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Introduction
• Neuroscientists study how filopodia (hair-like structures) 

that extend from the a neurite grow over time. 
– Currently, uses manual measurement

• Examine multiple octaves of an image, decomposed 
then reconstructed using the discrete wavelet transform 
(DWT)

• Show that this technique picks out edges from the 
background well

• Solution is to automatically detect and measure the 
filopodia
– Length
– Number



Introduction
• Human eye immediately distinguishes 

areas of interest
• Method is automatic, probably because 

the eye contains some cells that process 
edges and others that have an averaging 
effect, much like the DWT

• Successful use of  the discrete wavelet 
transform in edge detection methods [1], 
[2], [3]



• Neural image with filopodia and answer edges
• 640 X 480 pixels

– Correct pixels noted

Neurite



Traditional Edge Detection
• Automatic Edge Detection

– Looks for abrupt changes
– Edges occur at highest first derivative and zero second 

derivative
• Low threshold produces false edges
• High threshold misses edges

– Edge detectors locate (sharp) changes in intensity
• Better solution needed

– Wavelet transform splits images into approximation and 
details

– Details contain edges
– We examine edge detecting characteristics of the 2-D DWT
– Compare to common edge methods for our problem



Wavelets
• Literally a "little wave”

• Giving us



Wavelets
• The discrete wavelet transform (DWT) decomposes the image 
• 3 details and 1 approximation

– Approximation looks just like the original, only on 1/4 the scale
– Details separate horizontal, vertical, and diagonal information

• Preserves slow changing aspects in LPF 
• Quickly changing parts in HPF
• Edges become sudden changes
• Separated by this process
• Detail images contain edge information.
• Multi-resolution

– Data flows from one level to next Octave

– Can be performed recursively



First Octave 

• DWT exploits a self-
similarity
• Use the edges that appear 
at various levels of 
resolution (octaves) 
• Indicates where the 
important edges of the 
image exist



Octave 1 Sub-details



Octave 2 Sub-details



Octave 3 Sub-details



Reconstructing the Original 
Image

im′ = A3(i, j) + B3(i, j) + C3(i, j) + D3(i,j) + 
B2(i, j) + C2(i, j) + D2(i, j) + 
B1(i, j) + C1(i, j) + D1(i, j)

im’ – Reconstructed image
i - rows 
j – columns
A3 B3 C3 D3 –Synthesize octave 3
B2 C2 D2 – Synthesize octave 2
B1 C1 D1 – Synthesize octave 1 



Maxima and Minima

• Differences between pixels produces the 
maxima and minima

• Edges of interest (presence of a maxima) 
is comprised of the largest 10% of values

• Magnitude of these maxima indicates the 
“strength” (or human-noticeability) of the 
edges (contrast)



Conclusion
• The edges of interest appear more and 

more clearly, as we analyze the image for 
additional octaves

• Additional octaves do not necessarily add 
edge information

• Edge information is preserved and even 
highlighted across multiple levels of 
resolution
– Including octaves 1, 2 and 3
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