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ABSTRACT

Computers today become faster by becoming smaller. By
reducing the size of transistors, engineers are able to fit more
of them on a given size microprocessor, thus increasing the
processor’s computational power. This process cannot con-
tinue forever. It has been estimated that sometime within
the next two decades, at the current rate, engineers will be
faced with the problem of building something that is smaller
than an atom. This is as far as our current “classical” com-
puting paradigm will take us. Quantum computing is a po-
tential solution to this problem. This paradigm of comput-
ing seeks to directly exploit quantum mechanical phenomena
to perform calculations or in some way boost computational
efficiency. Some problems can theoretically be solved on a
quantum computer exponentially faster than on a classical
computer. An overview of the subject is provided here with
emphasis on quantum information processing and physical
realizations of a quantum computer. Included is a brief his-
tory of the subject, a discussion of quantum computing no-
tions such as parallelism and entanglement and their use in
quantum algorithms, and conjecture on the prospects and
pitfalls of this theory.
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1. INTRODUCTION
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The physicist Richard Feynman famously remarked in
1981 that nature was “not classical,” and therefore, a quan-
tum computer — a computer whose working would be based
on quantum mechanics rather than classical mechanics —
would be far more powerful than conventional “classical”
computers. Close to thirty years later, the field of quantum
computation and quantum information is now at a cross-
roads. Much has been accomplished, but a great deal more
remains to be done. These thirty years have seen mathe-
matical demonstrations of the superiority of quantum com-
putation over classical computation, with the discovery of
superior quantum algorithms such as Shor’s factoring algo-
rithm for factoring numbers and Grover’s search algorithm
for searching databases. These algorithms are faster than
any known classical algorithms that perform the same tasks.
That there is great potential in this field, there can be no
doubt. But when that potential can be realized (if at all) is
a subject of debate.

2. INFORMATION, MEASURED.

One of the major breakthroughs in twentieth century sci-
ence was the quantification of information. The mathemati-
cian Claude Shannon, in his landmark 1948 paper, “A Math-
ematical Theory of Communication,”[3] infused the term
“information” with mathematical meaning and measure. In
doing so, Shannon fathered the field of information theory.
The most fundamental unit of information in information
theory is, of course, the bit. A single bit of information can
represent two values — binary 0 and binary 1. All of clas-
sical information theory entails encoding information into,
transmitting, and decoding these binary states.

There is a quantum analogue to the bit — the qubit. The
qubit is represented mathematically as a two-dimensional
vector. Unlike its classical counterpart, the qubit is not lim-
ited to only two values. In fact, it can occupy an infinity
of states between “0” and “1”!. The quantum “0” and “1”
states are duly represented as vectors, and they form the
canonical basis? for the qubit. The state of any qubit will
be some superposition of these two basis vectors. For sim-
plicity, vectors will from here onwards be represented by the
following notation (known as Dirac notation):

"However, this does not mean that a single qubit can hold
infinite information. It has been proven that a single qubit
can usefully hold only as much information as one classical
bit[1]

2The canonical basis, for our purposes, is the simplest set
of basis vectors for a given vector space.



To clarify the notation: |z) is equivalent to &

The state of a qubit is represented as a linear combination
of |0) and |1). That is, a qubit ) will be represented as:

) = |0) + B 1) (1)

One of the vagaries in the qubit that follows from the laws
of quantum mechanics is that, when measured, the qubit
will simply “collapse” to either a |0) or a |1) state, no matter
what state it was in before the measurement. Which of these
two states it collapses into is determined by the coefficient of
the corresponding vector, which is the probability amplitude
(see Appendix A) of the qubit collapsing into that state
when measured. So, in equation (1) above, the probability
of obtaining a |1) state upon measurement of the qubit is
\B|2. This ability of a qubit to be ”both a 0 and a 1 at the
same time” before measurement is known as superposition.

2.1 Qubit Representations

Qubits are represented in the physical realm by any two-
level quantum system. The most popular example is the
”spin” of an electron. Any electron is uniquely defined by
four quantum numbers. One of these, the spin quantum
number, can have the values :t%. The positive value is re-
ferred to as the “spin-up” state, and the negative value the
“spin-down” state. These represent the |1) and |0) state,
respectively. On an interesting sidenote, two electrons can
occupy the same point in space at exactly the same time if
only they have opposite spins! Clearly, quantum mechanical
systems follow different rules than the more-familiar classi-
cal systems.

3. TOWARD A THEORY OF QUANTUM IN-
FORMATION

Classical information theory is a well-developed field. Many
of the concepts from that theory translate directly into quan-
tum information theory, but many more ideas have to be
introduced into this theory to take advantage of quantum
effects.

3.1 Quantum Logic

Computations on classical computers are carried out through

the use of logical operations which are represented as gates.
The familiar classical gates are NOT, AND, OR, NAND,
NOR, and XOR. The equivalent gates for performing simi-
lar operations on qubits have been developed, and are rep-
resented (in the linear algebra formalism of quantum me-
chanics) by 2x2 unitary matrices (see Appendix A). The
simplest of these is the quantum NOT gate, which is known
as the “X” gate. This gate operates by reversing the prob-
abilities for obtaining a 1 or a 0. That is, by swapping the
co-efficients of the basis vectors in the qubit state. The X
matrix, and its operation on the qubit defined in equation
(1) are shown below:

()

X ) = X(a[0) +8[1)) = B10) + 1) ()

For more information about quantum gates, please consult
Appendix B. For now, suffice it to say that it has been proven
(though I will not prove it here) that every classical gate can
be derived from a fundamental quantum gate[1] through the
use of a gate known as the Toffoli gate.

4. ENTANGLEMENT: EINSTEIN’S BUGBEAR

Entanglement is the strange phenomenon whereby quan-
tum mechanical systems become deeply interdependent. For
completely entangled systems, measuring the state of one
system immediately determines the state of the other, even
when no measurement is conducted on the other system.
This phenomenon holds true even for systems that are spa-
tially separated by arbitrary distances! Einstein did not like
this idea in the least because it seemed to imply that in-
formation could be sent faster than the speed of light. In
1935, along with Boris Podolsky and Nathan Rosen, Ein-
stein published a famous paper that presented what came
to be known as the “EPR paradox,” which was an attempt
to show how quantum entanglement, and therefore quantum
physics, were inconsistent with accepted theories of physics.

Consider the following two-qubit state:

1
V2

Here, the % multiplier implies that both the |00) state

and the |11) state are equiprobable (P(obtaining |00)) =
P(obtaining |11)) = (%)2 = ). Now, if the first qubit is
measured and found to be a 1, that immediately means that
the system is in state |11), and therefore the state of the
second qubit is 1 as well. The same holds for if the mea-
surement results in a 0, in which case the second qubit would
have to be a 0 as well. The qubits are said to be entangled.
The state described above can be created by passing a qubit
through a Hadamard gate and then through a CNOT gate[1]
(see Appendix B), and this state is known as a “Bell pair,”
or “EPR pair.” The EPR paradox involves just such a pair,
and proves that a measurement made on one qubit in the
pair can have an instantaneous effect on the other qubit in
the pair, irrespective of the distance between the two qubits.
Although intended to debunk quantum theory, this paradox
only served to strengthen it, and established entanglement
as one of the most powerful tools in quantum computation.

It is interesting to note, however, that to achieve this
apparent faster-than-light communication across vast dis-
tances, the qubits must first be moved away from each other
at finite (sub-light) speeds. In an attempt to rationalize this
concept of entanglement, we could then liken it to two peo-
ple, Alice and Bob, making a pact and agreeing to perform a
certain ritual at some precise time in the future. In this case,
the two conspirators will, to an uninformed observer, appear
to be communicating at faster-than-light speeds when they
are observed to perform the same ritual at the same time.
To fully cement the illusion, Alice and Bob cleverly decide
on a certain algorithm that they will follow to decide at what
times to perform the ritual in the future. The observer, as-
suming he has the ability to perceive the simultaneity of
Alice and Bob’s actions, would be convinced that there is,
in fact, some faster-than-light communication taking place

[¥5) = —=(100) +[11)) 3)



between Alice and Bob. However, if the observer were to in-
teract with either Alice or Bob, preventing them from per-
forming the ritual, the other person would not know of it
and would continue to perform the ritual at the decided-
upon time, thus destroying the illusion. That is, unless of
course, Alice and Bob could correctly and precisely antic-
ipate every interaction that would take place in their own
futures, so that their “plan” could account for all of them
and still maintain simultaneity in their actions. If we apply
this analogy to the qubit case directly, we are left with a
picture where a qubit avoids breaking the speed of light law
laid down by Einstein in his monumental theory of relativ-
ity, by having a complete knowledge of it’s own future! It is
absurd implications such as this one that caused Einstein to
dislike quantum physics so. But experiment has repeatedly
confirmed quantum theory as the most successful physical
theory that we have, its counter-intuitive nature notwith-
standing. Surely, we should be able to take advantage of
the possibilities that it offers.

4.1 Decoherence

“Measurement” in quantum mechanics is largely any in-
teraction of a quantum mechanical system with the rest of
the universe. Since measurement forces such a system to
collapse into a single state from a superposition of states,
any interaction of a qubit with the rest of the universe can
cause loss of information. As a consequence of this, it is ex-
tremely important to shield qubits from outside influences
for a quantum computer to be useful. Decoherence poses one
of the most difficult challenges to quantum computing. For-
tunately, error-correcting codes have been developed that
allow qubits to withstand a certain amount of decoherence.

S. QUANTUM ALGORITHMS

Quantum algorithms are different from classical algorithms
in one key respect: they make use of a concept known as
parallelism. Parallelism may be defined as the ability of a
quantum computer to perform an operation on multiple in-
puts simultaneously. This is a critically important concept.
It is the opinion of this author that it is this idea, if any-
thing, that is the essence of quantum computing. And it
is this that represents the fundamental difference between
classical and quantum computing.

Some of the notable quantum algorithms already discov-
ered that are faster than classical algorithms that perform
the same tasks are Shor’s factoring algorithm and Grover’s
search algorithm. The problem of factoring may be stated
as: “Given a positive composite number N, What prime
numbers when multiplied together equal it?”[1]. The best
classical algorithm to solve this problem takes approximately
O[61'9(1"("))1/3l"(l"("))2/3] time[2]. Quantum computing at-
tracted little mainstream attention until the mathematician
Peter Shor published a paper in 1994 detailing a quantum
algorithm for factoring numbers in only polynomial time[4].
Shor’s algorithm can factor a number in O[(in(n))®]. The
speedup that this offers over classical algorithms is tremen-
dous. A number that would take the fastest computers to-
day millions of years to factor could be factored by a quan-
tum computer using Shor’s algorithm in only a few weeks!

6. THE HUNTING OF THE QUANTUM COM-
PUTER

Armed with the now-powerful theory of quantum informa-
tion, researchers have been experimenting with many meth-
ods of physically implementing qubits and building quantum
computers. John Preskill[2] lays out five basic requirements
that a particular design must satisfy:

1. Storage: Qubits will have to be stored long enough
for useful calculations to be performed.

2. Isolation: The qubits must be sufficiently isolated
from the environment to avoid decoherence.

3. Readout: Preparation and measurement of qubits
should be efficient and reliable.

4. Gates: A universal set of logical operations (gates)
should be available for the manipulation of qubits.

5. Precision: All operations should be implemented with
high precision to ensure reliability.

Several methods have been proposed that meet the re-
quirements detailed above. Three methods which have yielded
promising results are:

1. Ion Trap
2. Cavity Quantum Electrodynamics (Cavity QED)

3. Nuclear Magnetic Resonance (NMR)

6.1 Ion Trap

In this design, each qubit is carried by an ion trapped in
a radio-frequency field. The state of each ion is a superpo-
sition of a ground state |¢g) and a stable long-lived excited
state |e), which are interpreted as |0) and |1).

A laser is used to manipulate and read the qubits. The
energy of the laser is tuned to the energy required to cause
the transition from state |0) to state |1). A |0) ion, when
illuminated, would constantly absorb and re-emit the laser
light, while a |1) state would remain dark (since the energy
of the laser is not enough to cause the transition from state
|1) to a higher energy state). This is how the two states
can be differentiated. Individual ions can be targeted easily
because of the separation between them that is caused by
their mutual electrostatic repulsion.

Logical operations are carried out on the qubits by varying
the frequency of the laser. The operation of the first quan-
tum logic gate was demonstrated by Monroe, Meekhof, et.
al. in 1995 [10] using this design. They were able to create
a quantum XOR gate (also known as the Controlled-NOT
gate) using a total of five laser pulses. The frequency of laser
pulses was of the order of 100 kHz[5]. Given this data, we
can estimate the speed of such a computer in conventional
terms: a simple NOT operation would take m -5 = 50us.
This method is limited in speed by the frequency of the
laser. It is physically impossible to increase the frequency
of the laser significantly while still maintaining precision in
the measurement of the state[2], so the Ion Trap technique
does not offer much long term promise, especially consider-
ing that computers today perform calculations several orders
of magnitude faster than this.



6.2 Cavity QED

This method is similar to the previous one in that a form
of “trap” is employed to contain the qubits, and in that a
laser is used to cause transitions in qubits. In this case,
however, the trap is an optical cavity, which is essentially
a cavity whose surfaces reflect waves of a certain frequency
and thus trap those waves within it[6]. Another difference is
that photons, rather than electrons, are the preferred modus
operandi here. The two-level system that will be used to
represent |0) and |1) is the polarization® of the photon, with
“vertical” polarization representing |0) and “horizontal” po-
larization representing |1). A group at the California Insti-
tute of Technology headed by Jeff Kimble used this method
to physically demonstrate a two-qubit operation[2] defined
as:

\H), [HYy — |H), |H),
HY, [V)a — [H), V),
\H), [H), — ¢S ), 1),

This operation changes the phase of the qubits if both are
in state |1) (horizontal polarization?), and leaves the state
unchanged otherwise.

6.3 NMR

This method is the newest, but shows the most promise.
This design uses nuclear spin within a molecule as its qubit
representation, and a magnetic field is used to establish two
distinct nuclear states[7]. This design was considered diffi-
cult to implement because normal operating temperatures
for the computer (viz. room temperature) are much higher
than that required to cause a state transition from a |0) to
a [1)[2]. This results is a very turbulent system with a large
amount of “noise.” This problem was only overcome shortly
before the turn of the century. Soon afterwards, in late 1999,
a 5-qubit quantum computer was built which was capable of
performing many logical operations, and was able to employ
quantum parallelism in its computations[9]. More recently,
in 2001, a 7-qubit quantum computer was constructed at
IBM Almaden Research Center[8]. This is the most com-
plex and most powerful quantum computer built to date.
The computer can perform Shor’s algorithm on 4-bit num-
bers, that is to say, numbers up to 15. A 7-qubit molecule
is used to perform calculations (see Figure 1).

Each of the five Fluorine molecules and the two Carbon-13
molecules function as qubits. Programming and calculations
are performed through the use of radiofrequency pulses, and
qubits are “read” by magnetic resonance.

Although NMR techniques have shown the best results
in practical quantum computers so far, it will be very diffi-
cult to use this method to build a quantum computer with
more than 10 qubits, while worthwhile quantum computers
would likely require thousands of qubits[7]. This limitation
(on NMR) arises because increasing the number of qubits in
this design can only be achieved by increasing the number
of qubits in a single molecule. Unfortunately, this results in
an exponential decrease in the Signal to Noise Ratio (SNR)

3Polarization refers to the plane of oscillation in an electro-
magnetic wave

4The actual design used “circular” polarizations, but for
simplicity I am assuming planar polarization

Figure 1: The world’s most advanced quantum com-
puter

that can be obtained. Although the SNR is already poor
at seven qubits, it is possible at this level to “average out”
the random noise to obtain useful results. This will not be
possible when there are many more qubits, so other tech-
niques will probably have to be developed before quantum
computers can become mainstream.

7. FUTURE DIRECTIONS

In recent times, an alternate paradigm of “measurement-
based” quantum computing has been proposed. In this
model, logical operations are carried out through measure-
ment rather than through the use of unitary gates. It has
been shown that this model can, in spite of its non-unitary
nature, be used to efficiently simulate any quantum cir-

cuit[12]. First proposed in 2001 by Raussendorf and Breigel[11],

this cluster state quantum computing technique has received
much attention in the past few years, and many have touted
it as the biggest development in the field in the past decade.
It is still unclear, however, that this model offers signifi-
cant advantages over previous techniques. Perhaps, at least,
there will be advantages and disadvantages that complement
those of other techniques already in use today.

8. CONCLUSIONS

Quantum computers are a dream that researchers follow
religiously every day. And every day there are new results
that both strengthen and threaten the theory of quantum
computation. Progress in science is a very strange thing: it
is accomplished, more often than not, by researchers using
all of the mental faculties available to them in an attempt to
destroy new theories. If a theory withstands this incessant
battering over time, it is taken more seriously by the scien-
tific community at large and eventually becomes accepted as
true. That quantum computation has withstood the power
of the finest minds in the world beating down on it for more
than twenty years is an impressive feat in itself. It is true
that much of the hype surrounding quantum computers is
simply exaggerated — just because quantum computers can
solve some problems exponentially faster than their classical
counterparts does not mean that they can solve all problems
that much faster. In fact, for a great multitude of problems,
no quantum algorithm has yet been discovered that is faster
than known classical algorithms. Still, quantum computa-
tion is a very young field, and it certainly harbors tremen-



dous potential for the future. And that future may only be
a few years away.
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APPENDIX
A. LINEAR ALGEBRA SUPPLEMENT

In the linear algebra formalism of quantum mechanics, a
qubit state is represented as follows:

) = al0) + 3[1)

Quantum mechanics places some constraints on the val-
ues that the co-efficients o and 8 may take. These values
represent the probability amplitudes for the states they pre-
cede in the equation. The probability amplitude is simply
that quantity which, when squared, gives the probability
(technically, the probability density) of obtaining that state.
Therefore:

laf* +18]* =1
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Figure 2: 1-Qubit gates

) | =
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Figure 3: The CNOT gate

This requirement follows from the certainty requirement
that the sum of the probabilities for all events must equal 1.

All quantum operators (also known as gates) must be uni-
tary in order to ensure that all qubit states satisfy the above
condition. A unitary matrix U is one that satisfies the fol-
lowing condition:

Ut =vu-1,

where the T symbol indicates the hermitian conjugate, the
operation of taking the matrix transpose followed by com-
plex conjugate; and ~! indicates matrix inverse. This def-
inition guarantees the following relation, which might also
serve as an alternate definition of a unitary matrix:

Ut =1,

where I represents the identity matrix.

B. QUANTUM LOGIC GATES

Logical operations may be performed on one qubit, or on
several qubits. All important 1-qubit gates are shown in
Figure 2.

All multiple qubit operations can be achieved through the
use of a “Toffoli gate” known as the Controlled-NOT gate
(also known as CNOT gate or quantum XOR gate) in com-
bination with other single-qubit operations[1]. The CNOT
gate operates on two qubits. The second qubit is “fipped”
if the first qubit, known as the control qubit, is |1). That is,
the gate behaves like an X gate if the control qubit is 1, and
otherwise does nothing. The CNOT gate is shown in Figure
3.

The @& symbol in the diagram represents modulo 2 addition
in this case. In general, for dimensions d greater than 2 (the
dimension of a qubit is 2), it represents modulo d addition.



