
© Spinger-Verlag, http://www.springer.de/comp/lncs/index.html
submitted version

Structuring Agents for Adaptation

Sander van Splunter, Niek J.E. Wijngaards and Frances M.T. Brazier

Intelligent Interactive Distributed Systems Group, Faculty of Sciences, Vrije Universiteit
Amsterdam, de Boelelaan 1081a, 1081HV, The Netherlands

{sander,niek,frances}@cs.vu.nl
http://www.iids.org/

Abstract. Agents need to be able to adapt to the dynamic nature of the
environments in which they operate. Automated adaptation is an option that is
only feasible if enough structure is provided. This paper describes a component-
based structure within which dependencies between components are made
explicit. An example of a simple web-page analysis agent is used to illustrate
the structuring principles and elements.

1. Introduction

Agents typically operate in dynamic environments. Agents come and go, objects and
services appear and disappear, and cultures and conventions change. Whenever an
environment of an agent changes to the extent that an agent is unable to cope with
(parts of) the environment, an agent needs to adapt. Changes in the social environment
of an agent, for example, may require new agent communication languages, or new
protocols for auctions. In some cases an agent may be able to detect gaps in its
abilities; but not be able to fill these gaps on its own (with, e.g., its own built-in
learning and adaptation mechanisms).

Adaptive agents are a current focus of research (e.g., see this book), but opinions on
what 'adaptation' constitutes differ. Sometimes reactive behaviour of an agent is
dubbed 'adaptive behaviour' [1] where an agent is, e.g., capable of abandoning a
previous goal or plan and adopting a new goal or plan that fits its current situation
better. In this paper, adaptation of an agent is used to refer to "structural" changes of
an agent, including knowledge and facts available to an agent. External assistance may
be needed to perform the necessary modifications, e.g. by an agent factory [2].

An adaptation process has a scope: a scope defines the extent to which parts of an
agent are adapted. Research on agent adaptation can be categorised by distinguishing
three specific scopes: adaptation of knowledge and facts; adaptation of the language
with which an agent's interface to the outside world is expressed (e.g., dependency on
agent platform), and adaptation of an agent's functionality.
• Research on adaptation of knowledge and facts of an agent is usually based on

(machine) learning, e.g. [3]. Example applications include personification: an agent
maintains and adapts a profile of its (human) clients, e.g. [4], [5] and [6], co-

ordination in multi-agent systems, e.g. [7] and [8], and situated learning for agents,
e.g. [9].

• Research on adaptation of the interface of an agent is usually concerned with
adapting the agent’s interface to the (current) agent platform, e.g. see [10], [11].

• Research on adapting an agent’s functionality is not commonly available. Agent
creation tools are usually semi-automatic, providing a basis for developing an
automated tool for agent adaptation, e.g. see AGENTBUILDER [12],
D’AGENTS/AGENTTCL [13], ZEUS [14], and PARADE [15]. Computer assisted
software engineering tools are usually not focussed on agents, and are less
concerned with ’adaptivity’; see the discussion in Section 4 for a more detailed
comparison.

The approach taken in this paper focuses on automated adaptation of an agent’s
functionality by means of an agent factory. An agent factory is an external service that
adapts agents, on the basis of a well-structured description of the software agent. Our
hypothesis is that structuring an agent makes it possible to reason about an agent’s
functionality on the basis of its blueprint (that includes information about its
configuration). This ability makes it possible to identify specific needs for change,
defining the necessary input required to automatically reconfigure an agent. This
approach is much akin to the knowledge-level approach to system design [16] in
which the knowledge-level is distinguished from the symbol level. The agent factory
presented in this paper relies on a component-based agent architecture described in
Section 2. An example of the use of these component-based structures by (automated)
adaptation of a simple web-page analysis agent is shown in Section 3. Section 4
discusses results of this approach.

2. Structure of Agents

The structure of an agent proposed in this paper is based on general software
engineering, knowledge engineering and agent technology principles. Section 2.1
briefly discusses these principles. Section 2.2 describes the structuring principles used
in this paper. The result is illustrated for a simple web analysis agent introduced in
Section 2.3.

2.1 Structuring principles

Intelligent agents are autonomous software programs that exhibit social, co-operative,
and intelligent behaviour in distributed environments [17]. Modelling and
implementing 'intelligent' agents are not only studied in Software Engineering, but
also in Knowledge Engineering and Agent Research. Each of these research
disciplines imposes its own structuring principles, often adopting principles of other
research disciplines.

In software engineering functional programming, e.g. [18], object-oriented
programming, e.g. [19], and component-based programming, e.g. [20], [21] have a

concept of compositionality. The compositional structure in functional programming
and component-based programming is based on processes and functions. The concept
of compositionality in object oriented programming is that of objects that encapsulate
data and methods. Each approach has its own merits, depending on characteristics of
the domain for which a software system is designed. Re-use and maintenance are
important aspects of all approaches (see e.g. [22]). All require a means to specify and
retrieve appropriate software components [23]: by means of e.g. design patterns [24],
annotation of software components [25], and annotation of web-services [26].

In knowledge engineering, common structuring principles have a process-oriented
focus, in which the (problem solving / reasoning) processes are explicitly modelled
and controlled, e.g. by approaches related to COMMONKADS [27] and DESIRE [28].
Methodologies including reasoning patterns and generic task models have been
defined, facilitating re-use and maintenance.

In intelligent agent research a wide variety of approaches are employed. Most
common seem to be process (or task) oriented approaches, for which general agent
models are defined, e.g. by INTERRAP [29], ZEUS [14], and DESIRE [28] An example
of a common model is the BDI architecture, proposed by [30].

Each of the approaches described above employs a notion of compositionality and
defines generic models or patterns. Reuse and maintenance are recognised as
important endeavours, but as such, not often formalised nor automated. Current
research on brokering for web-services focuses on annotations of services (roughly
stated: software components). Annotations make architectural assumptions explicit,
including assumptions about the nature of the components, the nature of the
connectors, the global architectural structure, and the construction process [31].

2.2 Agent Structuring Approach

For automated agent adaptation, an agent structuring approach is needed which
facilitates reuse of existing components of an agent. This implies explication of not
only the structure of reusable parts, but also the semantics, including assumptions and
behaviour.

The component-based approach proposed in this paper distinguishes components
and data types (akin to data formats) [32] incorporating process-oriented and object-
oriented approaches. Where process-oriented modelling apporaches distinguish
processes and information exchange explicitly, object-oriented approaches encapsulate
data and methods in objects. In the approach proposed in this paper components are
the ’active’ parts of an agent (akin to processes), and data types are the ’passive’ parts
of an agent (akin to classes). This approach combines process-oriented and object-
oriented approaches, building on knowledge-engineering and software-engineering
research results.

Components have an interface, describing their input and output data types, and
slots within which component configuration is regulated. Data types represent types of
data, and may have their own slots with which data type configuration is regulated.
Slots define their interface and that which is expected from the component or data type

that is to be inserted. The addition of slots makes components not "black boxes", but
"grey boxes"; components can thus be partial specifications. De Bruijn and van Vliet
[33] even argue that for reuse a "black box" approach to components in component-
based development is a dead end. The concept of slots helps defining the ‘static’
structure or architecture of an agent. Components and data types need to be matched
to slots, determining, as a result, matches between, e.g., (replaceable) software
components [34].

Co-ordination patterns and ontologies are distinguished to annotate configurations
of components and data types. Annotations are essential for automation of the agent
adaptation process. A co-ordination pattern is a temporal specification (e.g., see [28])
defining temporal relations and dependencies between processes, when used within a
specific task. A co-ordination pattern describes the flow of control and information for
group of components in the context of a specific task. An ontology describes the
concepts and relations between concepts. Co-ordination patterns and ontologies may
themselves be composed and are ultimately related to (annotations of) components and
data types.

2.3 An example

To illustrate the role of structure in our approach a web-analyser agent is introduced;
an agent that analyses websites for relevance, on demand. Given a URL of a website
and a term, a web analyser agent determines the relevance of the website with regard
to the given term. The agent uses simple analysis techniques: it counts the number of
occurrences of the term on the pages at the given location. Three components of the
agent are described to illustrate the agent's functionality and component configuration.

The web-analyser agent's major structuring component is the generic-agent-model

component [28]. The generic-agent-model component models an agent that can reason
about its own processes, interact with and maintain information about other agents,
interact with and maintain information about the external world, co-operate with other
agents, and performs its own specific tasks. Figure 1 shows the compositional
structure of the generic-agent-model component and its seven component slots. For each
slot, the name of the component inserted into the slot is given.

generic-agent-model

beliefs-desires-intentions-
commitments-handling

own-process-
coordination-slot

cooperation-management-
by-project-management

cooperation-
management-slot

default-agent-
communication-management

agent-interaction-
management-slot

default-agent-information-
storage-and-retrieval

maintenance-of-
agent-information-slot

default-world-interaction-
management

world-interaction-
management-slot

default-world-information-
storage-and-retrieval

maintenance-of-world-
information-slot

web-page-analysis
agent-specific-task-

slot

Figure 1. The generic-agent model structure for the simple web analyser agent at conceptual
level.

The further structure of the conceptual component web-page-analysis inserted in the
agent-specific-task-slot of the conceptual generic-agent-model component is shown in
Figure 2.

web-page-analysis

pages-to-be-analysed-
determination

page-selection-slot

page-ranking-by-search-
term

page-analysis-slot

Figure 2. The structure of the web-page-analysis component at conceptual level.

The generic agent model can be used to structure both the conceptual and operational
description of an agent. At operational level the components within the web-page-

analysis component differ from the components in the conceptual description, as shown
in Figure 3. The conceptual page-ranking-by-search-term component is implemented by
the operational component configuration of the operational two-set-enumerator and
count-substring-in-string components.

A rationale for this operational configuration is that a set of webpages needs to be
ranked for one search term. The actual analysis process consists of counting the
number of occurrences of the search term in a web page by simply counting the
number of occurrences of a (small) string in another (larger) string, i.e. a web page.

web-page-analysis

get-pagespage-selection-slot

two-set-enumeratorpage-analysis-slot

count-substring-in-stringtuple-operation-slot

Figure 3. Structure of the web-page-analysis component at operational level.

Co-ordination patterns are used to verify whether the configuration of components and
data types exhibits the required behaviour, in this case receiving requests for web
analysis, performing requested web analysis, and returning results. A high-level co-
ordination pattern for multiple job execution is applicable; a "job" is a "request for web
analysis". In this specific case, a simple sequential job execution pattern suffices. This
co-ordination pattern is shown in pseudo-code below: "tasks" are ordered in time, and
need to be performed by the configuration proposed.

(1) collect jobs in job list
(2) select a job
(3) perform current selected job
(4) remove current selected job from job lists
(5) go to (1)

The tasks shown in the co-ordination pattern may be directly mapped onto
components, but this is not necessarily the case. Some of the tasks may involve a
number of components. For example, the first task, collect jobs in job list involves, from
the perspective of the generic-agent-model component, components in two of its ’slots’:
agent-interaction-management for receiving web-analysis requests, and maintenance-of-

agent-information for storing web-analysis requests. Another co-ordination pattern,
collect items in existing item list, is needed to specify this task more precisely. These tasks
can be mapped directly onto the above mentioned components.

(1a) obtain item
(1b) add obtained items to item list

3. Adapting Structured Agents

This section describes how agents with a compositional structure as described in the
previous section can be adapted. Section 3.1 introduces the adaptation process of the
agent factory, and Section 3.2 describes the results of adapting a simple web-page
analysis agent.

3.1 Adaptation in an Agent Factory

Agents are constructed from components and data types by an automated agent factory
[2]. Adapting an agent entails adapting the configuration of its components and data
types. Whether the need for servicing is detected by an agent itself, or by another

agent (automated or human) is irrelevant in the context of this paper. The agent
factory is based on three underlying assumptions: (1) agents have a compositional
structure with reusable parts, (2) two levels of conceptualisation are used: conceptual
and operational, (3) re-usable parts can be annotated and knowledge about annotations
is available.

An agent factory, capable of automatically building and adapting an agent,
combines knowledge of its domain (i.e., adapting intelligent agents), its process (i.e.,
adaptation processes), and the combination of these (i.e., adapting intelligent agents).
Needs for adaptation are qualified to express preference relations among needs, and
refer to properties of an agent. Needs may change during the adaptation process, e.g.
conflicting needs may be removed.

An adaptation process starts with a blueprint of an agent, and results in a (modified)
blueprint of the agent; a process similar to re-design processes. In re-design, an initial
artefact is modified according to new, additional, requirements. An existing model of
re-design [35] has been used to model the adaptation process. Models and systems for
re-design make use of the structure of their artefacts, the same holds for the adaptation
process. Strategic knowledge is required to ’guide’ the adaptation process, both in
deciding which goals to pursue and how to tackle a goal; goals take the form of
adaptation foci. An adaptation focus consists of the following categories of elements
of the agent:
– needs that are taken into account: e.g. needs that relate to a specific facet (task or

function, data, behaviour) of part of the agent,
– levels of conceptualisation
– components
– data types
– co-ordination patterns and their mappings
– ontologies and their mappings
– annotations

The component-based adaptation approach presented in this paper is similar to
design-as-configuration, e.g., as described in [8], which focuses on constructing a
satisfactory configuration of elements on the basis of a given set of requirements (also
named: constraints). Examples of design-as-configuration are described in COMMON-
KADS [27] and an analysis of elevator configuration systems [36].

 3.2 Adaptation Results

Assume in the example introduced in Section 2.2 that the owner of the web analyser
agent has decided that she wants to be able to acquire a higher level of service for
those sites for which she is known to be a preferred client (and the standard quality of
service for those sites for which this is not the case). The (new) requirements for the
web-analyser agent are that:
– the agent shall have two levels of quality of service for assessing relevance of web

pages;

– the agent shall employ other analysis methods in addition to its analysis based on a
single search term: analysis involving synonyms is a better quality of service than
analysis involving a single search term;

– the agent shall maintain a list of those sites for which its client is a preferred client;
– the agent shall be informed about a site’ s preferred clients;
– a co-ordination pattern shall relate a client's request to a preferred quality of

service.
The resulting blueprint is described in this section by focusing on the changes within
the conceptual agent-specific-task component, the most constrained component of the
agent. Other components and data types are not shown in this description.

In one of the libraries of components and data types, an alternative web-page-analysis

component is found which has a slot for query expansion, shown in Figure 4. The
alternative quality of service for web-page analysis consists of expanding a search
term into a set of synonyms with which web-pages are analysed. The slots of this
component can be filled with components used in the original web-page-analysis

component. One new component needs to be found, to ‘expand a search term. A
component that uses a synonym database qualifies, and is used.

extended-web-
page-analysis

pages-to-be-analysed-
determination

page-selection-slot

synonym-determinationquery-expansion-slot

page-ranking-by-
multiple-search-terms

page-analysis-slot

Figure 4. Component extended-web-page-analysis at conceptual level.

 This extended-web-page-analysis component is parameterised, i.e., the level of query
expansion can be specified explicitly. This property makes it possible to provide both
required qualities of service: one quality of service with extended query expansion, the
other quality of service with no query expansion at all. The existing web-page-analysis
component can be replaced by the extended-web-page-analysis component. An
additional component is needed to determine the applicable quality of service, as
shown in Figure 5.

method-determination

method-
determination-slot

subtask-slot

Figure 5. Component method deliberation at conceptual level.

The resulting component configuration within agent-specific-task is shown in Figure
6.

generic-agent-model

agent-
specific-
task-slot

…

quality-of-service
determination

method-determination

method-
determination-slot

subtask-slot
extended-web-
page-analysis

pages-to-be-analysed-
determination

page-selection-slot

synonym-determinationquery-expansion-slot

page-ranking-by-
multiple-search-terms

page-analysis-slot

Figure 6. The agent-specific-task-slot contains a conceptual component for selecting a quality of
service of web-page analysis.

The same high-level co-ordination pattern is used as described in Section 2.2, however
the third task, perform current selected job, has been replaced by a different (sub)co-
ordination pattern which involves the choice of a specific quality of service. This co-
ordination pattern is shown below:

(3a) prepare for current job
(3b) plan work for current job
(3c) perform planned work for current job
(3d) finish current job

The main change is in the presence of the second sub-task, plan work for current job,
which is related to the method_determination component. The changes in the operational
configuration of components and data types for the resulting agent, are comparable to
those needed for the conceptual configuration of components and data types.

4. Discussion

Agents can be adapted by services such as an agent factory. Automated adaptation of
software agents is a configuration-based process requiring explicit knowledge of
strategies to define and manipulate adaptation foci. Automated agent adaptation
becomes feasible when the artefact is structured, as demonstrated in a number of
prototypes. A compositional approach is taken to structure the agent: components and
data-types can be configured to form an agent, together with co-ordination patterns
and ontologies which describe the agent’s behaviour and semantics. A simple web-
page analysis agent has been used to illustrate the agent structuring and adaptation
process needed to adapt an agent’ s functionality.

An example of the use of an agent factory for the adaptation of the external
interface of an agent (a less complex endeavour) is described in [11]. For agents that
migrate in an open, heterogeneous environment generative migration minimally
entails adapting an agent's wrapper. It may, however, also involve rebuilding an agent
with different operational components and data types (e.g., in a different code base).
Four different scenario’ s for generative migration have been distinguished:

homogeneous, cross-platform, agent-regeneration, and heterogeneous migration.
Migration is categorised with respect to combinations of variation of (virtual)
machines and agent platforms.

The proposed structuring of agents presented in this paper is similar to other work,
in the eighties, in which an automated software design assistant is developed [37]. To
facilitate automated derivation of a structural design from a logical model of a system,
a modular structure was assumed, with the explicit property that independent modules
are clearly understood, together with explicit, dependencies between modules. In their
approach, a logical description of processes is modularised. This technique has shown
to be useful, on the one hand, for grouping functionality and tasks into components
and co-ordination patterns, and on the other hand for grouping needs for adaptation.

The Programmer’s Apprentice [38], from the same period, aims to provide
intelligent assistance in all phases of the programming task: an interactive tool that
may alleviate a programmer of routine tasks. By using 'clichés', patterns of code, the
system can 'understand' parts of code. This work is not based on components, but on
individual programming statements, which is a major difference with our work. A
number of the processes involved in the Programmer's Apprentice are of relevance to
the adaptation process. A related semi-automated approach, KIDS [39], derives
programs from formal specifications. In this approach users interactively transform a
formal specification into an implementation; this is mainly used for algorithm design.
The principles apply to our approach for, e.g., adapting an operational configuration of
components and data types on the basis of an already adapted conceptual configuration
of components and data types.

The adaptation approach taken in this paper is similar to approaches such as IBROW

[40]. IBROW supports semi-automatic configuration of intelligent problem solvers.
Their building blocks are ’ reusable components’ , which are not statically configured,
but dynamically ’ linked’ together by modelling each building block as a CORBA object.
The CORBA-object provides a wrapper for the actual implementation of a reusable
component. A Unified Problem-solving method development language UPML [41] has
been proposed for the conceptual modelling of the building blocks. Our approach
differs in a number of aspects, which include: no commitments to specific conceptual
or operational languages and frameworks, two levels of conceptualisation, and the
process of (re-)configuration is a completely automated (re-)design process.

The design of an agent within the agent factory is based on configuration of
components and data types. Components and data types may include cases and partial
(agent) designs (cf. generic models / design patterns). This approach is related to
design patterns (e.g., [24], [42], [43]) and libraries of software with specific
functionality (e.g., problem-solving models, e.g. [27], or generic task models, e.g.
[28]). The adaptation process uses strategic knowledge to explore the design space of
possible configurations with the aim of satisfying the needs for adaptation. Alternative
approaches may expand all configurations of (some) components and data types, when
insufficient knowledge on their (non)functional properties is available [44].

Module Interconnection Languages [45] explicitly structure interfaces and relations
between components, providing a basis for matching descriptions of components and

slots [34]. Approaches for semantic web and annotation of web services play an
important role in representing and reasoning about annotations [26].

The QUASAR project focuses on (semi-)automation of generation and provision of
implementations of software architectures. A reference architecture is derived based
on functional requirements, after which modifications are made for non-functional
requirements. Their approach is based on top-down software architecture
decomposition, where choices are based on Feature-Solution graphs, which link
requirements to design solutions [46], [47].

Future research focuses on augmenting our prototype and analysing annotations in
the context of semantic web research.

 Acknowledgements

The authors wish to thank the graduate students Hidde Boonstra, David Mobach,
Oscar Scholten and Mark van Assem for their explorative work on the application of
an agent factory for an information retrieving agent. The authors are also grateful to
the support provided by Stichting NLnet, http://www.nlnet.nl/.

References

1 Rus, D., Gray, R.S., Kotz, D.: Autonomous and Adaptive Agents that Gather Information.
In: Proceedings of AAAI’96 International Workshop on Intelligent Adaptive Agents (1996)
107-116

2 Brazier, F.M.T., Wijngaards, N.J.E.: Automated Servicing of Agents. AISB Journal 1 (1),
Special Issue on Agent Technology (2001) 5-20

3 Kudenko, D., Kazakov, D., Alonso, E.: Machine Learning for Multi-Agent Systems. In: V.
Plekhanova, V.(ed.): Intelligent Agents Software Engineering, Idea Group Publishing (2002)

4 Bui, H.H., Kieronska, D., and Venkatesh, S.: Learning Other Agents’ Preferences in
Multiagent Negotiation. In: Proceedings of the National Conference on Artificial
Intelligence (AAAI-96) (1996) 114–119

5 Soltysiak, S., Crabtree, B.: Knowing me, knowing you: Practical issues in the
personalisation of agent technology. In: Proceedings of the third international conference on
the practical applications of intelligent agents and multi-agent technology (PAAM98),
London (1998) 467–484

6 Wells, N., Wolfers, J.: Finance with a personalized touch. Communications of the ACM,
Special Issue on Personalization 43:8 (2000) 31–34.

7 Schaerf, A., Shohamm Y., Tennenholtz, M.: Adaptive Load Balancing: A Study in Multi-
Agent Learning. Journal of Artificial Intelligence Research 2 (1995) 475-500

8 Stefik, M.: Introduction to Knowledge Systems. Morgan Kaufmann Publishers, San
Francisco, California (1995)

9 Reffat, R.M. and Gero, J.S.: Computational Situated Learning in Design. In: J. S. Gero (ed.):
Artificial Intelligence in Design '00. Kluwer Academic Publishers, Dordrecht (2000) 589-
610

10 Brandt, R., Hörtnagl, C., Reiser, H.: Dynamically Adaptable Mobile Agents for Scaleable
Software and Service Management. Journal of Communications and Networks 3:4 (2001)
307-316

11 Brazier, F.M.T., Overeinder, B.J., van Steen, M., Wijngaards, N.J.E.: Agent Factory:
Generative Migration of Mobile Agents in Heterogeneous Environments. In: Proceedings of
the 2002 ACM Symposium on Applied Computing (SAC 2002) (2002) 101-106

12 Reticular: AgentBuilder: An Integrated Toolkit for Constructing Intelligent Software Agents.
Reticular Systems Inc, white paper edition. http://www.agentbuilder.com (1999)

13 Gray, R.S., Kotz, D., Cybenko, G., Rus, D.: Agent Tcl. In: Cockayne, W., Zypa, M. (eds.):
Itinerant Agents: Explanations and Examples with CD-ROM. Manning Publishing. (1997)
58–95

14 Nwana, H.S., Ndumu, D.T., Lee, L.C.: ZEUS: An Advanced Tool-Kit for Engineering
Distributed Multi-Agent Systems. Applied AI 13:1/2 (1998) 129-185

15 Bergenti, F., Poggi A.: A Development Toolkit to Realize Autonomous and Inter-Operable
Agents. In: Proceedings of Fifth International Conference of Autonomous Agents (Agents
2001), Montreal (2001) 632-639

16 Newell, A.: The Knowledge Level. Artificial Intelligence 18:1 (1982) 87-127.
17 Jennings, N.R., Wooldridge, M.J.: Applications Of Intelligent Agents. In: Jennings, N.R.,

Wooldridge, M.J. (eds.): Agent Technology Foundations, Applications, and Markets,
Springer-Verlag , Heidelberg, Germany (1998) 3-28

18 Kernighan, B.W., Ritchie, D.M.: The C Programming Language. 2nd edn. Prentice Hall
Software Series (1988)

19 Booch, G.: Object oriented design with applications. Benjamins Cummins Publishing
Company, Redwood City (1991)

20 Hopkins, J.: Component primer. Communications of the ACM 43:10 (2000) 27–30
21 Sparling, M.: Lessons learned through six years of component-based development.

Communications of the ACM 43:10 (2000) 47–53
22 Biggerstaff, T., Perlis, A. (eds.): Software Reusability: Concepts and models. Vol 1. New

York, ACM Press (1997)
23 Moormann Zaremski, A., Wing, J.M.: Specification Matching of Software Components.

ACM Transactions on Software Engineering and Methodology (TOSEM), Vol. 6:4 (1997)
333-369

24 Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of reusable
object-oriented software. Addison Wesley Longman, Reading, Massachusetts (1994)

25 Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik G.: Abstractions for
Software Architecture and Tools to Support Them. Software Engineering 21:4 (1995) 314-
335

26 Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., McDermott, D., Martin, D., McIlraith,
S.A., Narayanan, S., Paolucci, M., Payne, T., Sycara, K.: DAML-S: Web Service
Description for the Semantic Web. In: Proceedings of the first International Semantic Web
Conference (ISWC 02) (2002)

27 Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., van de Velde,
W., Wielinga, B.: Knowledge Engineering and Management, the CommonKADS
Methodology. MIT Press (2000)

28 Brazier, F.M.T., Jonker, C.M., Treur, J.: Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering 41 (2002) 1-28

29 Müller, J.P., Pischel, M.: The Agent Architecture InteRRaP: Concept and Application.
Technical Report RR-93-26, DFKI Saarbrucken (1993)

30 Rao, A.S., Georgeff, M.P.: Modeling rational agents within a BDI architecture. In: Fikes, R.,

Sandewall, E. (eds.): Proceedings of the Second Conference on Knowledge Representation
and Reasoning, Morgan Kaufman, (1991) 473-484

31 Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch, or, Why it’s hard to build
systems out of existing parts? In: Proceedings of the Seventh international Conference on
Software Engineering, Seattle, Washington (1995) 179-185

32 van Vliet, H.: Software Engineering: Principles and Practice. 1st edn. John Wiley & Sons
(1993)

33 de Bruin, H., van Vliet, H.: The Future of Component-Based Development is Generation,
not Retrieval. In: Crnkovic, I., Larsson, S., Stafford, J. (eds.): Proceedings ECBS’02
Workshop on CBSE -- Composing Systems from Components, Lund, Sweden, April 8-11,
(2002)

34 Moormann Zaremski, A., Wing, J.M.: Specification Matching Software Components. ACM
Transactions on Software Engineering and Methodology, vol. 6:4 (1997) 333-369

35 Brazier, F.M.T., Wijngaards, N.J.E.: Automated (Re-)Design of Software Agents. In: Gero,
J.S. (ed.): Proceedings of the Artificial Intelligence in Design Conference 2002, Kluwer
Academic Publishers (2002) 503-520

36 Schreiber, A. Th., Birmingham, W. P. (eds.): Special Issue on Sisyphus-VT.
International Journal of Human-Computer Studies (IJHCS) 44:3/4 (1996) 275-280

37 Karimi, J., Konsynski, B.R.: An Automated Software Design Assistant. IEEE Transactions
on Software Engineering, Vol. 14:2 (1988) 194-210

38 Rich, C., Water. R.C.: The Programmer’s Apprentice: A research overview. IEEE Computer
21:11(1988) 10-25

39 Smith, D.R.: KIDS: A Semi-automatic Program Development System. IEEE Transactions
on Software Engineering, Vol. 16:9 (1990) 1024-1043

40 Motta, E., Fensel, D., Gaspari, M., Benjamins, V.: Specifications of Knowledge Component
Reuse. In: Proceedings of the 11th International Conference on Software Engineering and
Knowledge Engineering (SEKE-99), Germany, Kaiserslautern (1999) 17–19

41 Fensel, D., Motta, E., Benjamins, V., Crubezy, M., Decker, S., Gaspari, M., Groenboom, R.,
Grosso, W., van Harmelen, F., Musen, M., Plaza, E., Schreiber, A., Studer, R., Wielinga, B.:
The unified problem-solving method development language UPML. Knowledge and
Information Systems 5:1, to appear (2002)

42 Peña-Mora, F., Vadhavkar, S.: Design Rationale and Design Patterns in Reusable Software
Design. In: Gero, J., Sudweeks, F. (eds.): Artificial Intelligence in Design (AID’ 96), Kluwer
Academic Publishers, the Netherlands, Dordrecht (1996) 251–268

43 Riel, A.: Object-Oriented Design Heuristics. Addison Wesley Publishing Company, Reading
Massachusetts (1996)

44 Kloukinas, C., Issarny, V.: Automating the Composition of Middleware Configurations. In:
Proceedings of the 15th IEEE International Conference on Automated Software Engineering
(2000) 241 - 244

45 Prieto-Diaz, R., Neighbors, J.M.: Module Interconnection Languages. Journal of Systems
and Software 4 (1986) 307-334

46 de Bruin, H., van Vliet, H.: Quality-Driven Software Architecture Composition. Journal of
Systems and Software, to appear (2002)

47 de Bruin, H., van Vliet, H.: Top-Down Composition of Software Architectures. In:
Proceedings 9th Annual IEEE International Conference on the Engineering of Computer-
Based Systems (ECBS), IEEE, April 8-11 (2000) 147-156

