
Storage and retrieval of Software Components using Aspects

John Grundy
Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstract

While component-based software engineering
technologies have become popular, finding and reusing
appropriate software components is often challenging.
We describe a software component repository that uses
a concept of component “aspects” to index and query
components based on their high-level systemic
characteristics, including their user interface,
persistency, distribution, security and collaborative
work support. Software components are queried for
aspects of a system they provide or require and these
are used to automatically generate a high-level
indexing system. Developers and end users can
formulate high-level, aspect-based queries to retrieve
components providing or requiring services appropriate
to their needs.

1. Introduction

Component-based software engineering
technologies have become popular [14]. Examples of
component-based architectures include OpenDoc [1],
CORBA [18], DCOM [25], and JavaBeans [20]. Many
tools have been developed to assist developers in
constructing systems using these architectures,
including JBuilder [2], VisualAge [9], and JComposer
[3]. Tools to assist end users to configure and extend
applications have also been developed, including Visual
JavaScript [19], MET++ [26], and Serendipity-II [5].

Component-based systems emphasise appropriate
reuse and composition of software components as a key
concept. However, finding and reusing appropriate
software components is often very challenging,
particularly when faced with a large collection of
components and little documentation about how they
can and should be used [15, 27]. This is a particular
issue for end users of component-based systems who
want to tailor and extend their environment, but have
limited understanding of component functionality and
implementation [8, 16, 19]. Many software component
repositories have been developed, often extending the

approaches used for software libraries. Examples
include WiSeR [21], IBROW [17], and CodeFinder [8].
Key deficiencies of existing approaches include the
need to use low-level, service-based queries, lack of
high-level description of component capabilities, lack of
validation or checking of retrieved component
suitability, and lack of use of the context for which
queries are being performed by the retrieval tool.
Repositories using formal specification or execution-
based retrieval mechanisms suffer from a need to
exhaustively, formally specify parts of component
services, with queries requiring formal specification
techniques that may be difficult for many end users and
developers to use.

We describe a software component repository that
uses a concept of component “aspects” to index and
query components based on their high-level systemic
characteristics. These aspects describe a component’s
provided or required services and related non-functional
constraints for capabilities like user interface provision,
distribution and persistency management, collaborative
work support, security and transaction processing, and
configuration and inter-component relationship
management. All of the software components in our
component-based architecture advertise such high-level
capabilities using aspects, and this is used to automate
indexing of components. Our retrieval tool allows users
to formulate high-level queries about component
capabilities and takes account of the context in which a
query is performed to assist query formulation.
Component aspects provide validation functions to
ensure sensible configurations result from using
retrieved components.

Section 2 outlines the motivation for this work from
two example systems: a CASE tool and workflow
system software agent specification tool. Section 3
describes the concept of component aspects and our
aspect-based component repository. Section 4 illustrates
how component aspects are used to automate indexing
of software components. Section 5 illustrates the use of
our prototype querying tool to retrieve components and
add them to component-based systems. Section 6
compares our approach with other component

repositories and outlines areas for possible future research.
Reuse of collection
component

Reuse of event
handling component

Reuse of Event detection
&filtering component

Reuse of Operation invocation

component

(a) Developing a component-based system. (b) End user specifying a component-based software agent.

Figure 1. Examples of software developer and end-us er component reuse.

2. Motivation

We have been developing various component-based
systems, including CASE tools, Workflow Management
Systems, and Collaborative Information Systems [3, 5,
4] When developing or extending such systems,
developers and end users need to reuse software
components from a component-based framework or
developed for use on another project [3, 5].

Figure 1 (a) illustrates some reused software
components in the JComposer CASE tool [3]. The
developer has reused a collection management
component (MVHashtableRel), and an event handling
component that enforces unique keying for any type of
collection component (EnsureUniqueNames). The
developer needs to know where to find such
components, what their capabilities are, and whether
reusing them in the way shown is sensible to achieve
their desired goals. They also want to be able to add
newly developed components into the repository for
future reuse.

Figure 1 (b) shows a software agent specification
from the Serendipity-II workflow management system,
being used to develop a collaborative Information
System for travel itinerary planning [4]. This example
shows a simple automated notfication agent which
informs all users via a chat tool when the map
visualisation has been updated. The end user of this
system wants to build (usually) simple task automation
agents to enhance their environment, but needs to reuse
carefully packaged components in a compose and link
way. End users (and often software developers) do not

want to query for reusable components based on low-
level operations and attributes, but on higher-level
capabilities that fit in with the agent task they are trying
to develop. Some key issues we have identified for a
component repository include:
• Indexing should, as far as possible, be automatic,

rather than require exhaustive developer and/or end
user input. This ensures consistent, complete
indexing by querying each component for
information about itself.

• A high-level characterisation of capabilities should
be used to index software components, rather than
only operation and attribute-level names, types,
formalism specfications or natural language
comments. This is because, in our experience,
multiple operations and attributes usually
contribute to the determination of which
components a user might wish to find and reuse.

• Querying will normally want to use the same, high-
level language to describe component capabilities
as indexing. Developers and end users usually want
to query for abstract service provision and
requirements rather than low-level interface
characteristics.

• If possible, the context in which a component is to
be reused should be used by the retrieval tool. If a
component, or set of components, is required that
provide a set of services for a component already
identified, the requirements of this existing
component can guide query formulation.

• Automatic component configuration and validation
functions should be run by the retrieval tool to

ensure a component is appropriately initialised and
validated for the context in which it is being reused.

3. Aspect-oriented Component Repository

We have been developing a methodology for the
engineering of component-based systems called
“Aspect-oriented Component Engineering” [6]. This
uses a concept of high-level, systemic aspects of a
software application to characterise component
provided and required services. This includes the user
interface-related services a component provides or
requires from other components, component
distribution and persistency management, collaborative
work and user configuration capabilities, and security
and transaction processing models. Each kind of aspect
has a number of provided and required “aspect details”,
with each aspect detail having properties further
characterising it (e.g. kinds of persistency or user
interface elements, measurements of transaction
processing or distributed systems performance, or
constraints on usage of an aspect detail, and so on).

Chat Client

Properties:
 Username:String
 ChatName:String

Methods:
 DisplayPanel()
 Login()
 Logout()
 SendMessage()
 ReceiveMessage()
 GetUserList()

Events:
 MessageReveived
 MessageSent
 Login
 Logout

<<User Interface>>
+ panel
- frame

<<Distribution>>
+ generate event
+ action event
- broadcast event

<<Collaborative Work>>
+ register/deregister user
- user list
- version data

<<Security>>
- encode data
- decode data
- authenticate user

Web Browser

Socket-based
Event transport

Chat Server

Requires register/deregister;
Provides user list, chat history

Provides authentication
via password

Requires event broadcast & action
Provides event transport via TCP-IP

Provides frame
for chat panel

Figure 2. Concept of component aspects.

Figure 2 illustrates the concept of component
aspects using a simple text chat client component.
Components are in solid boxes, component aspects
advertised by the chat client are dashed, and provided
aspect details denoted by a ‘+’ and required by a ‘-‘.
The chat client has a user interface (a panel), but
requires a frame which manages this panel; it generates
and actions events, but requires another component to
handle actual network broadcasting (transport); it
identifies the user but requires a component to provide a
list of other users and chat history management, and
requires security services from other component(s).
Note that different components could be chosen to use
or satisfy the provided/required aspect details e.g. a
separate secturity management component, a CORBA
or RMI event transport component, etc. Note that aspect

details may relate to one or more component feature
(methods, properties and/or events), and one component
feature may be used by more than one aspect as
necessary. This characteristic of aspects allows
component developers to take multiple perspectives on
a component’s capabilities using aspects where these
perspectives may naturally overlap.

We have used component aspects to aid developers
when analysing, documenting and reasoning about
component requirements [7], and when refining
requirements into software component designs and
implementations [6]. We have also developed support
in a component-based architecture, JViews, for
encoding aspect information in software components,
for use at run-time by end users, developers and other
components [6]. All JViews components advertise their
aspects by using a set of AspectInfo class
specialisations, similar to JavaBeans BeanInfo
introspection classes and COM type libraries [20, 25].
In contrast, however, AspectInfo classes capture high-
level information about component capabilities which
are understandable by developers and, many of them,
by end users. They also provide a set of standardised
functions for invoking component operations and
validating component configurations. Third party
software components can have AspectInfo classes
generated for them by our JComposer CASE tool.

We have used the advertising of component aspects
by JViews-based components to generate indexes of
component capabilities relating to different aspects of a
software application, as shown in Figure 3. When a
component is added to our repository, the component’s
aspects are queried and index entries entered for each
aspect detail. Properties associated with each aspect
detail are also stored to support further refinement of
possible search criteria. We also index component
names, properties, methods and events, in case users
wish to query using them. Users formulate queries for
components using either component, method or event
names or aspects the component provides or requires.

4. Indexing Components using Aspects

A key aim of our component repository approach is
to make it easier for developers and end users to
formulate high-level queries for components and have
access to high-level information about components
retrieved. Our component aspects ontology for
describing component capabilities provides a high-level
language for users to describe desired component
capabilities in queries and with which to review
retrieved component capabilities. Thus every
component added to the repository needs to have its
aspect details queried and be indexed by these aspect
details to facilitate retrieval. Component aspects are a

three-level descriptive technique: aspects group aspect
details which in turn have a variety of properties.
Property values may be numeric, string literals,

enumerated values or value ranges, depending on the
aspect detail beging described.

Aspect details/
properties index

PEM index

Component name/
location index

Component storage:
aspect details &
PEMs queried &
indexes updated

Component to store

Retrieval context:
component(s) to link
to & their (unmet)
provides/required
aspects

Aspect-based retrieval:
user formulates query on
provided/required aspect
details+properties

Located component(s):
User chooses/examines
aspects/adds component, or
refines/reformulates query.

Create component &
run auto-configure &
validation checks. If
fail, reformulate query

Conventional retrieval:
Use query on component
name/attribute or method
name(s).

Component aspects
encodings generated by
JComposer CASE tool.

Properties/Methods/
Events (PEMs) – via
low-level introspection

Developer or end user may modify aspect
information in JComposer for component to
enhance future retrieval from repository.

Figure 3. Aspect-based component repository archite cture.

As an example, take the TCP/IP-based event
transport component we have used extensively in a
variety of JViews-based environments. This component
is used to broadcast generated events to another user’s
JViews application, where generated events are
propagated to components listening to its proxy. This
component has only one aspect for which it provides
and requires services, the Distribution aspect. Its
specification using aspects is illustrated in Figure 4 (a).
The Distribution aspect details it provides are event
broadcasting, locking (using simple broadcast and wait
for all remote components to finish responding before
sending next event), and event querying.

It requires at least one component to generate events
for it to transport, and at least one component to receive
these transported events and act on them. It may be
related to an event history component that is used to
store events transmitted. Each of these provided and
required aspect details has various properties, as
illustrated in Figure 4 (b).

To index this component for effective retrieval we
take each aspect detail and insert an entry in our aspect
detail index indicating a component that provides
distribution-related capabilities (event transport,
synchronisation, broadcast type) and requires
distribution-related services (event generation and
consumption). For each of these aspect details, we take
each detail property and create an entry indicating
value(s) of the property possible for this component.

The property value may be a singleton (e.g.
event_broadcasting.protocol = TCP/IP), an enumerated
value (e.g. synchronisation.kind = Multi or Uni), or a
value range (e.g. event_producers > 0). Some properties
may have values which are dynamically computed
depending on a component instance’s configuration
(e.g. retransmission=if event_history != null). Figure 5
illustrates the basic component indexing process we
currently use.

TCPEventTransport
Properties:
 host:String
 port:integer
 …
Methods:
 connect()
 sendData()
 …
Events
 …

<<Distribution>>
- event generation
- event actioning
+ event broadcasting
+ locking
+ event querying
- event store

EventHistory
Methods:
 storeEvent()
 getEvent()
 findEvent()
 …

Optional event
history relationship

Used to support event
querying &
retransmission

Local Component(s)

Remote Component(s)

provides events to send

At least one component that
generates events to transport

Provides transported
event actioning

1..*

0..1

component TCPEventTransport
properties

event_store : MVEventHistory
host : String
port : Integer
…

methods
boolean connect(String,int)
int sendData(Byte[])
…

events
…

aspect Distribution
requires event_generation

generate=after OR before
transitive=true OR false
event_producers > 0

requires event_actioning
event_consumers > 0

provides event_broadcasting
multicast=true OR false
network_con=LAN OR WAN
protocol=TCP/IP
retransmission=if event_history != null

provides locking
kind=pesimistic

provides event_querying
store=event_store
access=direct

end aspect.
end Component.

(a) Event transport component aspect details. (b) Event transport aspect detail properties.

Figure 4. Distributed event propagation component’s specification.

TCPEventTransport
Properties:
 host:String
 port:integer
 …
Methods:
 connect()
 sendData()
 …
Events
 …

<<Distribution>>
- event generation
- event actioning
+ event broadcasting
+ locking
+ event querying

Query for aspects

For each aspect detail,
generate index entry

For each aspect detail property,
generate index entry

<Distribution,req,event_generation,TCPEventTransport>
<Distribution,req,event_actioning,TCPEventTransport>
<Distribution,prov,event_broadcasting,TCPEventTransport>
…

<req,event_generation,generate,”before”,TCPEventTransport>
<req,event_generation,generate,”after”,TCPEventTransport>
<req,event_generation,number_generators,0,n,TCPEventTransport>
<prov,event_broadcasting,protocol,”TCP/IP”,TCPEventTransport>
<prov,locking,multicast,true,,TCPEventTransport>
<prov,locking,multicast,false,,TCPEventTransport>
…

Figure 5. Example of component indexing using aspec ts.

Some aspect details are “mandatory” if the component
is to be reused. For example, an event generator must be
supplied with an event source. Others are optional in
some situations. For example, the event transport
component can be linked to an event history which
caches transported events to support asynchronous
querying for prior events and storage of events for
retransmission in case of temporary network failure.
The event transport component can be used without this
event store, but in this configuration it can not support
asynchronous querying nor retransmission of events (as
no history is maintained). When indexing components
we indicate mandatory and optional details and
properties.

5. Retrieving Components with Aspect-
based Queries

To retrieve components developers and end users
formulate queries based on the various aspects, aspect
details and aspect detail property values the context in
which they require a component indicates. The
following steps to retrieving components are followed:
• The application invoking the repository querying

tool can supply the “context” in which components
are to be used, from which a partial query can be
automatically constructed. For example, in
JComposer and Serendipity, selected software
components in a CASE tool design or agent
specification can be queried for their aspects. Any
currently “unmet” required aspects and “unused”
provided aspects are usually to be partially fulfilled
by new component(s) for which the user is
searching the repository, and thus can be used to
generate an initial set of query parameters.

• The user refines any defaulted query parameters or
begins a new query. They select desired aspect
details (grouped by aspect) that components they
are searching for should either provide or require.

Each aspect detail is added to the query, and only
components that provide or require these details as
appropriate will be retrieved.

• For each aspect detail selected, the user may
optionally select one or more detail properties that
the retrieved components should provide a value
for. The user may specify a value for the property,
may specify a range of values, or may just specify
the property, indicating that retrieved components
should at least supply some value for it. Note that
some aspect details and detail properties are useful
only for software developers (i.e. are “advanced”
information about how a component works etc.).
We allow end users of applications like
Serendipity-II to request only a subset of all aspect
details and properties are used, which provides a
simplified description of component services and
configuration.

• The query is run and all components in the
repository providing or requiring the specified
aspect details and having detail property values
matching or within the range of those specified are
retrieved.

• The user may view detailed aspect information for
the retrieved components to help understand their
purpose and how to configure them, may refine
their search criteria if a large number of
components are retrieved, may reformulate their
query if no desired components are retrieved, or
may request a new component instance be created.

The above steps are repeated each time the user
wishes to retrieve and reuse new components. As an
example, consider a software developer building a chat
client, as shown in Figure 2, or an end user developing a
distributed notification agent. The developer needs a
component which can transport events generated by the
chat client to other user’s environments (to display the
message in their chat clients), and the end user a
component to transport events from components in their

environment to components in another user’s (or vice-
versa). A query is formulated for such a component
using the dialogue shown in Figure 6. Part of this query
may be defaulted if e.g. the JComposer CASE tool
determined the chat client component which the user
wanted to link the new component has a Distribution
aspect providing event generation and actioning but
requiring event transport and locking. In the dialogue in
Figure 6, the developer has formulated a query by
specifying they want components providing event
broadcasting and requiring event generation. For event
generation properties they want events generated after a
state change has occurred, and for event broadcasting
they want uni-cast broadcasting. The query is then run
and a short description of matching components are
shown in the bottom pane. The user can view the
different aspects and descriptions of aspect details and
property values for any of these kinds of reusable
components, can refine or reformulate their query, and
can ask for one of these components to be created and
added to the component specification view they are
working on.

Aspect detail
properties

Aspects &
aspect details

Query (aspect
details+property
value constraints)

Property value
specification

Retrieved
components

Figure 6. Component retrieval example.

Figure 7 shows an event transport component added
to a JComposer component specification view. The user
has connected the new component to the chat client
component, and is viewing the aspect details for the
new component. They have also asked for the aspect
encodings to validate the configuration component.

Note a warning is generated that this component has no
event history component linked to it, so its event
querying and retransmission facilities are unavailable in
this configuration. The user could find an event history
component from the repository (we have developed
several versions of this kind of component, with
different functional and non-functional characteristics),
create one of these and link the event transport
component to it.

Figure 7. Retrieved component added in
JComposer.

Developers and application end users can add their own
newly developed or refined components and agent
specifications (which are packaged as a single
component interface) to our repository. In order to do
this they need to specify appropriate aspects, aspect
details and aspect detail property values for such
components. This is done by using the JComposer
CASE tool, which supports aspect information
specification using a combination visual and textual
languages. Wrappers for third party components can
also be developed i.e. non-JViews components, which
provide an interface to such component functionality.
Aspect information is specified for these third party
components and tools by specifying aspects for their
JViews wrapper components.

6. Implementation and Integration

We developed our component repository as a
JViews component. This allows it to be reused as a
JavaBeans-compatible component in any JViews-based
environment, and possibly in any JavaBeans-based

component-based system. The component index is
implemented as a hashtable of component names to
component file locations and short descriptions (taken
from the short description of components stored in their
aspect information). This approach is used as all JViews
components are implemented as extensions of
JavaBeans components, and thus their implementation
contained in .class bytecode files. Any third-party, non-
JViews components have a JViews component
“wrapper” which provides access to their capabilities.
We have developed such components for interfacing to
MS Word™, MS Excel™, Netscape™, Eudora™, a
chat tool and a distributed file repository. Each of these
wrappers has aspect characterisations of the tools they
provide an interface to. When a retrieved component is
to be created or its aspect information viewed by the
user, the component’s bytecode file is located using the
component index and the component created and aspect
information retrieved and displayed.

The aspect detail index is also managed as a
persistent hashtable, with the provided/requried and
aspect detail name as composite key. We have currently
implemented the aspect detail property index as a set of
relational tables using the mSQL simple relational
database management system. Queries on aspect detail
properties are translated into SQL queries which
retrieve a set of component names. We plan to replace
the mSQL engine and custom persistency mechanisms
with an ObjectStore object-oriented database
management system. This is because we are enhancing
JViews-based applications to use ObjectStore for all
object persistency management.

JViews-based applications like Serendipity-II and
JComposer communicate with a component repository
through its JViews component interface. They can
request the repository dialogue be displayed to the user,
can provide the repository component with the “reuse
context” (a list of components currently selected in a
view), and receive events from the repository
component indicating a new component has been
created and needs adding to the view. Currently the
repository component supports configuration for
developers (full aspect details and properties) and end
users (implementation-level aspect details and
properties not shown).

7. Discussion

A wide variety of research has been carried out on
developing software component repositories [21], as
effective storage and retrieval of reusable components is
critical in managing and using large collections of
reusable software [8]. The problem of managing and
using large quantities of digitised information is not
only relevant to software development, but to

information management in general, as evidenced by
the huge growth in research into digital libraries [28].
The need to support more effective software developer
reuse of components has been an important area of
research for some time [8, 12, 15], but the need to
support end user reuse of software components has
become more pressing in recent years as component-
based systems become widespread [4, 13, 16].

Most component repositories adopt a form of
syntactic indexing and querying, whereby component
features (name, property and method names, type
names, comments) are used to index components.
Queries are made by specifying particular keywords or
facets (“attributes”) desired by reusers of components.
Examples of such systems include CodeFinder [8], the
Eiffel library [10], Phrasier [11], and those of JBuilder,
Visual Age and Marvel [12, 2, 9]. Components are
usually classified and organised by hierarchical
groupings, as in EiffelBase, JBuilder and VisualAge, or
by attributes (facets) of the components, as in
CodeFinder [8]. Often natural language indexing and
querying is also used, whereby typically comments
associated with component features are extracted and
indexed [8, 11]. All of these approaches suffer from a
generally low-level view of component services, and
consquently low-level indexing and retrieval queries
which require users to be very familiar with component
interfaces. Systems using structuring techniques to help
guide users to appropriate collections of components do
help, but these techniques require good understanding
of the structuring mechanisms used and then still
require typically low-level queries over subsets of
components. Natural language-based searching can
provide effective, higher-level access to component
repositories, but is highly dependant on the quality of
comments or user-provided indexing terms to be useful.
Few syntax-based repository querying tools utilise the
context a query is performed in to help guide searching.
Fewer still allow users to modify component indexing
terms in any straightforward way to allow users to
provide extra information to help improve future
requerying [8]. To our knowledge no syntax-based
approaches utilise information about required
component services/features, only provided features and
services.

Our aspect-based indexing approach uses high-level
conceptualisations of both provided and required
component services to index and retrieve components.
We have found it is much easier for both developers
and end users to quickly formulate effective queries
using these high-level service descriptions for
components in our repository. Our technique is
primarily a facet-based approach where users query for
components based on particular systemic aspects
(“attributes”) of components. The ability to query
components for both their provided and required

services has proven to be very effective in quickly
locating appropriate components, as when composing
component-based systems often the required services of
reused components are as important to understand as
those they provide. Developers and end users can add
additional information to component aspects using our
JComposer CASE tool and then have the component
reindexed in the repository, to improve future retrieval.

Semantics-based component retrieval techniques
usually fall into one of three categories: type-based
retrieval, execution-based retrieval and formal
specification-based retrieval [21, 22, 23]. Type-based
approaches try and locate components which match
specified required types or groups of types, possibly
using inferred types. Execution-based approaches use
example input and output data, specified by users or
generated from test cases or argument domains, and
retrieve components whose outputs match those
specified for the given input data. Formal specification-
based approaches use some form of formal codification
of a component’s interface and behaviour to index
components. All of these approaches have the potential
to more or less automatically locate appropriate
components for reuse with a minimum of user query
specification. However, most of these techniques have
so far proven successful in only functional
programming domains, and not for more general
software component applications. Our limited use of
aspect-based configuration and validation functions of
retrieved components could be viewed as a form of
execution-based retrieval (or query filtering). As we
incorporate more formal specification techniques into
our aspect-oriented component engineering
methodology, particularly with regard to specifying
possible aspect detail property values, we hope to be
able to more accurately index component functionality
and especially non-functional constraints with our
aspects.

A range of future research directions exist for this
work. Incremental query execution, similar to that of
Phrasier whereby as users specify index terms (aspect
details and detail property value constraints),
components matching the evolving query are returned
and displayed. This would give the user more
immediate feedback on the results of modifying query
terms. A ranking scheme which uses the number and
closeness of fit of the aspects of returned components to
the queried aspect information would be useful in order
to present “most likely matches” to users ahead of less
closely matching components. A visual querying tool,
similar to our JVisualise dynamic component
visualisation tool [3], would be a possible enhancement
to the query tool user interface. This would allow users
to specify aspect-based queries using an extension of
the component modelling language of JComposer, and

possibly specify queries “in situ” in JComposer and
Serendipity-II views.

Retrieval of multiple, related components is a major
area of work we wish to persue. Typically some
component provided and required aspects are obtained
via other, related components (e.g. the event transport
component and event history component together
provide a remote event query service). At present, users
of our repository query for each component they wish to
reuse separately, with limited information from the
previously found and reused component influencing the
next component search. Showing users groups of
related components that potentially match a query, or
allowing users to more easily and naturally construct
multiple queries for several related components would
greatly enhance their ability to find appropriate
collections of components for reuse. Semi-automated
configuration and validation of these collections of
components using our aspect encodings is an additional
enhancement we wish to investigate.

8. Summary

We have described a new approach to storing and
retrieving software components from a repositories to
foster improved reuse of components by both
developers and application end users. High-level
characterisations of component provided and required
services are used to generate indexes of these
component capabilities. Components are retrieved from
a repository by the formulation of queries over these
provided and required services. Queries may be
partially constructed automatically, based on the reuse
context of the component. New components can be
added to the repository with automatic indexing
generated from their high-level aspect characterisations.
Possible enhancements include supporting visual forms
of component query construction and ranked result
visualisation, supporting queries for multiple, related
components at one time, and automatic configuration
and validation of multiple retrieved components.

Acknowledgements

Support for this research from the New Zealand
Public Good Science Fund is gratefully acknowledged.

References

1. Apple Computer Inc., OpenDoc Users Manual, 1995.
2. Borland Inc, Borland JBuilder™, Borland Inc,

http://www.borland.com/jbuilder/, 1998.
3. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Static and

dynamic visualisation of component-based software
architectures, In Proceedings of 10th International

Conference on Software Engineering and Knowledge
Engineering, San Francisco, June 18-20, 1998, KSI
Press.

4. Grundy, J.C., Mugridge, W.B., Hosking, J.G., and
Apperley, M.D., Tool integration, collaborative work and
user interaction issues in component-based software
architectures, In Proceedings of TOOLS Pacific ’98,
Melbourne, Australia, 24-26 November, IEEE CS Press.

5. Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralised process
modelling and enactment, IEEE Internet Computing,
Vol. 2, No. 5, September/October 1998, IEEE CS Press.

6. Grundy, J.C. Supporting aspect-oriented component-
based systems engineering, In Proceedings of 11th

International Conference on Software Engineering and
Knowledge Engineering, Kaiserslautern, Germany, June
16-19 1999, KSI Press, pp. 388-395.

7. Grundy, J.C. Aspect-oriented Requirements Engineering
for Component-based Software Systems, In Proceedings
of the 4th IEEE Symposium on Requirements
Engineering, Limerick, Ireland, June 1999, IEEE CS
Press, pp. 84-91.

8. Henninger, S. Supporting the Construction and Evolution
of Component Repositories, In Proceedings of the 18th
International Conference on Software Engineering,
Berlin, Germany, 1996, IEEE CS Press, pp. 279-288.

9. IBM Inc, VisualAge™ for Java, 1998,
http://www.software.ibm.com/ad/vajava.

10. ISE Inc, EiffelBench Guided Tour, 1999,
htp://www.eiffel.com/.

11. Jones, S. Phrasier: An interactive system for linking and
browsing within document collections using keyphrases,
In Proceedings of INTERACT’99, Edinburgh, Scotland,
September 1-3 1999, Kluwer Academic Publishers.

12. Mareek, Y., Berry, D., and Kaiser, G. An information
retrieval approach for automatically constructing
software libraries, IEEE Transactions on Software
Engineering Vol. 17, No. 8, August 1991, 800-813.

13. Mehandjiev, N. and Bottaci, L. (1998): The place of user
enhanceability in user-oriented software development,
Journal of End User Computing, Vol. 10, No. 2, 4-14.

14. Meyer, B., Mingins, C., and Schmidt, H. Providing
Trusted Components to the Industry, IEEE Computer,
May 1998, pp. 104-15.\

15. Mili, H., Mili, F., Mili, A. Reusing software: Issues and
research directions, IEEE Transactions on Software
Engineering 21(6), June 1995, 528-561.

16. Morch, A. Tailoring tools for system development,
Journal of End User Computing Vol. 10, No. 2, 1998,
pp. 22-29.

17. Motta, E., Fensel, D., Gaspari, M., Benjamins, R.
Specifications of Knowledge Components for Reuse, In
Proceedings of 11th International Conference on
Software Engineering and Knowledge Engineering,
Kaiserslautern, Germany, June 16-19 1999, KSI Press,
pp. 36-43.

18. Mowbray, T.J., Ruh, W.A. Inside Corba: Distributed
Object Standards and Applications, Addison-Wesley,
1997.

19. Netscape Communications Inc, Visual Javascript™,
1998, http://www.netscape.com/.

20. O’Neil, J. and Schildt, H. Java Beans Programming from
the Ground Up, Osborne McGraw-Hill, 1998.

21. Pai, Y. and Bai, P. Retrieving software components by
execution, In Proceedings of the. 1st Component Users
Conference, Munich, July 1996, SIGS Books, pp. 39-48.

22. Podgurski, A. and Pierce, L. Retrieving reusable software
by sampling behaviour, ACM Transactions on Software
Engineering and Methodology 2 (3), 1993, 286-303.

23. Rittri, M. Using types as search keys in function
libraries, Journal of Functional Programming, 1 (1),
1991, 71-89.

24. Rollins, E., Wing, J. Specifications as search keys for
software libraries, In Proceedings of the International
Conference on Logic Programming, 1991, MIT Press,
pp. 173-187.

25. Sessions, R. COM and DCOM: Microsoft's vision for
distributed objects, John Wiley & Sons 1998.

26. Wagner, B., Sluijmers, I., Eichelberg, D., and Ackerman,
P., Black-box Reuse within Frameworks Based on Visual
Programming, In Proeedings of the. 1st Component
Users Conference, Munich, July 1996, SIGS Books, pp.
57-66.

27. Weyuker, E.J. Testing Component-based Sotware: A
Cautionary Tale, IEEE Software, Sept/Oct 1998, pp. 54-
59.

28. Witten, I., Moffat, A., Bell, T. Managing Gigabytes:
Compressing and Indexing Documents and Images, 2nd

Edition, Morgan Kaufmann, 1999.

