
A Flit Level Simulator for Wormhole Routing
Denvil Smith

Mississippi College
denvils@arch.eom

Abstract
Wormhole routing, the latest switching technique to be
utilized by massively parallel computers, enjoys the
distinct advantage of a low latency when compared to
other switching techniques. More simulation tools would
prove beneficial to the communication research
community to aid in evaluating wormhole routed
algorithms. These tools should reveal the optimum use of
the network resources, which will allow for new
algorithms to be compared against previously proven
algorithms. Some of these resources include topology,
buffers, virtual channels, and message size. The
contribution of this research is a simulator that simulates
network activity for three selected wormhole routed
algorithms. The simulator provides an optimal network
setting for each of the three simulated algorithms. The
simulator will allow for settings other than reported in the
literature. Thus allowing for new results for each
algorithm to be achieved. Experimental results with
various settings will be shown, to coincide with previous
observations that will substantiate the integrity of the
simulator. These results will then be used to deduce an
optimal setting for each algorithm. These settings differ
from previous reports in the literature for each algorithm.

1 Introduction
Since the inception of computers, the need has continually
arisen for more and more processing power along with
more storage space. This leads to joining multiple
processors together so a group of processors may act like
a single processor. Super computers address this need in
the form of a parallel architecture or massively parallel
computer, MPC. The communication subsystem for these
processors is known as the interconnection network [7].
A node is referred to as a computing device on an
interconnection network. Figure 1 illustrates the typical
configuration for a node on an interconnection network.
Each node contains its own processor, memory, and
router. A router handles the communication functions.
These nodes communicate with each other by passing
messages. Therefore the performance of the parallel
system is dependent on the interconnection network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
©2000 ACM 1-58113-250-6/00/0004 $5.00

A direct network is the most popular classification of
interconnection networks because it scales well. A set of
nodes is connected to a subset of other nodes in this form
of network [7][10]. Switching refers to the manner in

physical
channel

processor ~ _ ~ memory

I !

router

Figure 1 Configuration for a node
interconnection network

physical
channel

on an

which data are routed through an interconnection network
of nodes. One of the main reasons for switching is that
not all the nodes have a direct connection from the Source
to the destination node. Various switching techniques
exist for data routing, such as circuit switching, packet
switching which is also called store and forward (SAF),
virtual cut-through, and wormhole routing. These
techniques differ in the relationship between the size of
physical unit of data and the size of the message flow
control unit [7][8][17].

Wormhole routing splits a message into smaller units
than packets, which are called flits. Each message
contains one header flit which carries the routing and
control information and the remaining data for t h e
message is stored in the trailer flits. The header flit
always goes first to allocate a path for the trailer flits. If
the header flit encounters a wait, the message is not stored
in the current node's memory but blocked in place on the
network. Thus, smaller memory requirements exist for
each node on the network. For this to occur small, fast,
and compact touters had to be developed to allow for the
flits of a message to remain on the network. Therefore,
wormhole routing does not have to incur the delay of
storing and retrieving the components of a message when
an output channel is not available. If an output channel is
available, the header flit is routed and the remaining
trailer flits follow in a pipeline style fashion. During any
instance of a message traversing a network, the flits of a
message will be located in multiple routers. Figure 2
illustrates how these flits from a single message may be
located in multiple nodes on a network. A positive
attribute of this switching technique is the nearly distance
insensitive trait it exhibits for the latency [7][10].

109

routerl router2 router3

flit5 flit4 flit3 flit2 flitl [

I mmm m m m

Figure 2 Flits from a message in multiple routers

2 Wormhole Routing as a Switching
Technique
The main metric utilized to evaluate the performance of
communication networks is communication latency
[1][3][4][7][12][13][14][16]. This time begins when a
message enters the network and ends once the message is
received at the destination node. One of the most
important factors to determine the communication latency
is the switching technique employed by the network. The
most popular switching technique today for a MPC is
wormhole routing [10]. Some examples of commercial

systems that utilize wormhole routing are the Cray T3D,
Arnetek 2010, and the J-machine, which was constructed
at the Massachusetts Institute of Technology [7][10][11].

The resources in a wormhole switched direct network are
the physical channels and buffer space [10]. For the
header flit to be passed to the next node from the current
node, it has to acquire both a channel and buffer space for
the next node. Once the resources are acquired, they are
not relinquished until the final flit of the message has
exited a node. This fact leads to one of the challenges of
wormhole routing, the possibility for deadlock. A
deadlock occurs when a set of processes has resources
allocated and the processes will never complete due to
other processes having the remaining resources allocated
[18]. Deadlock is avoided in wormhole routed networks
by virtual channels and the routing algorithm used to route
the flits through the network [7][11]. Virtual channels
allow a single physical channel to be utilized by more than
one message [6]. A good routing algorithm must allocate
these virtual channels and buffer space in a manner that
relieves the possible contention between multiple
messages for these resources [7][11]. Virtual channels
allows several messages to gain access to the physical
channel which allows for blocked messages to be passed
by non-blocked messages that have access to the
necessary resources [10]. Virtual channels also allow for
the network to be logically disjointed into multiple
subnetworks. A disadvantage of virtual channels is the
routing complexity that is added to each router. After a
break-even point, additional v ~ l channels will only add
to the latency [6][7].

A topology may be classified by the number of
neighbors for each node. A popular classification of
direct networks is an n-dimensional mesh. A node in a
mesh network has either n or 2n neighbors depending on

its position in the network. A torus is a special instance
of a mesh that features a wrap-around strategy. Figure 3
illustrates a 3X3 mesh. A torus has both top to bottom
along with right to left side wraps. As an example in
figure 3, nodes one, two, and three have direct links to
nodes seven, eight, and nine respectively. And, nodes
one, four, and seven have direct links to nodes three, six,
and nine respectively.

1 2 3

7 9

F sh with numbered nodes
Topologies may be compared on the basis of their
bisection width. Bisection width is the minimum number
of channels that must be removed from a network to
partition the original network into two equal subnetworks
[7][10]. Figure 4 illustrates the bisection of a mesh
network by removing three links. The heavy dark line

Figure 4 Bisection of a mesh network
Routing algorithms determine the path taken by a message
while traversing the network. These algorithms may be
classified by various levels. Unieast routing occurs
when a message only has one destination and multieast
routing is when a single message may be delivered to
multiple addresses.
Dimension ordered routing is a classification of routing
algorithms that dictates all paths in one dimension must be
traversed before paths in another dimension are visited.
Adaptivity is an algorithm's ability to route messages
along other paths which are dependent on network
conditions. Deterministic algorithms will always yield
the same output channel regardless of the network
activity. Oblivious algorithms will make a random
selection to determine the output channel when a choice
of output channel is available. Minimal routing
algorithms will supply paths that will carry the message
closer to the intended destination. Nonminimal
algorithms may supply paths that take the message
further away from the intended destination in the presence
of faults or heavy traffic. A fully adaptive minimal
algorithm may select from all the available minimal paths
based on current network conditions [7][10].

In the past, most wormhole routed algorithms were
developed as deterministic and unicast based. The current
trend is to develop adaptive algorithms that support
multicast message passing techniques. More tools are

110

needed that will allow for the study of different network
settings for wormhole routed networks. These settings
include the number of virtual channels, the size and
number of flit buffers, the topology, and message size.
These tools should also address the trade off when
additional virtual channels become prohibitive due to
greater communication latency [7] [10] [11].

3 Research Goals
The primary contribution of this research is a simulator
that models selected wormhole routed algorithms and
through the use of various input parameters, yields an
optimum network setting for each algorithm. The
simulator allows for other network configurations than
reported in the literature, thus achieving new results. The
simulator was written in C++. Other simulators have been
developed and used to achieve simulated results for
wormhole routing [1][3][4][7][12][13][14][16]. The
input parameters simulate resources on the network.
Some of the parameters include topology, message size in
flits, number of buffers and size of the buffers in flits,
number of virtual channels, the percentage of faulty
nodes, and the number of messages. A structure variable
is the central processing element for the simulator. The
structure variable is used in C to group fields into a
record structure [9]. This structure variable keeps track of
the data as it pertains to each flit on the network during
the simulation. Flits are simulated traversing the network
by updating the value of these variables. Some of these
variables include the message and flit identification
number, address information, the number of walt cycles,
and the current number of hops. The wait cycles variable
is incremented by one when a lock on a resource is
unsuccessful. The latency is a function of the number of
hops and the wait cycles incurred by all the messages for a
given simulation. The simulator injects messages and
determines message destinations in a random fashion.
The simulator also allows for a manual injection of
messages to simulate hotspots.

4 Selected Wormhole Routed
Algorithms
All wormhole routed algorithms address the two global
issues facing this switching technique, deadlock and flow
control. The manner in which each algorithm addresses
these issues are the differentiating factor between the
algorithms. In other words, each algorithm differs in how
the flits are routed through the network and how resources
are allocated to a message [10][11]. The objective of this
study is to develop a flit level simulator that simulates the
network activity of selected wormhole routed algorithms.
The simulator accepts input parameters, which are the
resources for a wormhole routed network. Some of the
output parameters of the simulator include latency, virtual
channel utilization, and bisection utilization. The range of
input parameters are constructed such that various
network settings may be utilized for experimentation

purposes to arrive at an optimal configuration for each
simulated algorithm. The simulator has provided some
previously established results for wormhole networks.
These results will be displayed as evidence of the integrity
of the simulator. And, these results will also be used to
determine the most efficient use of the network resources
to provide an optimal setting for each simulated
algorithm. A survey of the literature was conducted to
arrive at three wormhole routed algorithms. The selected
algorithms display the current trends in wormhole routed
networks. The algorithms are *Channels, NHop, and f-
cube2. Each of these algorithms uses a dependency graph
to detect deadlock [1][3][4].

*Channels was selected because it is a fully adaptive
minimal deadlock free algorithm that is not dependent on
the size of the network or the size of the message. The
*Channels algorithm was developed for the N
dimensional toms. The number of virtual channels
utilized is not dependent on the dimensions of the toms.
*Channels avoids deadlock by way of using two
subnetworks. These two subnetworks are actually a
means of segregating the virtual channels associated with
a physical channel into two groups. The two groups are
the nonstar virtual channels and the star Virtual
channels. A message initially utilizes the nonstar
subnetwork by way of the noustar virtual channels. While
traversing the nonstar subnetwork a message is fully
adaptive minimal. I f a message encounters a deadlock
while being classified as a nonstar message, the message
is simply converted to a star message and begins to utilize
the star subnetwork through the star virtual channels. A
wait is recorded for the message during the conversion
process. Star network messages do not carry the fully
adaptive minimal privilege. These messages employ
dimension ordered routing beginning with the x-axis. A
nonstar message may also be converted to a star message,
if the message encounters a wrap-around, which is
associated with the toms topology. Twenty-five percent
of the virtual channels are used to compose the nonstar
subnetwork and the remainder of the virtual channels
makes up the star subnetwork [1].

The negative hop algorithm, NHop, was selected due to
its investigation into the possibility of developing
wormhole algorithms from previously proven SAF
algorithms. The flexibility of NHop is demonstrated in its
ability to segregate a physical channel into multiple virtual
channels based on the topology. The formula used to
derive the necessary number of virtual channels per node
for the mesh is [n (k - 1) / 21+1, and [n (k/2) / 21+1 for
the toms, where k is the number of nodes and n is the
number of dimensions. These formulas must provide at
least one more virtual channel than the total number of
negative hops possible for a topology for the algorithm to
guarantee deadlock free routing. Hop schemes refer to
the current number of hops of a message. The NHop
algorithm labels nodes in a fashion that allows for a

111

message to take a hop from a node with a higher label to a
node with a lower label or, from a lower labeled node to a
higher labeled node almost "intermittently. Figure 5
illustrates this concept. A negative hop occurs when a
message goes from a node of a higher label to a node with
a lower label. Otherwise, a hop is deemed a non-
negative hop.

(

(

(
Figure 5 A possible labeling of a 3X3 2D mesh for the
NHop algorithm
Each time a message takes a negative hop the class of the
message is incremented by one. The virtual channels are

segregated by class. A message will always use the
corresponding class of the virtual channel as the message
itself. This means if a message has taken three negative
hops, it will have a class of three. And hence attempt a
lock on a virtual channel of class three for its next hop.
An unsuccessful lock on a virtual channel will lead to a
wait being recorded. This algorithm has deficiencies of
not favoring hot spots and possibly necessitating the need
for too many ~ channels for most networks [3].

The f-cube2 algorithm was selected to model since it
displays resiliency in the face of network faults. The
algorithm is also fully adaptive minimal however, this
requirement is relaxed in the face of network faults. A
network fault(s) is described to be a fault set during any
instance of the algorithm. A fault set may be described as
an inoperable node, or a link, which connects two nodes.
A message traverses the network until a fault set is
encountered. Once a fault set is encountered the message
is merely routed around the faulty region or f-region. To
aid in the routing of messages around the f-region the
f-cube2 algorithm uses fault rings and fault chains, f-rings
and f-chains respectively. These rings are actually the
non-faulty links and non-faulty nodes that are around a
faulty node or a faulty link. Figure 6 illustrates the
concept of f-rings for a 5X5 2D mesh and figure 7
illustrates an f-chain for a 3X3 2D mesh.
. , , ~ ~ , . a n o n faultynode

X a faulty node
! It • • w a non-faulty link

I F - - D X II "11 _ . . a non-faulty link
used on the f-ring

• al
u |

Figure 6 Formation of f-rings

a non-faulty link
a non-faulty link used on the
f-chain

the faulty link on the network
boundary is not shown

Figure 7 Formation of f chains
The fr ing may only resemble a rectangular region
Routing on the boundary of the network is accomplished
by the formation of f chalus An f chain is the non faulty
links around a faulty link, which exists on the boundary of
the network. An f-chain from one fault set may not
overlap with the f-chains or the f-rings of another fault set.
The algorithm mandates that at least two virtual channels
are available per node to accommodate fault tolerance and
non-overlapping fault rings. Each virtual channel is
labeled as being within a class as either horizontal or
vertical. A message also has a type of either horizontal or
vertical. A message may only use the class of virtual
channels to coincide with the type of the message. Since
virtual channels will aid in the overall network
performance [6], f-cube2 allows for a pool of virtual
channels to be available at each node. A message will
first attempt to lock a virtual channel that coincides with
its class. If this virtual channel is not available, then a
request is made to obtain a virtual channel from the free
pool. If this request is unsuccessful, a wait is recorded for
the message [4].

5 Simulation Results
Some results obtained from the simulator will be
presented in this section. Some of these results coincide
with results obtained from other simulators with the same
settings, thus providing integrity for this simulator. The
presented results will provide a relationship between the
network setting and latency. These results will then be
used to arrive at an optimal setting for each algorithm.

The *Channels algorithm was simulated in [1] with a
(31,2) toms, 250 flits per buffer, sixteen virtual channels
per router, message sizes of fifteen and thirty one flits,
and the network volume was increased up to sixty
messages. The simulator extends these network
configurations to include a (50,2) torus, fifty to 500 flits
per buffer, from four to fifty two virtual channels per
router, and up to 100 messages for the network volume.
The buffer space is segregated evenly into the input and
output buffers [1]. The experimental process was divided
into four groups where the flit size of the messages and
the number of nodes for the topology differentiated the
groups. Within each group six experiments were
performed. In these six experiments, the flits per buffer
and the number of virtual channels were varied. The
simulator was executed at various levels of network traffic
and at each level an average was taken to arrive at the
latency for a given setting. The latency increased as the

112

network volume increased [1][7]. This is due to more flits
being on the network competing for resources and thus the
model is recording more wait states. This denotes
messages as they are converted from a nonstar message to
a star message. When the size of the topology increases,
more nodes exist on the network. Thus, each message has
the possibility of traveling a further distance to reach its
destination. By traveling a filrther distance a message has
to lock more resources and may encounter more wait
cycles in an attempt to lock these resources. If resource
contention were not encountered, then the latency for a
small topology would be nearly the same as a larger
topology, since the simulator simulates a wormhole routed
network. Figure 8 illustrates that more wait cycles were
encountered by the larger 2500 node topology than the
smaller 961 node topology.

latency •(31,2) torus 961 nodes

135180~90 ~ + ÷ + (50,2) torus 2500 nodes

configuration, was the same topology but the network
volume was doubled. And, in an effort to reduce the
expected increase in latency for the extra volume, the
buffers per router were increased to forty eight. The
initial configuration continued to produce a lower latency,
which means more network traffic can not necessarily be
compensated for by more buffers for this algorithm. Next,
a (16,2) mesh with the same flits per message and buffers
per router was compared against the initial configuration.
The initial configuration again displayed a lower latency
than the new configuration. This reveals the importance
of the wrap around strategy of the torus [7]. Also, the
distance insensitive routing traits of wormhole routing are
evident here by traversing 512 nodes with a lower latency
than traversing 256 nodes [1][3][4][7]. These results
were also achieved in [3] for the literature settings.
Figure 9 illustrates how a toms with a small message size
may out perform other configurations that have more
buffers per router and less nodes for the topology for the
NHop algorithm.

latency • (8,3) torus
4, T 160" I- . / * 20 messages

I I I Imessages t / / + 16 buffers
" I I I I 120 * (8,3) torus

15 30 45 60 40 messages
Figure 8 Effect of number of nodes on 8 0 T ~ + " / • 48buffers
latency for the *Channels algorithm ~ + (16,2) mesh
To provide an optimal setting, all twenty four 40 20messags
experiments were compared to select the setting that 16 buffers
provided the overall lowest latency for the *Channels message size in flits
algorithm. This was a fifteen flit message size, (31,2)
topology, 150 flit buffer space, and five virtual channels.

The literature settings for the NHop algorithm are an
(8,3) mesh, an (8,3) toms, a (16,2) toms, either sixteen,
eighteen, or twenty four buffers per router, a message size
of twenty flits, and four flits per buffer [3]. The simulator
extends these configurations to include a (16,2) mesh,
either eight, thirty six, or forty eight buffers per router, a
message size from five flits to forty flits in increments of
five, and from one to 100 messages for the network
volume. The empirical structure for the NHop
experiments were structured to evaluate the latency and
the virtual channel utilization. The fn'st latency
experiment began with an (8,3) toms that featured twenty
messages for the network volume and sixteen buffers per
node. As expected, the latency increased with the
message size [3][7]. This also revealed the effect of the
message size on the latency for the NHop algorithm. A
larger message size contributes to more flits on the
network, which yields more congestion and latency for the
network. A larger message size also requires more time
for the router to handle the additional flits of a message.
The relationship of message size and network volume to
latency is supported by the results in [1][7]. The next

Figure 9 Effect of message size on latency for the
NHop algorithm
An issue with the NHop algorithm is the possibility of too
many virtual channels for most networks [3]. Various
topologies were used for this experiment with fifteen flits
per message and thirty-six buffers per router. Each
configuration displayed a virtual channel utilization rate
of less than twenty five percent. From these low
utilization rates we may conclude the NHop algorithm in
its base form may indeed require far too many virtual
channels for some networks. This also leads to the
assumption that the upper classes of virtual channels are
not being utilized. From the above results, we may
conclude the optimal configuration for the NHop
algorithm is an (8,3) toms, thirty six buffers per router
and a message size of ten flits. The algorithm dictates
eleven virtual channels for the (8,3) toms.

The literature settings for the f-cube2 algorithm are a
(16,2) mesh, fault sets of 0%, 1%, 5%, and 10%, eight
virtual channels per router, and a message size of twenty
flits [4]. The simulator extends the settings to include an
(8,2) mesh and a (32,2) mesh, a 15% fault set, and from
two to twenty virtual channels per router. Also, up to fifty
buffers per router, up to fifty flits per buffer, up to fifty

113

flits per message, and the network volume may be
increased up to 100 messages. The empirical structure for
the f-cube2 experiments were constructed to show the
latency as it relates to the fault sets within a topology.
Also, utilization experiments were executed to display the
virtual channel utilization and the buffer utilization. The
latency reacted much as would be expected for the f-
cube2 algodtlma as faults were injected into the network.
The latency increased for all the fault sets for the
topologies that were simulated [4][7]. This means as
more fault sets were encountered by the algorithm,
messages came into contention for ~drtual channels and
buffer space which meant logging more waits for
resources as they were routed around the fault sets. Since
a large number of waits were being encountered, the
(32,2) mesh had a greater latency than the two smaller
meshes. These waits negated the distance insensitive
routing traits of wormhole routing. The bisection
utilization also increased along with the latency for most
configurations [4][7]. This was to be expected since more
fault sets were encountered the original path of a
message would be disrupted, thus causing more messages
to utilize the bisection. The (16,2) mesh revealed much
the same effect on latency for the 1% and 5% fault sets as
it did with the 0% fault set [4]. The f-cube2 algorithm
allows for a pool of virtual channels. This is an excellent
opportunity to determine the optimum number of v ~ l
charmels for the algorithm. For this experiment to show
the resiliency of the algorithm in the face of faults, a 5%
fault set was injected into the network. Figure 10 displays
the strength of virtual channels to reduce latency for the f-
cube2 algorithm.

latency • (8,2) mesh
120 + x (16,2) mesh

+ (32,2) mesh
90

60

30
virtual channels

5 10 15 20
Figure 10 Latency effect for the simulated topologies
and virtual channels for the f-cube2 algorithm
By simply adding two virtual ehaunels, the latency is
reduced significantly, particularly in the smaller mesh. In
[4][7] similar results were achieved. The virtual channel
utilization experinaent displayed much the same shape
curve for all the topologies. The utilization decreased
considerably above six virtual channels. Buffers were
added to each router to determine the optimum number of
buffers per router. This experinaent began with three
buffers per router and was increased up to fifty buffers per
router with the most efficient utilization being realized at
six buffers per router [7]. As with the virtual channels,
the larger mesh continued to display a small decrease in

latency above six buffers. The (8,2) mesh and the (16,2)
mesh displayed the same latency curve from six to fifty
buffers. The results from the simulator have proven the
optimum topology for the f-cube2 algorithm to be the
(16,2) mesh. This topology displayed less of a reaction in
latency to the fault sets. The virtual channel and buffer
utilization experiments have shown that six virtual
channels and six buffers are the better setting for the
algorithm. Further simulations confirrned a small
message size of ten flits and ten flits per router to
complete the optimum configuration for the f-cube2
algorithm.

6 A Comparison of the Algorithms
The *Channels algorithm employs a relatively simple
routing function. A weakness of the *Channels algodthrn
is that it is dependent on the topology. The *Channels
algorithm was developed for the n-dimensional torus [1].
A strong point of the NHop algorithm is the simplicity of
its virtual channel allocation policy. This logic is
embedded in the router at each node [3]. With the
simplicity of the x4rtual channel allocation policy comes a
weakness of the algorithm. Even though the algorithm is
not dependent on a topology, it may require too many
~drtual channels for some networks [3]. The results
produced by this simulator confirm this to be true. The
number of virtual channels are directly dependent on the
topology [3]. The f-cube2 algorithm is only one of the
few current wormhole routed algorithms to display a
degree of fault tolerance [4]. This algorithm allows for a
certain number of faults on a network while continuing to
maintain a relatively low degree of latency. A weakness
of the f-cube2 algorithm is the placement and shape of the
faulty regions [4]. Even with these liabilities, the f-cube2
algorithm remains a good base algorithm for studying and
developing other fault free wormhole routed algorithms.
This fact may be attributed to the simplicity of the
algorithm [4].

An experiment was developed to compare the algodthras
on the basis of latency. The parameters for each simulation
were chosen with regard to fairness of each algorithm while
continuing to conform to the requirements of the respective
algorithms. Since the only algorithm to display any
resiliency to faults was the f-cube2 algorithm, no faults
were injected into the network. For this comparison
experiment the (16,2) torus was chosen based on the other
algorithm's topology [i][3][4]. The f-cube2 algorithm was
not developed for the toms, so a (16,2) mesh was chosen
for this algorithm [4]. The minimal number of virtual
channels required by each algorithm was selected. This was
done in regard to NI-Iop since this algorithm necessitates the
need for a specific number of virtual channels per node [3].
Thus, the comparison used four virtual channels for
*Channels, nine virtual channels for NHop, and two virtual
channels for f-cube2. The number of buffers was selected

114

to be sixteen for each node and the flits per buffer was
chosen to be four. This is an average configuration for
wormhole routed simulations [3]. This will allow the
routers for each simulation to hold the same number of flits.
A small message size of fifteen flits was chosen to keep the
latency low for all the algorithms. Hotspots were
intentionally injected into the network to insure resource
contention to compare the algorithms.
After all, this is what differentiates wormhole routed
algorithms, the manner in which each algorithm assigns
resources to multiple messages. If no channel and buffer
contention were encountered, each algorithm would display
approximately the same latency. The *Channels algorithm
clearly displayed a lower latency at all traffic levels. This
denotes the efficiency of the virtual channel selection
policy, which alludes to less time waiting on resources. The
NHop algorithm logged wait cycles in an attempt to allocate
the same class of virtual channels. The f-cube2 model is at
somewhat of a disadvantage in this experiment since it may
not utilize the torus topology and the simulator for this
algorithm may only access one virtual channel per class of a
message. This means both horizontal and vertical messages
spent time waiting to allocate a virtual channel. Figure 11
displays the results of this experiment.

latency o'Channels
+ NHop
x f-cube2 "°° I

375
messages

25 50 75 100
Figure 11 A comparison of the simulated algorithms in
regards to latency
All of these experiments have shown that via a small
number of virtual channels, the overall latency may be
reduced. This is attributable to an asset of the wormhole
routing switching technique, with the addition of minimal
network resources wormhole routing may reduce the
overall network latency. *Channels and NHop does not
consider faults on the network, but both have good virtual
channel allocation policies [1] [3]. The f-cube2 algorithm
was designed specifically to acknowledge faults on the
network [4]. Thus, if faults were injected into the network
for the comparison experiment, f-cube2 would be favored.
Further, by adding several virtual channels to the free
pool, f-cube2 would probably have an edge over NHop.

7 Future Research
The future research will be discussed in its relationship to
the deficiencies of each algorithm. Some of this work has
already begun and is in various stages of development
[4][5][15][18]. After this future work has been presented,
modifications to the simulator will be discussed which
will allow for simulations of this new research.

A weakness of the *Channels algorithm is, it was only
developed for the torus [1]. Future investigations could
be initiated to determine the algorithms reaction to the
mesh topology. The current simulator for this algorithm
was developed specifically for the torus and its wrap-
around strategy. Modifications to the simulator would
need to be made to the function, which calculates the next
possible node for a message. The manner in which the
function deals with the edge of a network would depend
on the topology. More buffer space would probably be
required to keep the latency low for the mesh since
messages could not use the wrap-around links of the torus
to shorten the distance traveled by the messages. A good
comparison experiment would be the extra buffers
requked by the mesh to keep the latency as low as the
"torus.

A variation of the base NHop algorithm was presented
that centered on the number of upgrades for a message
[3]. That is, a message was allotted a certain number of
bonus upgrades, which was calculated as the possible
number of negative hops minus the actual number of
negative hops to be taken for the message. Therefore, if a
message was unable to allocate a given class of virtual
channel, the message could use a bonus upgrade and
attempt to allocate a class higher than its current class.
This modification for the NHop algorithm is supported in
the current design of this simulator. The simulator could
be modified to attempt a lock on the highest class of
virtual channel available, if the message's current class is
not available.

A liability of the f-cube2 algorithm is, the f-regions must
be rectangular. This is addressed in [5], and is a
modification to the f-cube2 algorithm, that requires a
virtual channel to be available for each direction of travel
EW, WE, NS, SN. This algorithna allows for f-regions
with the shape of T, L or +. The simulator may be
modified for this improvement. The main modification
would be to acknowledge four message types. Currently
messages are of the horizontal or vertical type and the
modification would be to place a message in the NS, SN,
WE, or EW type depending on the message's direction of
travel.

8 Conclusions
A summarization of the study will now be presented. This
will include the observations already made in the
literature, which were used to demonstrate the integrity of
the simulator. Also, these results were then used to arrive
at the optimal network setting for each algorithm.
Network volume is directly proportional to the latency
[1][3][4][7][12][16]. The more messages that are placed
on a network the more difficult it becomes to allocate the
necessary resources for a message to achieve another hop
toward its destination. This causes messages to wait and
attempt to lock the resources again during the next
communication cycle. The message size is also directly
related to the latency [1][3][12]. A larger message size

115

contributes to more flits on the network, which leads to
higher network congestion. A larger network topology
will produce a higher latency than a smaller network
topology [7]. This is relative to the waits encountered. If
no waits are encountered, the distance insensitive traits of
wormhole routing will produce nearly the same latency
regardless of the topology size [10][11]. Therefore,
without contention, a 512 node topology will deliver
approximately the same performance as a 256 node
topology. A torus topology will deliver a lower overall
latency when compared to a mesh topology [3][7]. This is
due to the wrap-around strategy of the torus, which allows
messages to take a single hop to go from one edge of the
network to the other edge of the network as opposed to
having to traverse the middle area of the network. More
buffers will not necessarily compensate for a larger
message size [7]. Time will be spent at each router to
handle the larger message size. The simulator offered a
relatively small number of virtual channels as being the

• point of diminishing returns. This reveals the nature of
wormhole routing. With just minimal additional
resources, this switching technique may reduce the latency
of a network [10][11]. Figure 12 lists the optimum
network setting for each of the three simulated algorithms.
resource

topology

*Channels

(31,2) torus

NHop

(8,3) torus

f-cube2

(16,2) mesh

buffers 1 36 6

buffer size 150 flits 4 flits 10 flits

virtual channels 5 11 6

message size [15 flits [10 flits [10 flits

Figure 12 Optimum network settings for the simulated
algorithms

References
1 Berman P., Gravano L., and Pifarre D. Adaptive
Deadlock and Livelock Free Routing with All Minimal
Paths in Torus Networks in Proceedings of ACM
Conference on Parallel Algorithms and Architectures
(1992) pp. 3-12.
2 Bertsekas D. and Gallager R. Data Networks Prentice
Hall pp. 1-14, pp. 363-379, pp. 493-500, 1992.
3 Boppana R. V. and Chalasani S., A Framework for
Designing Deadlock Free Wormhole Routing Algorithms
in IEEE Transactions on Parallel and Distributed
Systems (1997) vol.7, no.2.
4 Boppana R. V. and Chalasani S., Fault Tolerant
Wormhole Routing Algorithms for Mesh Networks in
IEEE Transactions on Computers (1995) voi.44, no.7.

5 Boppana R. V. and Chalasani S., Communication in
Multicomputers with Nonconvex Faults in IEEE
Transactions on Computers (1997) vol.46, no.5.
6 Dally W. J., Virtual Channel Flow Control in IEEE
Transactions on Parallel and Distributed Systems (1992)
vol.3, no. 2.
7 Duato J., Yalmanchili S., and Ni L. Interconnection
Networks, An Engineering Approach IEEE Press pp. 1-
65, pp. 401-472, 1997.
8 Freer J. Computer Communications and Networks
IEEE Press pp. 1-3, pp. 3-16, pp. 73-82, pp. 91-112, pp.
121-150, 1996.
9 Lafore R. Object-Oriented Programming in MicroSoft
C++ Waite Group Press pp. 7-16, 1992.
10 McKinely P. K. and Ni L. A Survey of Wormhole
Routing Techniques in Direct Networks in Computer
(February 1993) pp. 62-76.
11 McKinely P. K. and Robinson D. F. Collective
Communication in Wormhole Routed Massively Parallel
Computers in Computer (December 1995) pp. 39-50.
12 McKinely P. K. and Tsai Y. An Extended Dominating
Node Approach to Broadcast and Global Combine in
Multiport Wormhole-Routed Mesh Networks in 1EEE
Transactions on Parallel and Distributed Systems (1997)
vol.8, no. 1.
13 McKinely P. K. and Tsai Y. A Broadcast Algorithm
for All-Port Wormhole Routed Torus Networks in 1EEE
Transactions on Parallel and Distributed Systems (1997)
vol.7, no.8.
14 McKinley P. K., et. al. Deadlock-Free Multicast
Wormhole Routing in 2-D Mesh Multicomputers in IEEE
Transactions on Parallel and Distributed Systems (1994)
vol.5, no.8.
15 Park S. and Bose B., All-to-All Broadcasting in Faulty
Hypercubes in
IEEE Transactions on Computers (1997) vol. 46, no.7.
16 Rexford J. et. al. PP-MESS-SIM ." A Flexible and
Extensible Simulator for Evaluating Multicomputer
Networks in 1EEE Transactions on Parallel and
Distributed Systems (1997) vol.8, no. 1.
17 Stalling W. Data and Computer Communications
MacMillan pp. 436-462, 1994.
18 Tanenbaum A. S. Operating Systems, Design and
Implementation Prentice Hall pp. 122-127, 1987.

116

