
Yaccscript: A Platform for Intersecting High-Level
Languages

John Healey
Emory University

Suite W401
400 Dowman Drive

Atlanta, Georgia 30322

jpheale@emory.edu

ABSTRACT
Programming paradigms are often skewed towards a partic-
ular domain of problems, thus one effective way to utilize
them is through a multiparadigm approach to software de-
velopment. One way to achieve this goal is to compile mul-
tiple languages to a single platform that can support a vari-
ety of processing models. This paper describes Yaccscript,
an extensible platform for compiling languages to a com-
mon framework, and demonstrates its effectiveness at pro-
viding interoperability between object-oriented, functional,
and logic programming through implementations of Python,
Haskell, and Prolog.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Extensible Languages, Multiparadigm Languages ;
D.3.4 [Programming Languages]: Processors—
Interpreters, Translator writing systems and compiler gen-
erators

General Terms
Languages

Keywords
Multiparadigm Programming, Lisp

1. INTRODUCTION
The study of programming paradigms has lead to con-

trasting opinions. Often, there are disagreements on which
paradigm is superior to the others or how best to express a
particular paradigm. These opinions have lead language de-
signers to construct a multitude of languages with widely
varying syntax, data, and processing models. Although

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SE’06March 10-12, 2006, Melbourne, Florida, USA
Copyright 2006 ACM 1-59593-315-8/06/0004 ...$5.00.

these languages can all express the same algorithms,1 they
are often somewhat domain-limited, solving a certain prob-
lems more easily than others.

Since the domain-specificity of a language is often closely
tied to its underlying paradigm, several language designers
have suggested constructing languages to support multiple
paradigms. One approach to this task is to create a sin-
gle all-encompassing syntax that is capable of supporting
the different paradigms. Another approach, which is used
by Yaccscript, is the creation of a common language frame-
work that allows multiple languages to interoperate, in their
native syntax, using a common platform.

The specific approach used for Yaccscript is to combine
two existing ideas from the field of computer science. As
the name implies, Yaccscript is the fusion of a compiler-
compiler2 and a scripting engine. Thus, it supports mul-
tiple languages by compiling compilers for those languages
dynamically. To make the system even simpler, the target
platform for these compilers is Common Lisp with an API
to ease interoperability between languages.

2. PRIOR WORK

2.1 Leda
Leda is a language developed at Oregon State University

to explore the unification of existing paradigms into a single
syntax. It supports imperative, object-oriented, functional
and logic programming [3]. Leda does succeed in supporting
these paradigms with a concise syntax. A shortcoming of
this approach is that its single syntax is not extensible, so it
potentially lacks the ability to incorporate new paradigms
as they are discovered.

2.2 .NET
.NET is a framework for implementing multiple languages

developed by Microsoft. The platform supports multiple
languages by compiling them to a Common Language Run-
time, which offers a unified type system as well as a byte-
code interpreter. The task of porting any given language to
the .NET platform involves porting or writing a compiler
which uses the Microsoft Intermediary Language (MSIL) as
the target [9].

1Except for languages that are not Turing complete.
2Yaccscript is not actually compatible with YACC, but
the name still seems to fit as it is Yet Another Compiler-
Compiler.

685

Figure 1: An Overview of the Yaccscript System

All of the languages that were implemented on top of
Yaccscript have also been implemented for the .NET plat-
form. By using a sequence of compilers, Haskell code can
be directly compiled to .NET byte code [10]. The .NET
platform also hosts IronPython, an implementation of the
Python language which actually out-performs the standard
implementation of Python [6]. Although both of these exist,
there have not been any published studies on how the two
languages can be used together on the .NET platform.

2.3 Multiparadigm Programming In Lisp
Lisp has also been known for its ability to support multi-

paradigm programming. It has sometimes been referred to
as a language without syntax, as Lisp code takes the form
of an abstract syntax tree. Because Lisp code is constructed
out of Lisp data, it can be easily restructured through the
use of macros, allowing programmers to build abstractions in
the way that code is processed. Although its roots are func-
tional, Common Lisp has constructs to enable imperative
and object oriented [1] programming. Lisp has also been
shown to be flexible enough to support non-deterministic
logic programming [11]. It is because of Lisp’s flexibility
in paradigm expression that it was chosen to serve as the
underlying execution engine for Yaccscript.

Lisp also supports syntactic extensions through dispatch
macro characters. These functions are shortcuts that cor-
respond to Lisp macros. Some examples of these used in
Common Lisp are the syntax for creating vectors and the
hash-quote used to access functions. Although they do serve
to expand the syntactic potential of Lisp, they are still
based on prefix notation. It should also be noted, that
the original specification for Lisp referred to meta expres-
sions (M-expressions) [8], which were an alternate notation
for representing the more common symbolic expressions (S-
expressions). This syntax never caught on and has not been
supported since very early Lisp implementations. Although
Yaccscript seems to revive the idea of M-expressions, it does
so with the added benefit of making the alternate syntax ex-
tensible.

3. OVERVIEW OF THE SYSTEM
There are several components to the Yaccscript system, as

depicted by Figure 1. The underlying execution engine is
GNU Clisp [5]. On top of that is the Yaccscript API, which
provides a lexer and parser generator and the Yaccscript
Object System. The lexer and parser generators were used
to create the Yaccscript Grammar Specification Language,
a syntax for the creation of lexical analyzers and parsers.
There is also a macro language which is used to abstract
and shorten code written for the lexer and parser genera-
tors. Finally, there is the Yaccscript executable, a program
that can be run in two different modes. The first mode can
be given a program written in a language that Yaccscript
can compile. The second mode allows a read-eval-print-loop
(REPL) to be executed for any given Yaccscript language.

3.1 The Lexer and Parser Generators
The lexer generator compiles a Lisp list into a block of

code that can be used to process regular expressions3. It
can be used to process a single regular expression, or more
often, be used to tokenize a string of text based on a series
of regular expressions. When used as a tokenizer, it returns
the longest matching string, and in the event of two tokens
of the same length, it chooses whichever regular expression
the token matched first.

The parser generator compiles Lisp lists into a backtrack-
ing recursive descent parser. For each expression in the
parser, it matches the first series of tokens that conform
to the expression and returns a string containing Lisp code
to be parsed and compiled. It also supports the ability to
define simple macros to abstract and simplify the return
strings.

Since both the lexer and parser generator compile Lisp
data, they can be used to compile data that they can then
process. This allowed the creation of a simple regular ex-
pression compiler that takes a string to be compiled to Lisp
data for processing by the lexer generator. The lexer gener-
ator, parser, and regular expression compiler were combined
to create the Yaccscript Grammar Specification Language.

3The rules for matching are consistent with Lex.

686

LANGUAGE yslang.cl

IMPORT: "stdmacros.ys"

LEXER:

number : "([0-9]+)"

symbol : "([a-z]+)"

assign : "\x3d"

IGNORE : "(\x20|\x09|\x0a)"

PARSER:

REPL -> {expression} : 0;

expression -> {assignment} : 0

| symbol : 0

| number : 0

;

assignment -> symbol assign

{expression} : setvar(0 2);

Figure 2: A Simple Language Definition

3.2 The Yaccscript Object System
The Yaccscript Object System provides data consistency

between different languages that are to be compiled to Lisp.
All data used in Yaccscript programs is represented as an
object. This ensures that even the most fundamental data
types are the same. It also allows for every piece of data to
be abstracted into different types. Each class has methods
associated with it for general use as well as specific methods
to facilitate operator overloading.

There are a handful of data types that are built into the
Yaccscript. The most basic objects are ints, floats, sym-
bols, and boolean values. Using those data types in con-
junction with data types built into Common Lisp, support
for lists, tuples, and hash tables was integrated into the sys-
tem. There is also a string type which is a subtype of the
list type. Finally, there is a data type for functions, which
are first-class objects in Yaccscript.

There are functions and macros associated with the Yacc-
script Object System. Aside from the functions used to
define data types and instantiate them, there are functions
that access the fields and methods of the data types. There
are also macros that are used to facilitate iteration through
the abstract data types or perform calculations on them.
For instance, there is a common iteration macro that can be
used to iterate through lists, strings, or even hashes, which
it iterates through as it would a list of tuples.

3.3 The Yaccscript Language
The Yaccscript Grammar Specification Language, also re-

ferred to simply as the Yaccscript Language, is a custom
language for mapping syntactic rules to Lisp code. Files
constructed with the language have two parts. The first
part uses a series of regular expressions to define the ac-
cepted (as well as ignored) tokens. The second part defines
the grammar rules. Each rule has one or more mappings
that matches a series of tokens (terminals) and rules (non-
terminals) to the Lisp code that it evaluates to.

Figure 2 demonstrates a simple language that supports

Table 1: Language Implementation Size (Lines)
Language Lisp Yaccscript Total

Python 78 418 496
Haskell 252 326 578
Prolog 360 107 467

symbols, numbers, and an assignment operator and can be
utilized through a REPL. The LANGUAGE line specifies the
file that describes the language used to compile this file. In
this case, it is “yslang.cl”, the file that describes the compi-
lation rules for the Yaccscript Grammar Specification Lan-
guage. The LEXER section describes 3 tokens as well as a
set of whitespace characters that should be ignored. The
PARSER section has three rules: “REPL”, “expression”, and
“assignment”. Each consists of one or more syntactic pat-
terns composed of tokens, referred to by name, and other
rules, denoted by their name surrounded by “{” and “}”.
Each of these syntactic patterns has a corresponding compi-
lation rule, which specifies the code that is to be generated
when the pattern is matched. The numbers in the compi-
lation rules correspond to the tokens and rules matched on
the left side of the rule.

The first rule specifies that this language is to be accessed
via the REPL interface.4 The second is used to compile
expressions that consist of an assignment, a symbol, or a
number. Compilation rules consisting solely of the number
0 specify that the tokens and rules should be emitted as they
are processed. Finally, the third expression compiles assign-
ment expressions. The compilation rule used here is slightly
more complicated. When the assignment rule sees a sym-
bol, an assignment operator, and an expression, it compiles
them using the setvar macro described in “stdmacros.ys”
taking the symbol (0) and the expression (2) as arguments.
If this language were to be given the expression “a = b =

10” to compile, it would compile it to the Lisp code “(setf
a (setf b 10))”.

As mentioned above, the Yaccscript Language was defined
using the lexer and parser generators. There are two prac-
tical results of this design. First, it simplified the creation
of the language. It also broadened the potential use of the
system; the Yaccscript language can be used to parse struc-
tured data into Lisp data for processing by Yaccscript or
Common Lisp programs. The final benefit of this design is
that the syntax for the Yaccscript language is extensible to
the point of being completely replaceable. Thus, the syntax
for defining lexical analyzers and parsers can be modified or
rewritten using Lisp or the Yaccscript Language itself.

4. LANGUAGES CONSTRUCTED WITH
YACCSCRIPT

To demonstrate Yaccscript’s potential for supporting and
integrating different programming paradigms, portions of
three existing languages were implemented. The languages
were chosen to represent the three common paradigms, object-
oriented, functional, and logic programming. Although the
implementations are incomplete, they do represent large sub-
sets of the corresponding languages. Table 1 lists the amount

4Another rule could be created to add support for entire
files written in this language, but that would most likely be
coupled with a rule to compile a series of expressions.

687

Figure 3: Utilizing Haskell Code in Python
Euclid’s GCD Implemented in Haskell The Python REPL

euclid _ 1 = 1

euclid m n =

if m % n == 0

then n

else euclid n (m % n)

Python> euclid(5,25)

5

Python> euclid(14)(42)

14

Python> e12 = euclid(12)

FUNCTION: CURRIED-EUCLID

Python> e12(66)

6

Python> e12(200)

4

of code (Lisp and Yaccscript) that was needed to imple-
ment each of these language subsets. Its worth noting that
Python, which has probably the most verbose syntax of the
three languages, required the most Yaccscript code, but the
least Lisp. On the other end of the scale is Prolog, which
has a very minimalist syntax, but a computational model
that required a large amount of Lisp to accommodate.

4.1 Python
Python was chosen to demonstrate Yaccscript’s ability to

represent object-oriented programming languages. Python
was a natural choice as it uses objects to represent all data
and has syntax that works by operator overloading. It also
contains powerful facilities for optional function arguments,
and the ability to unpack tuples into variables[12]. The
Python implementation is also probably the most complete
of the three languages, since it naturally mapped onto the
Lisp processing model and Yaccscript data types.

4.2 Haskell
Haskell is a functional language that allows for the easy

creation of purely functional code. A particularly interest-
ing feature of Haskell — and of many modern functional
languages — is currying, the ability to create new functions
by filling in some of the parameters of an existing function
[7]. This was implemented in Yaccscript by overloading the
existing function class to return a new function when called
with less parameters than are expected. By enabling cur-
rying as a property of functions designed in Haskell, the
ability remains with those functions when they are utilized
in different languages. Although this implementation cap-
tures almost all of Haskell’s syntax, it lacks support for lazy
evaluation.

4.3 Prolog
Prolog is a widely known logic programming language —

a declarative programming paradigm based, in principle, on
non-deterministic evaluation of logical rules. Prolog allows
a programmer to define a series of predicates which can be
evaluated in two different ways. If a predicate is evaluated
with literal values, it will return either true or false. How-
ever, a predicate can also be passed variables, in which case
it will return the possible values of those variables[2]. This
was implemented in Yaccscript by having Prolog predicates
return true, false, or a list of hash tables that map variables
to their values.

5. INTERACTION BETWEEN LANGUAGES
IN YACCSCRIPT

Code in Yaccscript is divided up based on packages. The
different languages ultimately intersect through functions.
Thus, the ability for a language and its underlying paradigm
to be integrated into Yaccscript is based on the ability for the
functions of a language to be called by different languages.

5.1 Python and Haskell
Despite their apparent differences, Python and Haskell

work quite well together in Yaccscript. A function written
in Haskell can be easily accessed in Python and even retains
its currying abilities. A good example of a function that is
easily implemented in Haskell is Euclid’s GCD algorithm,
demonstrated in Figure 3. When imported into a Python
REPL, the function becomes available. Since the function
was implemented in Haskell, it still supports currying. The
function e12, is defined much like it could be in Haskell,
simply by passing a single value to the euclid function.

Python functions can be imported into Haskell, as can
objects that implement the call method. A simple class
that demonstrates this is the Accumulator, which is defined
in Figure 4. The accumulator is created with an initial
value and can then be called like a function, taking a single
number as an argument and adding that to the initial value.
Although it lacks the ability to be curried, it can still be
used with Haskell’s built-in function composition abilities.
When composed with a square-function, a new function that
squares the argument before accumulating it is created.

5.2 Python and Prolog
The Yaccscript implementation of Prolog treats predicates

in a way that allows them to be used as functions. If passed
literal values, the Prolog predicate will return a boolean
value. However, it can also be passed symbols, in which
case it will return a list of hashes that can easily be ac-
cessed. Figure 5 demonstrates a simple implementation of
factorial in Prolog. When imported into a Python inter-
preter, the factorial predicate can be accessed two different
ways. It can be given two literal values, in which case it
will return a boolean value. If given a symbol5 and a literal
value, it returns a list of hashes that match the symbol to
the matching values.

Incorporating a Python function into Prolog is somewhat
less trivial since general function calls are not easily sup-
ported by Prolog’s computation model that treats functions

5Symbols in Python are not syntactically available, but can
be easily synthesized.

688

Figure 4: Utilizing the Python Accumulator in Haskell
An Accumulator in Python The Haskell REPL

class Accumulator:

def __init__(self,val):

self.val = val

def __call__(self,inc):

self.val = self.val + inc

return self.val

Haskell> acc = Accumulator 100

#<OBJECT #x207EDD4E>

Haskell> acc 10

110

Haskell> acc 20

130

Haskell> square x = x * x

FUNCTION: SQUARE

Haskell> accsq = acc . square

FUNCTION: COMPOSED-ACCUMULATOR-SQUARE

Haskell> accsq 10

230

Figure 5: Utilizing the Prolog Factorial in Python
Factorial in Prolog The Python REPL

factorial(X,Y) :- Z is X - 1,

X > 0,

factorial(Z,A),

Y is A * X.

factorial(X,Y) :- X < 1,

Y is 1.

Python> factorial(5,120)

True

Python> symx = sym("X")

X

Python> fac = factorial(5,symx)

[{X:120,},]

Python> fac[0][symx]

120

Table 2: Breakdown of Pancake Flipping
Language Number of Lines

Python 130
Haskell 31
Prolog 46
Total 207

as uninterpreted symbols. Thus, the task of incorporating
Python functions into Prolog usually requires a customized
function or function wrapper that takes symbols and literals
as arguments and returns a boolean value or list of hashes.

5.3 Haskell and Prolog
When incorporating drastically different languages, cer-

tain paradigmic inconsistencies are not easily resolved. Pro-
viding interaction between Haskell and Prolog proved to be
challenging, since Haskell lacks built-in support for Hash ta-
bles. However, for this particular application, the hash ta-
bles are only needed for iteration, which can be synthesized
using a list of tuples. So for the purpose of interoperability,
both the Haskell and Prolog implementations were designed
with the ability to mix hashes with lists of tuples for this
purpose.

6. YACCSCRIPT IN ACTION: PANCAKE
FLIPPING

An example of an algorithm that can take advantage of
multiple-paradigm programming is the Gates-Papadimitriou
algorithm for sorting by prefix reversal [4]. The problem,
estimating the number of prefix reversals needed to sort a list
of integers, is also known as the “pancake-flipping” problem,
because of a real-life metaphor of sorting a stack of pancakes

from largest to smallest.
This particular algorithm was chosen because it can very

clearly be broken down into imperative, functional, and logic
programming tasks. The algorithm uses Prolog to decide
which state the stack of pancakes is in, which determines
what series of flips should be applied. It uses Haskell to
compose and perform the actual flips. Python is used to
optimize certain operations that Prolog could only easily
perform with copious, unwieldy recursion, as well as iterate
through the main loop of the program.

The breakdown of the program into the individual lan-
guages is displayed in Table 2. The bulk of the code was
written in Python, since it was used both for simple func-
tions that were utilized by the Prolog code as well as in the
main loop. However, the Haskell and Prolog files are also
much shorter because they are exceptionally well suited for
their respective portions of the application. All of the flip
sequences in the Haskell code were single-line functions. The
Prolog code wasn’t much longer, as predicates defining the
different “states” of the pancake stack were defined in 2-4
lines of code each. The 207 lines of code in the three lan-
guages compiled to 590 lines of Common Lisp. As would
be expected, the code generated by the compiler is not as
readable or concise as a hand-written code. For purpose of
comparison, it should be noted that an earlier implementa-
tion of this algorithm in Common Lisp by the same author
took 280 lines of code.

7. DISCUSSION

7.1 Potential Applications of Yaccscript
A possible application that would make use of the multi-

ple paradigms would be a web-based genealogical database.
Haskell’s ability to process recursive data as well as its abil-

689

ity to curry and compose functions makes it ideal for the
generation of html. Prolog is adept at processing the ge-
nealogical data, as relationships can be described in terms
of each other, so that very little source data about each per-
son is needed to describe an entire family tree. Python could
be used as an iterative processing engine for the data that
is stored on the hard drive. Although there isn’t currently a
library for parsing HTTP GET and POST data, it would be
possible to build one using the Yaccscript Grammar Speci-
fication Language.

However, since Yaccscript is currently lacking the support
libraries that would make it practical for large applications.
At the moment it is mostly useful to language designers
and researchers for creating prototype implementations of
languages. Much of the functionality of an interpreter is al-
ready taken care of by Common Lisp, thus most of the work
in creating a language in Yaccscript is in simulating the lan-
guage’s processing model in Lisp. However, there are several
other features offered by Yaccscript to ease the creation of
languages. For instance, grammar rules can be traced, so
that their evaluation can be monitored for debugging. Also,
for languages designed with interoperability in mind, testing
frameworks can be constructed in a known working language
to find errors.

7.2 Future Work
At this point, Yaccscript is still heavily research oriented

and lacks many features that would be expected from a
production-use scripting language. The error handling ca-
pabilities are inadequate and the platform itself would ben-
efit from having additional libraries. Some of the more core
features, such as sockets, would need to be implemented
in Common Lisp to map existing functionality in Lisp to
the Yaccscript Object System. However, as the hosted lan-
guages achieve more complete compatibility with their stan-
dardized counterparts, it becomes more feasible to port ex-
isting libraries from these languages to the system.

The particular language implementations could also use
some work. In particular, the Haskell and Prolog imple-
mentations are lacking support for lazy evaluation. Rather
than rewriting each implementation to utilize this processing
model, it would be preferable to create a general framework
for adding lazy evaluation to Yaccscript-implemented lan-
guages, especially since the feature seems common in declar-
ative programming languages.

The final issue is portability. The system was designed
using GNU Clisp [5] and as a result is dependent on some
features unique to it. With a little bit of effort, Yaccscript
could be ported to work with more Common Lisp implemen-
tations. Several implementations are capable of compiling
to native code, which could provide a speed boost. Also,
better cross-Lisp support would correspond to better cross-
platform support.

8. CONCLUSION
Despite the multitude of languages that have been devel-

oped, it is rare to find one that is flexible enough to elegantly
represent all of the common paradigms. Similarly, it is rare
to find any one paradigm that succeeds in solving all prob-
lems with equal beauty and efficiency. Yaccscript’s ability
to host drastically different languages and facilitate interop-
erability makes it an interesting tool for researching the im-
plications of multi-paradigm design on software engineering.

The development and maintenance of larger applications in
Yaccscript should provide some insight as to the scalability
of multi-language design.

9. REFERENCES
[1] D. Bobrow, L. DeMichiel, and R. Gabriel. Common

lisp object system specification. SIGPLAN Notices,
23, 1988.

[2] I. Bratko. Prolog Programming for Artificial
Intelligence. Addison Wesley, 3 edition, 2001.

[3] T. Budd and R. Pandey. Never mind the paradigm,
what about multiparadigm languages. SIGCSE
Bulletin, 27(2):25–40, June 1995.

[4] W. H. Gates and C. H. Papadimitriou. Bounds for
sorting by prefix reversal. Discrete Mathematics,
(27):47–57, 1979.

[5] B. Haible and S. Steingold. Gnu clisp, 2005. Available
At: http://clisp.cons.org/.

[6] J. Hugunin. Ironpython: A fast python
implementation for .net and mono. In PyCon. Python
Software Foundation, March 2004. Available at
http://www.python.org/pycon/dc2004/papers/9/
IronPython PyCon2004.html.

[7] S. P. Jones and L. Augustsson. Haskell 98 Language
and Libraries, The Revised Report, December 2002.
Available at: http://haskell.org/definition.

[8] J. McCarthy. Recursive functions of symbolic
expressions and their computation by machine.
Communications of the ACM, 3(1):184–195, 1960.

[9] B. Meyer. The significance of dot-net. Software
Development, 8(11), November 2000.

[10] L. O’Boyle. Making haskell .net compatible, 2002.
Available at
http://coscweb2.cosc.canterbury.ac.nz/research/
reports/HonsReps/2002/hons 0206.pdf.

[11] J. Siskind and D. McAllester. Nondeterministic lisp as
a substrate for constraint logic programming. In
AAAI-93, pages 133–138, 1993.

[12] G. van Rossum. Python Documentation, version 2.3.5,
February 2005. Available at:
http://www.python.org/doc/2.3.5/.

690

