message size [3][7]. This also revealed the effect of the 
message size on the latency for the NHop algorithm. A 
larger message size contributes to more flits on the 
network, which yields more congestion and latency for the 
network. A larger message size also requires more time 
for the router to handle the additional flits of a message. 
The relationship of message size and network volume to 
latency is supported by the results in [1][7]. The next 

Figure 9 Effect of message size on latency for the 
NHop algorithm 
An issue with the NHop algorithm is the possibility of too 
many virtual channels for most networks [3]. Various 
topologies were used for this experiment with fifteen flits 
per message and thirty-six buffers per router. Each 
configuration displayed a virtual channel utilization rate 
of less than twenty five percent. From these low 
utilization rates we may conclude the NHop algorithm in 
its base form may indeed require far too many virtual 
channels for some networks. This also leads to the 
assumption that the upper classes of virtual channels are 
not being utilized. From the above results, we may 
conclude the optimal configuration for the NHop 
algorithm is an (8,3) toms, thirty six buffers per router 
and a message size of ten flits. The algorithm dictates 
eleven virtual channels for the (8,3) toms. 

The literature settings for the f-cube2 algorithm are a 
(16,2) mesh, fault sets of 0%, 1%, 5%, and 10%, eight 
virtual channels per router, and a message size of twenty 
flits [4]. The simulator extends the settings to include an 
(8,2) mesh and a (32,2) mesh, a 15% fault set, and from 
two to twenty virtual channels per router. Also, up to fifty 
buffers per router, up to fifty flits per buffer, up to fifty 
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flits per message, and the network volume may be 
increased up to 100 messages. The empirical structure for 
the f-cube2 experiments were constructed to show the 
latency as it relates to the fault sets within a topology. 
Also, utilization experiments were executed to display the 
virtual channel utilization and the buffer utilization. The 
latency reacted much as would be expected for the f- 
cube2 algodtlma as faults were injected into the network. 
The latency increased for all the fault sets for the 
topologies that were simulated [4][7]. This means as 
more fault sets were encountered by the algorithm, 
messages came into contention for ~drtual channels and 
buffer space which meant logging more waits for 
resources as they were routed around the fault sets. Since 
a large number of waits were being encountered, the 
(32,2) mesh had a greater latency than the two smaller 
meshes. These waits negated the distance insensitive 
routing traits of wormhole routing. The bisection 
utilization also increased along with the latency for most 
configurations [4][7]. This was to be expected since more 
fault sets were encountered the original path of a 
message would be disrupted, thus causing more messages 
to utilize the bisection. The (16,2) mesh revealed much 
the same effect on latency for the 1% and 5% fault sets as 
it did with the 0% fault set [4]. The f-cube2 algorithm 
allows for a pool of virtual channels. This is an excellent 
opportunity to determine the optimum number of v ~ l  
charmels for the algorithm. For this experiment to show 
the resiliency of  the algorithm in the face of faults, a 5% 
fault set was injected into the network. Figure 10 displays 
the strength of  virtual channels to reduce latency for the f- 
cube2 algorithm. 

latency • (8,2) mesh 
120 + x (16,2) mesh 

+ (32,2) mesh 
90 

60 

30 
virtual channels 

5 10 15 20 
Figure 10 Latency effect for the simulated topologies 
and virtual channels for the f-cube2 algorithm 
By simply adding two virtual ehaunels, the latency is 
reduced significantly, particularly in the smaller mesh. In 
[4][7] similar results were achieved. The virtual channel 
utilization experinaent displayed much the same shape 
curve for all the topologies. The utilization decreased 
considerably above six virtual channels. Buffers were 
added to each router to determine the optimum number of 
buffers per router. This experinaent began with three 
buffers per router and was increased up to fifty buffers per 
router with the most efficient utilization being realized at 
six buffers per router [7]. As with the virtual channels, 
the larger mesh continued to display a small decrease in 

latency above six buffers. The (8,2) mesh and the (16,2) 
mesh displayed the same latency curve from six to fifty 
buffers. The results from the simulator have proven the 
optimum topology for the f-cube2 algorithm to be the 
(16,2) mesh. This topology displayed less of  a reaction in 
latency to the fault sets. The virtual channel and buffer 
utilization experiments have shown that six virtual 
channels and six buffers are the better setting for the 
algorithm. Further simulations confirrned a small 
message size of ten flits and ten flits per router to 
complete the optimum configuration for the f-cube2 
algorithm. 

6 A Comparison of the Algorithms 
The *Channels algorithm employs a relatively simple 
routing function. A weakness of  the *Channels algodthrn 
is that it is dependent on the topology. The *Channels 
algorithm was developed for the n-dimensional torus [ 1 ]. 
A strong point of the NHop algorithm is the simplicity of 
its virtual channel allocation policy. This logic is 
embedded in the router at each node [3]. With the 
simplicity of  the x4rtual channel allocation policy comes a 
weakness of the algorithm. Even though the algorithm is 
not dependent on a topology, it may require too many 
~drtual channels for some networks [3]. The results 
produced by this simulator confirm this to be true. The 
number of virtual channels are directly dependent on the 
topology [3]. The f-cube2 algorithm is only one of the 
few current wormhole routed algorithms to display a 
degree of fault tolerance [4]. This algorithm allows for a 
certain number of faults on a network while continuing to 
maintain a relatively low degree of latency. A weakness 
of the f-cube2 algorithm is the placement and shape of  the 
faulty regions [4]. Even with these liabilities, the f-cube2 
algorithm remains a good base algorithm for studying and 
developing other fault free wormhole routed algorithms. 
This fact may be attributed to the simplicity of the 
algorithm [4]. 

An experiment was developed to compare the algodthras 
on the basis of latency. The parameters for each simulation 
were chosen with regard to fairness of  each algorithm while 
continuing to conform to the requirements of the respective 
algorithms. Since the only algorithm to display any 
resiliency to faults was the f-cube2 algorithm, no faults 
were injected into the network. For this comparison 
experiment the (16,2) torus was chosen based on the other 
algorithm's topology [i][3][4]. The f-cube2 algorithm was 
not developed for the toms, so a (16,2) mesh was chosen 
for this algorithm [4]. The minimal number of virtual 
channels required by each algorithm was selected. This was 
done in regard to NI-Iop since this algorithm necessitates the 
need for a specific number of virtual channels per node [3]. 
Thus, the comparison used four virtual channels for 
*Channels, nine virtual channels for NHop, and two virtual 
channels for f-cube2. The number of buffers was selected 
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to be sixteen for each node and the flits per buffer was 
chosen to be four. This is an average configuration for 
wormhole routed simulations [3]. This will allow the 
routers for each simulation to hold the same number of flits. 
A small message size of  fifteen flits was chosen to keep the 
latency low for all the algorithms. Hotspots were 
intentionally injected into the network to insure resource 
contention to compare the algorithms. 
After all, this is what differentiates wormhole routed 
algorithms, the manner in which each algorithm assigns 
resources to multiple messages. If  no channel and buffer 
contention were encountered, each algorithm would display 
approximately the same latency. The *Channels algorithm 
clearly displayed a lower latency at all traffic levels. This 
denotes the efficiency of  the virtual channel selection 
policy, which alludes to less time waiting on resources. The 
NHop algorithm logged wait cycles in an attempt to allocate 
the same class of virtual channels. The f-cube2 model is at 
somewhat of  a disadvantage in this experiment since it may 
not utilize the torus topology and the simulator for this 
algorithm may only access one virtual channel per class of a 
message. This means both horizontal and vertical messages 
spent time waiting to allocate a virtual channel. Figure 11 
displays the results of  this experiment. 

latency o'Channels 
+ NHop 
x f-cube2 "°° I 

375 
messages 

25 50 75 100 
Figure 11 A comparison of the simulated algorithms in 
regards to latency 
All of  these experiments have shown that via a small 
number of  virtual channels, the overall latency may be 
reduced. This is attributable to an asset of the wormhole 
routing switching technique, with the addition of minimal 
network resources wormhole routing may reduce the 
overall network latency. *Channels and NHop does not 
consider faults on the network, but both have good virtual 
channel allocation policies [1] [3]. The f-cube2 algorithm 
was designed specifically to acknowledge faults on the 
network [4]. Thus, if  faults were injected into the network 
for the comparison experiment, f-cube2 would be favored. 
Further, by adding several virtual channels to the free 
pool, f-cube2 would probably have an edge over NHop. 

7 Future Research 
The future research will be discussed in its relationship to 
the deficiencies of  each algorithm. Some of  this work has 
already begun and is in various stages of  development 
[4][5][15][18]. After this future work has been presented, 
modifications to the simulator will be discussed which 
will allow for simulations of  this new research. 

A weakness of  the *Channels algorithm is, it was only 
developed for the torus [1]. Future investigations could 
be initiated to determine the algorithms reaction to the 
mesh topology. The current simulator for this algorithm 
was  developed specifically for the torus and its wrap- 
around strategy. Modifications to the simulator would 
need to be made to the function, which calculates the next 
possible node for a message. The manner in which the 
function deals with the edge of a network would depend 
on the topology. More buffer space would probably be 
required to keep the latency low for the mesh since 
messages could not use the wrap-around links of  the torus 
to shorten the distance traveled by the messages. A good 
comparison experiment would be the extra buffers 
requked by the mesh to keep the latency as low as the 
"torus. 

A variation of  the base NHop algorithm was presented 
that centered on the number of  upgrades for a message 
[3]. That is, a message was allotted a certain number of  
bonus upgrades, which was calculated as the possible 
number of  negative hops minus the actual number of  
negative hops to be taken for the message. Therefore, if a 
message was unable to allocate a given class of  virtual 
channel, the message could use a bonus upgrade and 
attempt to allocate a class higher than its current class. 
This modification for the NHop algorithm is supported in 
the current design of  this simulator. The simulator could 
be modified to attempt a lock on the highest class of 
virtual channel available, if the message's current class is 
not available. 

A liability of the f-cube2 algorithm is, the f-regions must 
be rectangular. This is addressed in [5], and is a 
modification to the f-cube2 algorithm, that requires a 
virtual channel to be available for each direction of  travel 
EW, WE, NS, SN. This algorithna allows for f-regions 
with the shape of  T, L or +. The simulator may be 
modified for this improvement. The main modification 
would be to acknowledge four message types. Currently 
messages are of the horizontal or vertical type and the 
modification would be to place a message in the NS, SN, 
WE, or EW type depending on the message's direction of  
travel. 

8 Conclusions 
A summarization of  the study will now be presented. This 
will include the observations already made in the 
literature, which were used to demonstrate the integrity of  
the simulator. Also, these results were then used to arrive 
at the optimal network setting for each algorithm. 
Network volume is directly proportional to the latency 
[1][3][4][7][12][16]. The more messages that are placed 
on a network the more difficult it becomes to allocate the 
necessary resources for a message to achieve another hop 
toward its destination. This causes messages to wait and 
attempt to lock the resources again during the next 
communication cycle. The message size is also directly 
related to the latency [1][3][12]. A larger message size 
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contributes to more flits on the network, which leads to 
higher network congestion. A larger network topology 
will produce a higher latency than a smaller network 
topology [7]. This is relative to the waits encountered. If 
no waits are encountered, the distance insensitive traits of 
wormhole routing will produce nearly the same latency 
regardless of the topology size [10][11]. Therefore, 
without contention, a 512 node topology will deliver 
approximately the same performance as a 256 node 
topology. A torus topology will deliver a lower overall 
latency when compared to a mesh topology [3][7]. This is 
due to the wrap-around strategy of the torus, which allows 
messages to take a single hop to go from one edge of the 
network to the other edge of the network as opposed to 
having to traverse the middle area of the network. More 
buffers will not necessarily compensate for a larger 
message size [7]. Time will be spent at each router to 
handle the larger message size. The simulator offered a 
relatively small number of virtual channels as being the 

• point of diminishing returns. This reveals the nature of 
wormhole routing. With just minimal additional 
resources, this switching technique may reduce the latency 
of a network [10][11]. Figure 12 lists the optimum 
network setting for each of the three simulated algorithms. 
resource 

topology 

*Channels 

(31,2) torus 

NHop 

(8,3) torus 

f-cube2 

(16,2) mesh 

buffers 1 36 6 

buffer size 150 flits 4 flits 10 flits 

virtual channels 5 11 6 

message size [ 15 flits [ 10 flits [ 10 flits 

Figure 12 Optimum network settings for the simulated 
algorithms 
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