Sorage and retrieval of Software Components using Aspects

John Grundy
Department of Computer Science, University of Auckland
Private Bag 92019, Auckland, New Zealand
john-g@cs.auckland.ac.nz

Abstr act approaches used for software libraries. Examples
include WiSeR [21], IBROW [17], and CodeFinder [8].
Key deficiencies of existing approaches include the
need to use low-level, service-based queries, lafck
high-level description of component capabilitiessi of
validation or checking of retrieved component
suitability, and lack of use of the context for wni
queries are being performed by the retrieval tool.
Repositories using formal specification or exeauwtio
based retrieval mechanisms suffer from a need to
exhaustively, formally specify parts of component
services, with queries requiring formal specifioati

While component-based software engineering
technologies have become popular, finding and reusi
appropriate software components is often challeggin
We describe a software component repository thas us
a concept of component “aspects” to index and query
components based on their high-level systemic
characteristics, including their user interface,
persistency, distribution, security and collabovati
work support. Software components are queried for

aspects of a system they provide or require andethe i o
are used to automatically generate a high-level techniques that may be difficult for many end userd
developers to use.

indexing system. Developers and end users can We d i ft i itorv that
formulate high-level, aspect-based queries to eeti € describe a sottware com“ponen Eepo§| ory tha
components providing or requiring services appreaf#i uses a concept of component qspepts to index ar_1d
to their needs. query components based on their h|_gh—IeveI systemic
characteristics. These aspects describe a compsnent
provided or required services and related non-fonel
constraints for capabilities like user interfacepsion,
distribution and persistency management, collabarat
work support, security and transaction processarg)
Component-based software engineering configuration and inter-component relationship
technologies have become popular [14]. Examples ofmanagement. All of the software components in our
component-based architectures include OpenDoc [1],component-based architecture advertise such higH-le
CORBA [18], DCOM [25], and JavaBeans [20]. Many capabilities using aspects, and this is used tonaaie
tools have been developed to assist developers inindexing of components. Our retrieval tool allovsers
constructing systems using these architectures,to formulate high-level queries about component
including JBuilder [2], VisualAge [9], and JCompose capabilities and takes account of the context ifchvia
[3]. Tools to assist end users to configure ancgrext query is performed to assist query formulation.
applications have also been developed, includirspsi Component aspects provide validation functions to
JavaScript [19], MET++ [26], and Serendipity-II [5] ensure sensible configurations result from using
Component-based systems emphasise appropriateetrieved components.
reuse and composition of software components a&ya k Section 2 outlines the motivation for this workrro
concept. However, finding and reusing appropriate two example systems: a CASE tool and workflow
software components is often very challenging, system software agent specification tool. Section 3
particularly when faced with a large collection of describes the concept of component aspects and our
components and little documentation about how theyaspect-based component repository. Section 4rifltest
can and should be used [15, 27]. This is a padicul how component aspects are used to automate indexing
issue for end users of component-based systems whef software components. Section 5 illustrates the of
want to tailor and extend their environment, buvéha our prototype querying tool to retrieve componegnsl
limited understanding of component functionalitydan add them to component-based systems. Section 6
implementation [8, 16, 19]. Many software component compares our approach with other component
repositories have been developed, often extending t

1. Introduction

repositories and outlines areas for possible futureresearch.
Reuse of collectic Reuse of Event detection
component filtering component

=[o]=]|

Reuse of Operation invocation
component

Reuse of evel
handling component

[Base Stage Event Handling (#1]
File iew Changes Compilation Collaboratior

e
Barit Stages
ftinshtanfeRe! /

5 ‘&J]

e

i ange paramts 2. 39901 Basel ayer
childten (Ib.la) 11 =lfvBaseLayer
R T

11 = Ensure Uniqueliames

o j

File Tree

@ [Root
@ =

[=]
from =map monitor=
messags | 'ENAY updated

=]

=

BaseStage

VBaseComp
id:String

Itenary for: Shape: ROATC

Display Shapes |
[John Grundy

| I” Debug Propagation

name:String

—
n = = -
tele:String Sweyentqs OpseEventFlow collahulatlve chat == E
- e [VBaseComp john
annotation:3ti L john:¥here should we go to next? 2]
nameOuEStin mark: How about Perth?
11 =] [——— john: Ok- 1l add that. On the 26th | think..
namein:Sting john: hich flight? Can you look that up far me?
vant john: I'd like morning sometime, not too early...
HaseSlage — mark: QF 466, leaves Melbourne at 3:30am
on john: Great!
VBaseComp |, perdntage BUBIRIEEN | =rriz2p monitor=: [tenary updated
Shape: ~| I Debug Propagation Display Shapes LI -

(a) Developing a component-based system. (b) Endspeeifying a component-based software agent.

Figure 1. Examples of software developer and end-us er component reuse.

2. Motivation want to query for reusable components based on low-

level operations and attributes, but on higherdleve

We have been developing various component-base
systems, including CASE tools, Workflow Management
Systems, and Collaborative Information Systems5[3,
4] When developing or extending such systems, "’
developers and end users need to reuse software
components from a component-based framework or
developed for use on another project [3, 5].

Figure 1 (a) illustrates some reused software
components in the JComposer CASE tool [3]. The *
developer has reused a collection management
component (MVHashtableRel), and an event handling
component that enforces unique keying for any type
collection component (EnsureUniqgueNames). The
developer needs to know where to find such
components, what their capabilities are, and whethe
reusing them in the way shown is sensible to aehiev
their desired goals. They also want to be abledd a
newly developed components into the repository for
future reuse.

Figure 1 (b) shows a software agent specification
from the Serendipity-1l workflow management system,
being used to develop a collaborative Information
System for travel itinerary planning [4]. This exala *
shows a simple automated notfication agent which
informs all users via a chat tool when the map
visualisation has been updated. The end user of thi
system wants to build (usually) simple task autdomat
agents to enhance their environment, but needsuser
carefully packaged components in a compose and link®
way. End users (and often software developers)ato n

apabilities that fit in with the agent task theg &rying
o develop. Some key issues we have identifiedafor
component repository include:

Indexing should, as far as possible, be automatic,
rather than require exhaustive developer and/or end
user input. This ensures consistent, complete
indexing by querying each component for
information about itself.

A high-level characterisation of capabilities shbul
be used to index software components, rather than
only operation and attribute-level names, types,
formalism specfications or natural language
comments. This is because, in our experience,
multiple operations and attributes usually
contribute to the determination of which
components a user might wish to find and reuse.
Querying will normally want to use the same, high-
level language to describe component capabilities
as indexing. Developers and end users usually want
to query for abstract service provision and
requirements rather than low-level interface
characteristics.

If possible, the context in which a component is to
be reused should be used by the retrieval tod. If
component, or set of components, is required that
provide a set of services for a component already
identified, the requirements of this existing
component can guide query formulation.

Automatic component configuration and validation
functions should be run by the retrieval tool to

ensure a component is appropriately initialised and
validated for the context in which it is being reds

3. Aspect-oriented Component Repository

We have been developing a methodology for the
engineering of component-based systems
“Aspect-oriented Component Engineering” [6]. This
uses a concept of high-level, systemic aspects of
software application to characterise component
provided and required services. This includes theru

interface-related services a component provides or

requires from other components, component
distribution and persistency management, collabarat
work and user configuration capabilities, and siégur
and transaction processing models. Each kind aécsp
has a number of provided and required “aspect Id&tai
with each aspect detail having properties further
characterising it (e.g. kinds of persistency orruse
interface elements, measurements of
processing or distributed systems performance, or
constraints on usage of an aspect detail, and)o on

Chat Client

:
i <<User Interface>>! JES
! + panel -
l T
/1 - frames~
i

Web Browse

Properties:
Username:String
ChatName:String

E Provides frame
--~for chat panel

Events: Chat Server

MessageReveived ™,

e ! <<Distribution>> | Socket-based
Methods: |+ generate evept--T .- | Event transport

DisplayPanel() _-~1 + action event.--—- T
Login() (A~ ! - broadcast evenrk-"Requires event broadcast & action
Logout() R ' Provides event transport via TCP
SendMessage()
ReceiveMessage(jy. ‘ <<Collaborative Work>>} Requires register/deregister;
GetUserList() et reg|s§er/dereg|ster usel Provides user list, chat history

- user listq___ T

i- version data ~

MessageSent I <<Security>> ; P
Login | - encode data i ~Provides authentication
Logout v - decode data 1

! _-~"1 via password
1 - authenticate use¥~ !

Figure 2. Concept of component aspects.

Figure 2 illustrates the concept of component

aspects using a simple text chat client component.

called

a

transaction

details may relate to one or more component feature
(methods, properties and/or events), and one coergon
feature may be used by more than one aspect as
necessary. This characteristic of aspects allows
component developers to take multiple perspectores

a component's capabilities using aspects whereethes
perspectives may naturally overlap.

We have used component aspects to aid developers
when analysing, documenting and reasoning about
component requirements [7], and when refining
requirements into software component designs and
implementations [6]. We have also developed support
in a component-based architecture, JViews, for
encoding aspect information in software components,
for use at run-time by end users, developers ahdrot
components [6]. All JViews components advertisarthe
aspects by wusing a set of Aspectinfo -class
specialisations, similar to JavaBeans BeanlInfo
introspection classes and COM type libraries [28), 2
In contrast, however, Aspectinfo classes captugh-hi
level information about component capabilities vbhic
are understandable by developers and, many of them,
by end users. They also provide a set of standaddis
functions for invoking component operations and
validating component configurations. Third party
software components can have Aspectinfo classes
generated for them by our JComposer CASE tool.

We have used the advertising of component aspects
by JViews-based components to generate indexes of
component capabilities relating to different aspeiita
software application, as shown in Figure 3. When a
component is added to our repository, the compdsent
aspects are queried and index entries enteredafch e
aspect detail. Properties associated with eachctaspe
detail are also stored to support further refineman
possible search criteria. We also index component
names, properties, methods and events, in cass user
wish to query using them. Users formulate queraas f
components using either component, method or event
names or aspects the component provides or requires

4. Indexing Componentsusing Aspects

Components are in solid boxes, component aspects

advertised by the chat client are dashed, and gedvi
aspect details denoted by a ‘+' and required by'a

A key aim of our component repository approach is
to make it easier for developers and end users to

The chat client has a user interface (a panel), butformulate high-level queries for components andehav

requires a frame which manages this panel; it geasr
and actions events, but requires another compadieent
handle actual network broadcasting (transport); it
identifies the user but requires a component teigea

list of other users and chat history managemend, an
requires security services from other component(s).
Note that different components could be chosens® u
or satisfy the provided/required aspect details. a.g

access to high-level information about components
retrieved. Our component aspects ontology for
describing component capabilities provides a higrel
language for users to describe desired component
capabilities in queries and with which to review
retrieved component capabilities. Thus every
component added to the repository needs to have its
aspect details queried and be indexed by thesectaspe

separate secturity management component, a CORBAetajls to facilitate retrieval. Component aspemts a

or RMI event transport component, etc. Note thatas

three-level descriptive technique: aspects groupe@s enumerated values or value ranges, depending on the
details which in turn have a variety of properties. aspect detail beging described.
Property values may be numeric, string literals,

Developer or end user may modify aspect

information in JComposer for component to)
Retrieval context:

enhance future retrieval from repositc .
component(s) to link E >
to & their (unmet) Create compqnem &
Component aspects T provides/required run au@o-conﬂgure &
encodings generated by] aspects - validation checks. If

Component name/
location index

JComposer CASE tool. fail, reformulate query

Located component(s):
User chooses/examines
aspects/adds component, pr
refines/reformulates queypy.

Component storage
aspect details &
PEMs queried &
indexes updated

Aspect-based retrieval®
user formulates query on
provided/required aspect
details+properties

Aspect details/ _|
properties index

~N

Properties/Methods/
Events (PEMs) — via
low-level introspection

Conventional retrieval:
Use query on component
name/attribute or method,
ame(s).

PEM index

Figure 3. Aspect-based component repository archite cture.

As an example, take the TCP/IP-based event To index this component for effective retrieval we
transport component we have used extensively in atake each aspect detail and insert an entry irnepect
variety of JViews-based environments. This compbnen detail index indicating a component that provides
is used to broadcast generated events to anote€sus distribution-related capabilities (event transport,
JViews application, where generated events aresynchronisation, broadcast type) and requires
propagated to components listening to its proxyisTh distribution-related services (event generation and
component has only one aspect for which it provides consumption). For each of these aspect detailsake
and requires services, the Distribution aspect. Itseach detail property and create an entry indicating
specification using aspects is illustrated in Fegdr(a). value(s) of the property possible for this compdnen
The Distribution aspect details it provides are ngve The property value may be a singleton (e.g.
broadcasting, locking (using simple broadcast aaét w event_broadcasting.protocol = TCP/IP), an enumérate
for all remote components to finish responding befo value (e.g. synchronisation.kind = Multi or Uni); a
sending next event), and event querying. value range (e.gevent_producers ®). Some properties

It requires at least one component to generateteven may have values which are dynamically computed
for it to transport, and at least one componentteive depending on a component instance’s configuration
these transported events and act on them. It may bde.g. retransmission=if event_history != null). &ig 5
related to an event history component that is used illustrates the basic component indexing process we
store events transmitted. Each of these providedl an currently use.
required aspect details has various properties, as
illustrated in Figure 4 (b).

At least one component that Local Component(s) component TCPEventTransport
generates events to transport properties !
. event_store : MVEventHistory
- hostt :'IS%nng
—— - . ort : Integer
TCPEventTransport [P provides events to send p 9
Properties: 1 <<Distribution>> .-~ methods o
p e ! - event generatiodk ! boolean connect(String,int)
host:String i L ! int sendData(Byte[])
ortinteger . -eventactioninge __}
portinteg 4} +event broadcasting] ~"™™"==~--- | Remote Component(s) events
othods: i+ locking : aspect Distribution
Methods: !+ event querying : - P requires event_generation
connect() ! event store ! Provides transported ene_rtateztafter cC))I_\I’belefore
[: i ransitive=true alse
sendData() L S ' event actioning .event_prtodugersl >0
requires event_actionin
Events AN Used to support event a .event_coﬁsumersg> 0
> querying & prowdesI te_zventt_tbroa(t__:l)&a]’(stllng
i ‘aai multicast=true alse
01 EventH|§t0ry retransmissio network con=LAN OR WAN
E Methods: protoco=TCP/IP)
storeEvent() .éetr?ns&nlssmn:n event_history != null
Optional event getEvent() prov? k?ﬁdgcelgi?nis[ic)
history relationship findEvent() provides event_guerying

store=event_store
access=direct
end aspect.

end Component.

(a) Event transport component aspect details. (enEtransport aspect detail properties.

Figure 4. Distributed event propagation component’s

generate index entry

Figure 5. Example of component indexing using aspec

Some aspect details are “mandatory” if the compbnen
is to be reused. For example, an event generatet beu
supplied with an event source. Others are optidgmal
some situations. For example, the event transporte
component can be linked to an event history which
caches transported events to support asynchronous
querying for prior events and storage of events for
retransmission in case of temporary network failure
The event transport component can be used witthgsit t
event store, but in this configuration it can nopgort
asynchronous querying nor retransmission of ev@ags

no history is maintained). When indexing components
we indicate mandatory and optional details and
properties.

5. Retrieving Components with Aspect-
based Queries

To retrieve components developers and end users
formulate queries based on the various aspectgchsp
details and aspect detail property values the cbrite
which they require a component indicates. The
following steps to retrieving components are foléaly
e The application invoking the repository querying

tool can supply the “context” in which components

are to be used, from which a partial query can be
automatically constructed. For example, in

JComposer and Serendipity, selected software

components in a CASE tool design or agent
specification can be queried for their aspects. Any
currently “unmet” required aspects and “unused”
provided aspects are usually to be partially fiddl
by new component(s) for which the user is
searching the repository,
generate an initial set of query parameters.
e The user refines any defaulted query parameters or

and thus can be used to

details (grouped by aspect) that components they
are searching for should either provide or require.

TCPEventTransport For each aspect detail,
Properties: generate index entry
ey PR A ,
host:String ! <<Distribution>> |
portinteger Query for aspects . event generation |
) ! -eventactioning !
Methods: —» | +event broadcasting!
connect() !+ locking ;
sendData() !+ event querying i
Events s i

specification.

<Distribution,req,event_generation, TCPEventTranspor
<Distribution,req,event_actioning, TCPEventTransport
<Distribution,prov,event_broadcasting, TCPEventT pams>

<req,event_generation,generate,”before”, TCPEvendpart>
<req,event_generation,generate,"after”, TCPEventipart>
<req,event_generation,number_generators,0,n, TCREsaTsport>
<prov,event_broadcasting,protocol,”TCP/IP", TCPEJeansport>
<prov,locking,multicast,true,, TCPEventTransport>

For each aspect detail property<proy, locking, multicast, false,, TCPEventTransport>

ts.

Each aspect detail is added to the query, and only
components that provide or require these details as
appropriate will be retrieved.

For each aspect detail selected, the user may
optionally select one or more detail properties tha
the retrieved components should provide a value
for. The user may specify a value for the property,
may specify a range of values, or may just specify
the property, indicating that retrieved components
should at least supply some value for it. Note that
some aspect details and detail properties are lusefu
only for software developers (i.e. are “advanced”
information about how a component works etc.).
We allow end users of applications like
Serendipity-Il to request only a subset of all atpe
details and properties are used, which provides a
simplified description of component services and
configuration.

The query is run and all components in the
repository providing or requiring the specified
aspect details and having detail property values
matching or within the range of those specified are
retrieved.

The user may view detailed aspect information for
the retrieved components to help understand their
purpose and how to configure them, may refine
their search criteria if a large number of
components are retrieved, may reformulate their
query if no desired components are retrieved, or
may request a new component instance be created.

The above steps are repeated each time the user

wishes to retrieve and reuse new components. As an
example, consider a software developer buildindpat ¢
client, as shown in Figure 2, or an end user d@imepa
distributed notification agent. The developer needs
component which can transport events generatetidoy t
That client to other user's environments (to digplae
message in their chat clients), and the end user a
component to transport events from componentsair th

environment to components in another user's (oewvic Note a warning is generated that this componentnbas
versa). A query is formulated for such a component event history component linked to it, so its event
using the dialogue shown in Figure 6. Part of thisry guerying and retransmission facilities are unavddan
may be defaulted if e.g. the JComposer CASE tool this configuration. The user could find an everstdry
determined the chat client component which the usercomponent from the repository (we have developed
wanted to link the new component has a Distribution several versions of this kind of component, with
aspect providing event generation and actioning butdifferent functional and non-functional charactgcis),
requiring event transport and locking. In the diale in create one of these and link the event transport
Figure 6, the developer has formulated a query bycomponent to it.

specifying they want components providing event
broadcasting and requiring event generation. Fenev s
generation properties they want events generated af

state change has occurred, and for event broadgasti mﬁé

they want uni-cast broadcasting. The query is than avent history linked 2o can do quaningiretransmission

and a short description of matching components are 4 | o

shown in the bottom pane. The user can view the

different aspects and descriptions of aspect detaill

property values for any of these kinds of reusable E B=

components, can refine or reformulate their quand
can ask for one of these components to be created a
added to the component specification view they are
working on.

Propeties -
Configuration settings e
Hurnan intafaras L;

Nare Info
Walidate

Clnse

Event Semder

Aspects & Aspect detail Property valu

. . tdynamict any input rel <sender= (1 -= MYComaanent
aspect details properties specification (P ITED !

(dynamic) one-to-many event hisotry (0:1) -= MYComponent

ﬁg Simple Component Repository

extensible affordance
==Collaborative Warks==
event generation
event actioning
broadcast datafevent
receive datafevent

Bﬂem history corapanent far supporing event guery & retransmission —
4

HlE

TRAMSITIVE
MACROS

-GEMERATE INCLUDES af

st

Close

lf?acrziigaing Add Propetty lRemove Propety
=2p teney== event t = . . .
encods data e st Figure 7. Retrieved component added in
decode data +broadcagy datalevent i Jcomposer_
guety data ML) TI;?T:TEIRE =
tare dat: . . .
reio ta e HEREE Developers and application end users can add dieir
bt =] Add fomponent | Aspert nfo newly developed or refined components and agent

Collaborative editing (TCPIIP Sockets)
Collaborative editing (RMI)
Remote event history

specifications (which are packaged as a single
component interface) to our repository. In orderdtm
this they need to specify appropriate aspects, caspe
details and aspect detail property values for such
components. This is done by using the JComposer
CASE tool, which supports aspect information
specification using a combination visual and tektua
languages. Wrappers for third party components can
also be developed i.e. non-JViews components, which
provide an interface to such component functiopalit

Retrieve(
S&Zféiﬁﬂ;ﬁtny components Aspect information is specified for these third tgar
value constraints) components and tools by specifying aspects forr thei

. . JViews wrapper components.
Figure 6. Component retrieval example.

Figure 7 shows an event transport component added. | mplementation and I ntegration
to a JComposer component specification view. Tl us
has connected the new component to the chat client e developed our component repository as a
component, and is viewing the aspect details fer th jviews component. This allows it to be reused as a

new component. They have also asked for the aspechayaBeans-compatible component in any JViews-based
encodings to validate the configuration component. onyironment, and possibly in any JavaBeans-based

component-based system. The component index isnformation management in general, as evidenced by
implemented as a hashtable of component names tdhe huge growth in research into digital librar[@8].
component file locations and short description&dita The need to support more effective software dewerlop
from the short description of components storethair reuse of components has been an important area of
aspect information). This approach is used asvadws research for some time [8, 12, 15], but the need to
components are implemented as extensions ofsupport end user reuse of software components has
JavaBeans components, and thus their implementatiorbecome more pressing in recent years as component-
contained in .class bytecode files. Any third-partgn- based systems become widespread [4, 13, 16].
JViews components have a JViews component Most component repositories adopt a form of
“wrapper” which provides access to their capalgifiti ~ syntactic indexing and querying, whereby component
We have developed such components for interfacng t features (name, property and method names, type
MS Word™, MS Excel™, Netscape™, Eudora™, a names, comments) are used to index components.
chat tool and a distributed file repository. Eaélirese Queries are made by specifying particular keywards
wrappers has aspect characterisations of the thelg facets (“attributes”) desired by reusers of compuse
provide an interface to. When a retrieved compotient Examples of such systems include CodeFinder [&], th
to be created or its aspect information viewed gy t Eiffel library [10], Phrasier [11], and those dduilder,
user, the component’s bytecode file is located giire Visual Age and Marvel [12, 2, 9]. Components are
component index and the component created andtaspeaisually classified and organised by hierarchical
information retrieved and displayed. groupings, as in EiffelBase, JBuilder and VisualAge

The aspect detail index is also managed as aby attributes (facets) of the components, as in
persistent hashtable, with the provided/requriedl an CodeFinder [8]. Often natural language indexing and
aspect detail name as composite key. We have dlyrren querying is also used, whereby typically comments
implemented the aspect detail property index ast®fs associated with component features are extracted an
relational tables using the mSQL simple relational indexed [8, 11]. All of these approaches suffemfra
database management system. Queries on aspedt detgjenerally low-level view of component services, and
properties are translated into SQL queries which consquently low-level indexing and retrieval qusrie
retrieve a set of component names. We plan to cepla which require users to be very familiar with compon
the mSQL engine and custom persistency mechanismdnterfaces. Systems using structuring techniqudsetp
with an ObjectStore object-oriented database guide users to appropriate collections of companent
management system. This is because we are enhancinigelp, but these techniques require good understgndi
JViews-based applications to use ObjectStore for al of the structuring mechanisms used and then still
object persistency management. require typically low-level queries over subsets of

JViews-based applications like Serendipity-1l and components. Natural language-based searching can
JComposer communicate with a component repositoryprovide effective, higher-level access to component
through its JViews component interface. They can repositories, but is highly dependant on the quaiit
request the repository dialogue be displayed tautes, comments or user-provided indexing terms to beulsef
can provide the repository component with the “eesus Few syntax-based repository querying tools utitise
context” (a list of components currently selectedai context a query is performed in to help guide deiag:
view), and receive events from the repository Fewer still allow users to modify component indexin
component indicating a new component has beenterms in any straightforward way to allow users to
created and needs adding to the view. Currently theprovide extra information to help improve future
repository component supports configuration for requerying [8]. To our knowledge no syntax-based
developers (full aspect details and properties) and approaches utilise information about required
users (implementation-level aspect details and component services/features, only provided featanes

properties not shown). services.
Our aspect-based indexing approach uses high-level
7. Discussion conceptualisations of both provided and required

component services to index and retrieve components
We have found it is much easier for both developers
and end users to quickly formulate effective querie
using these high-level service descriptions for
components in our repository. Our technique is
primarily a facet-based approach where users qfogry
components based on particular systemic aspects
(“attributes”) of components. The ability to query
components for both their provided and required

A wide variety of research has been carried out on
developing software component repositories [21], as
effective storage and retrieval of reusable comptais

critical in managing and using large collections of
reusable software [8]. The problem of managing and
using large quantities of digitised information net

only relevant to software development, but to

services has proven to be very effective in quickly possibly specify queries “in situ” in JComposer and
locating appropriate components, as when composingSerendipity-11 views.

component-based systems often the required serefces Retrieval of multiple, related components is a majo
reused components are as important to understand aarea of work we wish to persue. Typically some
those they provide. Developers and end users cdn adcomponent provided and required aspects are olotaine
additional information to component aspects usinog o via other, related components (e.g. the event pams
JComposer CASE tool and then have the componenttomponent and event history component together
reindexed in the repository, to improve future imtal. provide a remote event query service). At presesers

Semantics-based component retrieval techniquesof our repository query for each component theyhwics
usually fall into one of three categories: typedihs reuse separately, with limited information from the
retrieval, execution-based retrieval and formal previously found and reused component influencheg t
specification-based retrieval [21, 22, 23]. Typesdt next component search. Showing users groups of
approaches try and locate components which matchrelated components that potentially match a query,
specified required types or groups of types, pdgsib allowing users to more easily and naturally corgitru
using inferred types. Execution-based approaches us multiple queries for several related components ldiou
example input and output data, specified by users o greatly enhance their ability to find appropriate
generated from test cases or argument domains, andollections of components for reuse. Semi-automated
retrieve components whose outputs match thoseconfiguration and validation of these collections o
specified for the given input data. Formal speatfien- components using our aspect encodings is an addlitio
based approaches use some form of formal codificati enhancement we wish to investigate.
of a component’s interface and behaviour to index
components. All of these approaches have the patent 8, Summary
to more or less automatically locate appropriate
components for reuse with a minimum of user query
specification. However, most of these techniqueseha
so far proven successful in only functional
programming domains, and not for more general
software component applications. Our limited use of
aspect-based configuration and validation functiohs
retrieved components could be viewed as a form of
execution-based retrieval (or query filtering). Awse
incorporate more formal specification technique® in
our aspect-oriented component engineering
methodology, particularly with regard to specifying
possible aspect detail property values, we hopbéeto
able to more accurately index component functidyali
and especially non-functional constraints with our
aspects.

A range of future research directions exist forsthi
work. Incremental query execution, similar to thudt
Phrasier whereby as users specify index terms ¢aspe
details and detail property value constraints),
components matching the evolving query are returned
and displayed. This would give the user more
immediate feedback on the results of modifying guer
terms. A ranking scheme which uses the number and Support for this research from the New Zealand
closeness of fit of the aspects of returned compisni® Public Good Science Fund is gratefully acknowledged
the queried aspect information would be usefulritheo
to present “most likely matches” to users aheatbss Refer ences
closely matching components. A visual querying tool
s?milalr t.o our JVisualise dy”a”."ic component . Apple Computer IncOpenDoc Users Manual 995.
visualisation tool [3], would be a possible enhaneat 2. Borland Inc, Borland JBuilder™ Borland Inc,
to the query tool user interface. This would allosers http:/Aww.borland.com/jbuilder/, 1998.
to specify aspect-based queries using an extersfion 3. Grundy, J.C., Mugridge, W.B., Hosking, J.G. Stati
the component modelling language of JComposer, and dynamic visualisation of component-based software

architectures, In Proceedings of 10 International

We have described a new approach to storing and
retrieving software components from a repositoties
foster improved reuse of components by both
developers and application end users. High-level
characterisations of component provided and reduire
services are used to generate indexes of these
component capabilities. Components are retrievenh fr
a repository by the formulation of queries oversthe
provided and required services. Queries may be
partially constructed automatically, based on these
context of the component. New components can be
added to the repository with automatic indexing
generated from their high-level aspect charactioiss.
Possible enhancements include supporting visuatgor
of component query construction and ranked result
visualisation, supporting queries for multiple, ateld
components at one time, and automatic configuration
and validation of multiple retrieved components.

Acknowledgements

10.

11.

12.

13.

14.

15.

16.

17.

Conference on Software Engineering and Knowledge 18.

Engineering San Francisco, June 18-20, 1998, KSI
Press.

Grundy, J.C., Mugridge, W.B., Hosking, J.G., and 19.

Apperley, M.D., Tool integration, collaborative vkoand

user interaction issues in component-based softwareZ20.

architectures, InProceedings of TOOLS Pacific 98
Melbourne, Australia, 24-26 November, IEEE CS Press
Grundy, J.C., Hosking, J.G., Mugridge, W.B. and
Apperley, M.D. An architecture for decentralise@gezss
modelling and enactmentEEE Internet Computing
Vol. 2, No. 5, September/October 1998, IEEE CS$res
Grundy, J.C. Supporting aspect-oriented component-
based systems engineering, Proceedings of 1
International Conference on Software Engineeringl an
Knowledge EngineeringKaiserslautern, Germany, June
16-19 1999, KSI Press, pp. 388-395.

Grundy, J.C. Aspect-oriented Requirements Engingeri
for Component-based Software SystemsPtaceedings
of the &' |EEE Symposium on Requirements
Engineering Limerick, Ireland, June 1999, IEEE CS
Press, pp. 84-91.

Henninger, S. Supporting the Construction and Biahu

of Component Repositories, Proceedings of the 18th
International Conference on Software Engineering
Berlin, Germany, 1996, IEEE CS Press, pp. 279-288.
IBM Inc, VisualAge™ for Java 1998,
http://www.software.ibm.com/ad/vajava.
ISE Inc, EiffelBench Guided
htp:/lwww.eiffel.com/.

Jones, S. Phrasier: An interactive system for tigkand
browsing within document collections using keypless
In Proceedings of INTERACT'9€dinburgh, Scotland,
September 1-3 1999, Kluwer Academic Publishers.
Mareek, Y., Berry, D., and Kaiser, G. An informatio
retrieval approach for automatically constructing
software libraries, IEEE Transactions on Software
EngineeringVol. 17, No. 8, August 1991, 800-813.
Mehandjiev, N. and Bottaci, L. (1998): The placeusér
enhanceability in user-oriented software develogmen
Journal of End User Computinyol. 10, No. 2, 4-14.
Meyer, B., Mingins, C., and Schmidt, H. Providing
Trusted Components to the IndustfEEE Computer
May 1998, pp. 104-15.\

Mili, H., Mili, F., Mili, A. Reusing software: Isses and
research directions]EEE Transactions on Software
Engineering21(6), June 1995, 528-561.

Morch, A. Tailoring tools for system development
Journal of End User Computingol. 10, No. 2, 1998,
pp. 22-29.

Motta, E., Fensel, D., Gaspari, M., Benjamins, R.
Specifications of Knowledge Components for Reuse, |
Proceedings of M International Conference on
Software Engineering and Knowledge Engineering
Kaiserslautern, Germany, June 16-19 1999, KSI Press
pp. 36-43.

Tour 1999,

21.

22.

23.

24.

25.

Mowbray, T.J., Ruh, W.AlInside Corba: Distributed
Object Standards and Applicatign®\ddison-Wesley,
1997.

Netscape Communications Ind/isual Javascript™,
1998, http://www.netscape.com/.

ONeil, J. and Schildt, Hlava Beans Programming from
the Ground UpOsborne McGraw-Hill, 1998.

Pai, Y. and Bai, P. Retrieving software componéyts
execution, InProceedings of the. 1st Component Users
ConferenceMunich, July 1996, SIGS Books, pp. 39-48.
Podgurski, A. and Pierce, L. Retrieving reusablénsare

by sampling behaviour, ACM Transactions on Software
Engineering and Methodology 2 (3), 1993, 286-303.
Rittri, M. Using types as search keys in function
libraries, Journal of Functional Programming, 1, (1)
1991, 71-89.

Rollins, E., Wing, J. Specifications as search kéys
software libraries, InProceedings of the International
Conference on Logic Programmind991, MIT Press,
pp. 173-187.

Sessions, RCOM and DCOM: Microso% vision for
distributed objects, John Wiley & Sons 1998.

. Wagner, B., Sluijmers, 1., Eichelberg, D., and Atkan,

P., Black-box Reuse within Frameworks Based on alisu
Programming, InProeedings of the. 1st Component
Users Conference, Munich, July 1996, SIGS Books, pp.
57-66.

. Weyuker, E.J. Testing Component-based Sotware: A

Cautionary Tale|EEE Software, Sept/Oct 1998, pp. 54-
59.

. Witten, I., Moffat, A., Bell, T. Managing Gigabytes

Compressing and Indexing Documents and Im,a@‘é"s
Edition, Morgan Kaufmann, 1999.

