
In-Time Agent-Based Vehicle Routing with a Stochastic Improvement Heuristic

Robert Kohout and Kutluhan Erol

Intelligent Automation, Inc
2 Research Place

Rockville, Md. 20850
{kohout,kutluhan}@i-a-i.com

Abstract

Vehicle routing problems (VRP’s) involve assigning a fleet
of limited capacity service vehicles to service a set of
customers. This paper describes an innovative, agent-based
approach to solving a real-world vehicle-routing problem
embedded in a highly dynamic, unpredictable domain. Most
VRP research, and all commercial products for solving
VRP’s, make a static-world assumption, ignoring the
dynamism in the real world. Our system is explicitly
designed to address dynamism, and employs an in-time
algorithm that quickly finds partial solutions to a problem,
and improves these as time allows. Our fundamental
innovation is a stochastic improvement mechanism that
enables a distributed, agent-based system to achieve high-
quality solutions in the absence of a centralized dispatcher.
This solution-improvement technology overcomes inherent
weaknesses in the distributed problem-solving approach that
make it difficult to find high-quality solutions to complex
optimization problems. In previous work on similar
problems, the MARS system of Fischer and Müller, et al.,
achieved an average route performance of roughly 124% of
Solomon’s algorithm for a VRP problem, which is known to
achieve results that average roughly 107% of optimal. Our
algorithm produces routes that average 106% those
produced by an adaptation of Solomon’s algorithm to a
more general problem.

The Pickup and Delivery Problem with Time
Windows

Vehicle routing problems (VRP’s) involve assigning a fleet
of limited capacity service vehicles to service a set of
customers. These problems have been well studied in the
Operations Research literature (e.g., Laport 1992.) Insofar
as the Travelling Salesman Problem is embedded in
virtually every VRP of practical interest, this entire class of
problems is intractable. The vast majority of vehicle
routing research addresses a static problem in which all of
the relevant data is known in advance. Typically, service
vehicles are assumed to start at some initial location (the
depot), all customer demands and constraints are known, as
are the distance and travel times between each pair of
customers, and between each customer and the depot.
There are a number of commercial systems for solving

 Copyright © 1999, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

VRP’s, and like the academic literature, all of them make a
static-world assumption, ignoring the naturally occurring
dynamism in the world. Customers can be late, or fail to
appear. Traffic can be delayed for a variety of reasons. The
time required to service a customer can be highly varying
and unpredictable.
 This paper describes an innovative approach to solving a
vehicle routing problem embedded in a highly dynamic,
unpredictable domain. It employs an in-time algorithm
that quickly finds partial solutions to a problem, and
improves these as time allows. In an online application for
a dynamic environment, the problem itself may change
over time, and the results need not be delivered all at once.
“ In-time” captures the essence of our algorithm in two
ways: it is designed to run online in a dynamic world (i.e.
in “real” time), and it returns partial results in time to
execute them.
 This work was conducted by the authors at Intelligent
Automation, Inc. (IAI) as part of an effort to construct
agent-based optimization systems for online problem
solving. It was developed in collaboration with an actual
airport shuttle company, and was designed to solve the
Airport Shuttle Scheduling Problem, in which a fleet of
limited capacity shuttle vehicles must be dispatched to
service customers arriving at and departing from a set of
regional airports. The goal of the system is to find a
schedule of customer service times that minimizes the
number of vehicles required to service a set of customers,
with a secondary goal of minimizing the total time required
to do so, while observing travel time constraints, vehicle
capacity constraints and customer service time constraints.
Our fundamental innovation is a stochastic improvement
mechanism that enables a distributed, agent-based system
to achieve high-quality solutions in the absence of a
centralized dispatcher.

The airport shuttle business is highly dynamic.
Customers can cancel and flights can be delayed. Traffic
congestion varies routinely with the time of day, and less
predictable delays due to accidents or weather are routine.
Drivers get lost, and customers fail to appear as expected.
Baggage delivery times vary widely by airline, time of day,
and customer. Standard industry practice is to require a
reservation 24 hours in advance, but this requirement is
routinely waived, particularly for passengers arriving at an
airport and requesting service “at the curb.”

Shuttle companies typically require departing customers

to be available for shuttle pickup a minimum of two hours
prior to the departure of their flight, but this time varies
from company to company, and even between customers.
There is generally no guarantee on how long an arriving
customer’s return from an airport may take, but shuttle
companies have a long-term interest in ensuring that it is
reasonable. The static problem, in which all of the relevant
data is known is advance, is a specific instance of what the
routing literature refers to as either the Pickup and
Delivery Problem With Time Windows (PDPTW), or
sometimes as the Dial-a-Ride Problem. A formalization of
this problem can be found in (Dumas, Desrosier and
Soumis 1991).

We know of no commercially available products for
solving the static PDPTW, let alone the more realistic
dynamic case that an airport shuttle company would
require. However, there are a number of commercial
products for solving the static version of a similar, related
problem: the Vehicle Routing Problem with Time Windows
(VRPTW.) In the PDPTW, customers have two associated
locations: a pickup point and a delivery point, and time
windows associated with each service location. In the
VRPTW, there is a single service location, and one
associated time window. Unlike the PDPTW, the VRPTW
has been extensively studied, and optimal solutions are
known for problem instances with as many as 100
customers. Most of the commercial products for vehicle
routing are based upon Solomon’s insertion heuristic
(Solomon, 1987), which has demonstrated the ability to
find high-quality solutions in a relatively short amount of
time. We will discuss this algorithm in greater detail
below.

An Agent-Oriented Approach to Online
Optimization

 In order to address the dynamism of the airport shuttle
application, we decided to design a system built around a
set of cooperating software agents, each of which
represents the interests and behavior of entities in the
domain. These agents are organized into contract nets
(Davis & Smith, 1983) that support rational, market-based
assignment of resources. The use of agents for such
problem-solving purposes has a number of potential
advantages. Isolating system capabilities into independent
processing units provides the foundation for distributing
them over a large network of computers, thus allowing
considerable computing power to easily be brought to bear
on a given problem. Much of the promise of agent-based
systems comes from the fact that software may be designed
as individual capabilities and integrated into larger systems
without having to reason about all of the ways in which a
new capability may impact the behavior of the various
other components of the system. Control is localized, and
each agent can be designed to act independently,
maximizing its own individual utility function without
having to reason about the operation of the entire system.

While this localization of control simplifies the design of

individual agents, it greatly complicates the problem of
achieving high-quality global solutions. In previous work
on agent-based vehicle routing systems, (Fischer, Müller,
and Pischel, 1996) describe MARS (the Modeling a Multi-
Agent Scenario for Shipping Companies system), which
uses a hierarchical multi-agent system to solve the
VRPTW. In OR parlance, MARS uses a heuristic local
assignment procedure, followed by a 2-phase post-
optimization process. Since both stages of post-
optimization modify a schedule only if there is a net gain
in global utility, the post-optimization (a.k.a. local
improvement) qualifies as a hill-climbing algorithm. As
noted in (Bentley, 1992) and elsewhere, such local
improvement techniques are very sensitive to the quality of
the initial solution, since they are only able find the local
minimum of the solution space in which they begin their
search. Thus, while MARS has a sophisticated market-
based improvement algorithm that is well suited to agent-
based routing applications, the crucial heuristic for
determination of the initial solution set is less developed.
(Fischer, Müller and Pischel, 1995) present a comparison
of MARS with the known optimal results for 25-customer
routing problems. In these cases, MARS achieves an
average of roughly 133% of optimal. Solomon’s algorithm
is known to achieve an average of 107% of optimal prior to
post-optimization, and 103% of optimal after post-
optimization (Potvin and Rousseau, 1993). If we assume
that the agent-based improvement mechanism is effective,
MARS must be doing a poor job of initial customer
insertion, and yet this is exactly the area that previous
research indicates is crucial for obtaining high quality
results. The significant advantages of distributed, agent-
based systems for use dynamic application environments
do not justify poor global performance, especially since, as
we show in this paper, it is possible to obtain high-quality
results in such an online control system.

Multi-Agent Architecture

The architecture of our entire system is shown in Figure 1,
below. Each pending group of customers1 is represented by
a customer agent, and each available vehicle is represented
by a vehicle agent. There is no centralized scheduler, and
even the GUI’s were designed to run as agents under
Cybele, our software infrastructure for agent-based
applications. The route/address server agent performs
address lookup and verification tasks, as well as the point-
to-point routing required as part of the scheduling process.

When a customer requests service, the relevant
information regarding number of passengers, itineraries,
service address, etc. is entered via the GUI. At this time,

1 Throughout the rest of this paper, references to “ customers” will
refer to groups of one or more persons who have indicated a
desire to travel together, and share all relevant deadlines and
constraints. We assume that no such group is larger than the
maximum vehicle capacity, and our algorithm makes no attempt
to split groups of more than one into smaller “lots.”

the customer’s address is verified with the route/address
server, to ensure that the routing system can find the
service address in its database. Once all this information is
obtained, the routing system creates a customer agent, that
will be responsible for seeing that the associated customer
is serviced.

Figure 1 Routing System Architecture

The customer agent announces itself, and all vehicle
agents compute the cost of carrying that customer with
respect to their current schedules, and send these as quotes
to the customer. Once a customer agent has received all of
the expected quotes, it selects the low bidder and requests
service from the associated vehicle agent. If the vehicle
agent can still service the customer at the quoted price, the
customer is inserted into the vehicle’s schedule, and the
customer agent is informed that the contract has been
accepted. If the vehicle agent can no longer route the
customer at the quoted price, presumably because another
customer has been scheduled since the quote was sent, the
vehicle agent returns a message indicating its new best
price, and the customer agent repeats the process until it is
scheduled.

The Algorithm
Our vehicle agents make scheduling decisions by using
Solomon’s insertion heuristic, adapted for the PDPTW. For
this reason, and because we use a centralized
implementation of this same algorithm as the basis for
evaluating our improvement technique, we summarize
Solomon’s algorithm as Algorithm 1. If dij is the travel

time between customers i and j, and bj is the time
scheduled to begin service at customer j, then Solomon’s
cost heuristic defines the cost of inserting customer u
between adjacent customers i and j in a route R as

jijujiu bdddH ∆+−+=)(µ
Whereµ is a non-negative parameter, andjb∆ is the

change in service time at customer j.

Recall that this algorithm was developed to solve the
VRPTW. In order to apply it to the PDPTW, our modified
algorithm first locates a slot where it is feasible to insert
the pickup position, and then searches forward through a
vehicle’s schedule for a feasible slot in which to insert the
delivery point, while accounting for the implications of
pickup insertion. The ultimate cost of a customer’s
insertion into a schedule is a weighted sum of the costs of
pickup insertion and delivery insertion.

Our agent-based insertion algorithm is summarized
below as Algorithm 2. This algorithm uses the exact same
cost metric and low-level data structures as our
implementation of Solomon’s heuristic for the PDPTW.
The two main differences are that it builds the routes for
the various vehicle agents in parallel, and schedules each
customer in the order that they are presented to the system.
Solomon’s heuristic builds routes one at a time. Before
inserting a customer into a route, it iterates through all of
the remaining customers, and greedily chooses the
cheapest remaining customer for insertion into the current

Let L be the list of unscheduled customers
R = new vehicle route

While there are still unassigned customers in L
 Do {
 For each unassigned customer C Do
 For each potential insertion position in R
 Do {
 If C can feasibly be served in this
 route position Then
 {
 Compute H = Solomon’s heuristic value
 If H is minimal Then {
 save H along with the
 corresponding position in the route
 }
 }
 }
 Assign customer with minimum H value to the
 Corresponding insertion position in R,
 and remove that customer from L.

 If NO Customer could be feasibly served in
 the current schedule Then
 { /* start a new route */
 Save R
 R = new route
 }
 }

Algorithm 1 - Solomon’s Algorithm

GUI

WWW
Schedule
Monitor

User
 Interface

External Interface

Address
Verification
 and
Route
Generation
 Agent Customer Agent

(1 per customer)

Vehicle Agent
 (1 per van)

Simulated Environment

customervehicle

route. Only after no remaining customer can be inserted
into a route does it initialize a new one.

The effect of the outer loop of Solomon’s algorithm is to
impose an ordering on the set of customers. If customers
were presented to our agent-based system in the exact
same order determined by this process, it would produce
identical results. However, as we show below, in the
absence of local improvement, our agent-based algorithm
does quite poorly when customers are scheduled in a
random order.

We have developed a stochastic improvement heuristic
that overcomes the order-sensitivity of the insertion
algorithm. This improvement technique permits the system
to converge to high quality solutions, in the absence of any
centralized control, and without requiring any agents to
maintain information about the state of any other agents in
the system. A vehicle agent “sees” a customer only when
the customer agent announces itself, and records
information about a customer only if and when that
customer is inserted into its schedule. Vehicle agents are
not required or expected to cooperate with each other in
any form or fashion.

The basic improvement mechanism is simple: we allow
customer agents to stochastically request removal from a
schedule, and go searching for a better deal by re-
announcing their availability for service. In this way, we
overcome the primary weakness of Algorithm 2, which is
its sensitivity to the order in which customers are
announced. In many cases, a customer is released from a
given van only to be later rescheduled in the same vehicle,
but there are enough opportunities for improvement that
overall performance improves significantly.
 The algorithm makes no distinction between scheduling
and rescheduling. In fact “rescheduling” begins before
scheduling has ever finished. The basic process can be
described as follows:

1. Each vehicle agent has a “rescheduling interval”, which
is stochastically determined. This interval consists of some
fixed period of time (the baseline) plus a random variable
drawn from an exponential population. This period is set
when a vehicle agent is initialized, and then reset to a new
value at the end of each rescheduling interval. This is
implemented as a timer that fires to begin a rescheduling

interval.
2. During a rescheduling interval, a vehicle agent first
stochastically selects an exponential random variable,
which is the upper bound on the number of customers in
that van that may be rescheduled, and which is bounded
above by the total number of customers in the schedule.
3. Customers are selected from the vehicle, and each
customer is selected for rescheduling with a probability
pc(t) that goes to zero its earliest service time approaches.
In the tests of the next section, pc(t) reaches zero thirty
(simulated) minutes before the earliest possible time a
customer could be serviced in a van.

This choice of pc(t) reflects the online application for
which the algorithm was designed. In order to ensure that
customers traveling early in the day are scheduled
efficiently, we allow the system to run three hundred
simulated minutes, plus an additional simulated minute per
customer, prior to enforcing policy 3. Since customers are
normally required to make reservations a day in advance,
this early rescheduling is consistent with the target
application.

Empirical Evaluation

We obtained a small database of typical customer
information from an airport shuttle company operating in
the Washington, DC metropolitan area, where there are
three large regional airports. We used this information to
generate distributions of relevant customer information as
a function of the time of day. For the purposes of the test
described in this paper, this information includes a)
whether a customer is arriving or departing, and b) which
airport customers are flying into or out of. We also
determined the distribution of customer group sizes. To
determine point-to-point travel times and distances, we
used Caliper Co.’s TransCAD® system to geo-code
addresses, and compute the minimum pair-wise distances
and travel times for 500 addresses from this database. Note
that the minimum-travel-time route is not necessarily the
same as the minimum-distance route. All tests reported in
this paper used the 250,000 minimum-time values obtained
in this way.

This information was used to randomly generate
problem sets. To create a new customer, we first randomly
selected an address id in the range 0-499. We assume that
these addresses are independent from the other values in
the data. After selecting an address, we use a Bernoulli test
to determine whether or not the customer is arriving or
departing. We then select the customer’s airport, based
upon our distribution analysis of arriving and departing
customers. To determine the airport-arrival time, we
randomly select the hour of the flight based upon our
distribution analysis. We then use a random number
uniformly distributed between 0-59 to decide the exact
minute of the flight. Finally we determine the customer
group size using the empirical distribution.

This process was used to generate two different test data
sets, each of one hundred problem instances. The first test

Create a vehicle route
While unscheduled customers remain Do
 Get the cost of inserting the next customer
 in each of the active vehicle routes

 If the customer cannot be inserted into any
 Vehicle Agent’s Route Then

Start a new Vehicle Agent and Route
 Else

Insert the customer into the lowest cost
Vehicle route

Algorithm 2 -Abstract Agent-Based Insertion
Algorithm

set contains 100 problems of 100 customers each, and the
second contains 100 problems of 200 customers each.
While this data generation process is imperfect, we believe
it provides an adequate model of a real-world shuttle-
dispatching problem.

Recall that our system was designed to run online. In
order to test this algorithm, we ran it in simulated time, as
we will describe below. The results reported in this paper
were run on a single 350M Hz PC with 256Mb of
SDRAM, running Windows NT 4.0. Tests were run at one
hundred and twenty times real time (i.e. 500 milliseconds =
1 simulated minute.) In order to prevent thrashing
associated with having scores of customers simultaneously
negotiating with as many as fifteen vehicle agents, we
maintained a queue of unannounced customers. Every five
hundred milliseconds, this queue was examined and if not
empty, the customer agent at the head of the queue
announced itself. Each problem was run for 1200
simulated minutes, because we observed that there was
little, if any significant improvement after this cutoff.

The algorithm turns out to be very sensitive to tuning.
There are a number of different tuning parameters, but for
the purposes of this paper, we focused upon the two
rescheduling interval parameters, and the exponentially
distributed random variable that determines the maximum
number of customer that will be rescheduled per van. We
tuned the algorithm on ten 100-customer test problems that
are not in the reported test set. The results reported in this
paper use a rescheduling baseline of 5000 milliseconds,
plus an exponential random variable with a mean of 5000
milliseconds. We use a value of 2.0 for the mean of the
exponentially distributed number of deletions per van.

The object-oriented implementation of the algorithm
makes it a simple matter to customize customer
constraints. However, our tests assume a uniform set of
constraints. For departing customers, we take the airport
arrival time to be the latest time at which the customer can
be delivered to the airport without violating a deadline.
Normally, this is 30 minutes prior to flight departure.
Consistent with industry practice, the earliest permissible
pickup time for a departing customer is two hours prior to
this time. The latest permissible pickup time is the time at
which the van could arrive at the customer’s site, load all
passengers into the van and still be able to drive a direct
path to the airport at the minimum travel time, and arrive
there at the customer’s airport arrival time. We allow one
minute, plus one additional minute per passenger, to load
and unload the van.

For arriving customers, we assume that the earliest
possible pickup time is the airport arrival time, and that the
customer must be picked up within two hours of this time.
The earliest possible time that an arriving customer can be
dropped off is in the case where the customer is picked up
and loaded in to a van at the earliest possible time, and
driven directly home. The latest allowable drop-off time is
three hours later than this. Again, we assume one minute
plus an additional minute per passenger is required to

deliver a customer to his destination, but at the airport, we
allow twenty minutes, plus an additional minute per
passenger. All vehicles in these experiments were given a
maximum capacity of six passengers.

Results

We compare the performance of three algorithms on two
sets of problems. The first algorithm is our centralized
algorithm, which is an implementation of Solomon’s
insertion heuristic extended to the PDPTW. The second
algorithm is our agent-based system in the absence of any
post-optimization procedure, and corresponds to Algorithm
2 above. The third row summarizes the behavior of our
agent-based scheduler with stochastic optimization.

Algorithm Vans Travel
Time

Waiting
Time

Total
Time

Centralized 7.78 5291 1383 6674
Distributed / No
optimization

9.77 6015 3036 9051

Distributed with
optimization

7.60 4586 2545 7132

Table 1 100-Customer Routing Results

The primary optimization criteria in our target
application was to minimize the number of delivery
vehicles employed, with a secondary goal of minimizing
the total time that vehicles were in use. Our results are
presented in Tables 1 and 2. As Table 1 shows, in the 100-
customer cases, our distributed algorithm uses 2.4% fewer
vehicles, while producing routes that consume roughly
6.8% more time than those produced by the centralized
algorithm. These differences are statistically significant.
The hypothesis that the average difference in performance
of these two algorithms is zero fails a paired, two-tailed T-
test at the 0.04 confidence level (t = 2.07). The probability
that the mean travel times found by the two algorithms are
actually equal approaches zero (p = 4.11E-11, t = 7.26.)
Note that the average travel times in the distributed routes
are roughly 86.7% that of the centralized routes. The time
advantage displayed by the centralized algorithm stems
from the fact that the distributed algorithm finds routes
with almost twice as most total waiting time which is
essentially slack in the schedule. This is a desirable result
in the highly dynamic and unpredictable application
domain for which the algorithm was designed and tuned.
With drivers working on commission, routes with fewer
vans (and thus more customers per van), shorter total drive
times and more schedule slack are ideal, in that they
minimize company costs, as well as the likelihood that a
service guarantee will not be met.

The total time of our solutions, with respect to the
centralized algorithm, improves slightly as the number of
customers increases. This is illustrated in Table 2, which
presents summary results for the 200-customer problems.
The distributed algorithm achieves similar vehicle savings

as the 100-customer case - approximately 2.3% fewer
vehicles, while coming significantly closer to the total time
performance of the centralized algorithm. Again, the
observed differences are statistically significant, with the
difference in vehicle usage approaching the 0.001 level of
confidence (t = 3.26). The difference in route distances is
significant at the 0.01 confidence level (t = 2.66.)

Our distributed, asynchronous implementation platform
does not permit a direct comparison of the CPU
requirements of the distributed and the centralized
algorithms. Instead, we present analytical evidence that
suggest our approach will scale well. Asymptotically, the
centralized algorithm is O(Cn2), where n is the number of
customers and C is the maximum vehicle capacity. The
agent-based algorithm is O(CV) where V is the number of
vehicles and C is as above. In addition, the number of
stochastic “give backs” in the 100-customer tests averaged
611, so the cost of improvement can be viewed as a small
constant multiple of the initial cost of scheduling in the
distributed case. Moreover, the increase in the number of
the re-insertions is less-than-linear in the increase in the
number of customers. In the 200 customer tests, the total
number of re-insertions averaged 782. Taken together, we
have every reason to believe that the optimization
technique scales well as the number of customers
increases. In addition, this algorithm was explicitly
designed for and implemented as a distributed application.
Assuming that we assign a separate processor to each
vehicle agent, the asymptotic time-to-solution is O(C).

 Conclusions and Future Work
The results we report in this paper were a bit of a surprise.
Our goal was to design an agent-based online optimization
system for vehicle routing. Like Fischer and Müller, we
expected to sacrifice some level of global utility is return
for the increased reactive capabilities of a distributed,
agent-based system. Our hope in designing the stochastic
improvement mechanism was to overcome an apparent
limitation of previous approaches based upon local post-
optimization, and to come relatively close to the level
achieved by practical centralized heuristics. The results
were surprising because they actually out-performed a
centralized heuristic that is known to perform well. Note
that there is nothing about our technique that explicitly
precludes a market-based post-optimization mechanism
such as the one used in MARS, and we hope to experiment
with such a hybrid in the future.

Inasmuch as these results were unexpected, there
remains a good deal to be done to prove the viability of the
approach. In particular, there are no standard benchmarks
for the PDPTW that we know of, but there are dozens of
studies that have used Solomon’s instances for the
VRPTW. In addition, the nature of our implementation
makes a direct analysis of the runtime performance of this
algorithm impossible. From the perspective of the vehicle
routing literature, a centralized implementation of this
basic technique to solve the VRPTW is warranted.
 The tests and results presented in this paper all address a
static problem. The fact that our distributed agent-based
solution to this problem performs comparably to a
centralized algorithm on this problem is both surprising
and noteworthy. However, our research and development
focus is upon the dynamic problems associated with
changes in the operating environment, such as customer
cancellations and delays, that occur after the algorithm has
begun to solve a problem. Evaluating the quality of
performance in such dynamic systems presents a
significant challenge to the research community. Our next
obvious step in this direction is to introduce such
dynamism into the problem, and we are already testing our
system upon such problems

Acknowledgements
This work was funded in part by NASA SBIR contract
NAS8-9705. We would like to thank Ben Smith and Steve
Chien of NASA JPL, and James Wentworth of the US
FHwA for their encouragement and support, as well as Jun
Lang, Prasad Narasimhan, Angela Malais, Geoff Bernstein,
and Renato Levy for their roles in the implementation.

References
Bentley,J.J. 1992. Fast algorithms for geometric travelling
salesman problems. Op. Rsrch. Soc. of America, 4: 387-411.
Davis,R. and Smith,R.G. 1983. Negotiation as a metaphor for
distributed problem solving. Artificial Intelligence, 20:63-109.
Dumas,Y.; Desrosier,J. and Soumis,F. 1991. The pickup and
delivery problem with time windows. European Journal of
Operational Research, 54:7-22.
Fischer,K.; Müller,J.P.; and Pischel,M. 1996. Cooperative
transportation scheduling: an application domain for DAI.
Journal of Applied Artificial Intelligence. Special Issue on
Intelligent Agents, 10.
Fischer,K;, Müller,J.P.; and Pischel,M. 1995. A model for
cooperative transportation scheduling. Proceedings of the 1st Int.l
Conf. on Multiagent Systems (ICMAS’95), pp. 109-116.
Laporte,G. 1992. The vehicle routing problem: an overview of
exact and approximate algorithms. European Journal of
Operations Research, 59:345-358.
Potvin,J.; and Rousseau,J. 1993. A parallel route building
algorithm for the vehicle routing and scheduling problem with
time windows. European Journal of Operations Research,
66:331-340.
Solomon,M. 1987. Algorithms for the vehicle routing and
scheduling problems with time window constraints. Operations
Research, 35:254-265.

Algorithm Vans Travel
Time

Waiting
Time

Total
Time

Centralized 12.67 9129 1878 11007
Distributed /
No optimization

16.6 11092 4660 15753

Distributed with
Optimization

12.36 8198 3038 11236

Table 2 200-Customer Routing Results

