
Evolution of cooperation within a behavior-basedperspective: confronting nature and animats?Samuel Delepoulle1;2 delepoulle@univ-lille3.fr,Philippe Preux2 preux@lil.univ-littoral.fr,Jean-Claude Darcheville1 darcheville@univ-lille3.fr1 Unit�e de Recherche sur l'Evolution du Comportement et des Apprentissages,Universit�e de Lille 3, B.P. 149, 59653 Villeneuve d'Ascq Cedex, France.2 Laboratoire d'Informatique du Littoral, B.P. 719, 62228 Calais, France.Abstract. We study the evolution of social behaviors within a behav-ioral framework. To this end, we de�ne a \minimal social situation" thatis experimented with both humans and simulations based on reinforce-ment learning algorithms. We analyse the dynamics of behaviors in thissituation by way of operant conditioning. We show that the best rein-forcement algorithm, based on Staddon-Zhang's equations, has a perfor-mance and a variety of behaviors that comes close to that of humans,and clearly outperforms the well-known Q-learning. Though we use herea rather simple, yet rich, situation, we argue that operant condition-ing deserves much study in the realm of arti�cial life, being too oftenmisunderstood, and confused with classical conditioning.1 Motivations: Arti�cial Life and the experimentalanalysis of behaviorAs stated at its origins, arti�cial life deals with the study of life as it exists, andlife as it might exist [18]. This paper deals with the �rst part of this project,the study of life as it exists. Our endeavor concerns the study of the dynam-ics of behavior relying on simple, though sound, nature grounded, assumptions.These assumptions are drawn from a selectionist approach of behaviors, com-patible with, and complementary to, the selectionist approach of the evolutionof living species. Basically, relying on Skinner's work, the selectionist approachof behaviors (or radical behaviorism, operant or instrumental conditioning [24,23,26]), states that a behavior is more likely to be re-executed, and spread inthe population, if it is followed by positive consequences. Conversely, a behavioris likely to disappear if it is followed by negative consequences. Furthermore,behaviors being generally never redone twice exactly identically, variation natu-rally occurs in behaviors, hence a mutation-likemechanism is naturally included.This has much to share with the idea of genes being retained and spreading ina population if they are well adapted [25]. Operant learning is well known to be? This research is supported by \Conseil Regional Nord-Pas de Calais" (contract n 9753 0283)



2 Delepoulle, Preux, and Darchevilleadequate to explain complex behaviors of animals, and to let animals acquirecomplex behavior [26]. These behaviors are indeed much more complex thanthose currently exhibited by top of the art robots [5]. In [7], we have shown thata task consisting in sharing a task between agents can be solved quasi-optimallyby a set of agents which behavior evolution is selectionist. In this paper, wefocus on the emergence of cooperation among a set of agents and explain it bymean of a selection of behaviors due to the context in which they are emitted,or \contingencies of reinforcement". Our approach is original is many respects.First, we try to keep a pure behavior-based approach, relying on the work of theexperimental analysis of behavior. Second, we work in the same time on livingbeings, mostly human beings, and computer simulations. Computer simulationscompel us to de�ne very precisely the principles of selection of behaviors andgive us the opportunity to simulate them very strictly, showing their validity,and showing their weaknesses. This research might lead to new ideas on theissue of making cooperation between adaptive agents possible. In the world ofagents, cooperation is considered as a main issue, and as a problem to solve initself. Stemming from the analysis of behavior, we wish to put forward the pointof view that cooperation can also be considered as a \natural" adaptation ofagent's behavior to their environmental contingencies, as far as the agents areindeed able to adapt themselves. Furthermore, we discuss below the fact thatcooperation might not be regarded as a so-well formulated problem.2 Evolution of cooperationWhat makes the evolution of cooperation possible between two, or more, liv-ing beings? In natural situations, one living being frequently behaves in such away that produces favorable consequences for other living beings. For the indi-vidual who emits such a behavior, the immediate payo� can be inexistent, ornegative. Hence, the individual does not directly bene�t from his, or her, ownbehaviors. How can such behaviors appear? How can they be retained? Theseare serious problems arising if we adopt a selectionist way of thinking, such aswithin the theory of natural selection, or the selection of behaviors by way oftheir consequences [25].In his famous work [2], Axelrod uses the problem of the Iterated Prisoner'sDilemma (IPD) to formulate the problem of cooperation in the framework ofgame theory. He demonstrates the importance of the repetition of cooperationsituations. Dawkins [6] studies the role of genes in cooperative situations. Bi-ologists works show the importance of social behaviors [11,34] Many other at-tempts to explain cooperative behaviors have been made [16, 12]. However, noneof them have yet tackled the question of the evolution of cooperation withina strict behavioral perspective. In this paper, we study the conditions withinwhich cooperation can appear and get installed.We propose to examine a rather simple situation in which cooperation canappear. We do not work with the IPD because we think IPD is inadequate forour purpose with several respects. In the IPD,



Evolution of cooperation 3{ agents act synchronously: at each time slot, they perform an action. How-ever, synchronization has a far from neglectable e�ect on the dynamics ofbehaviors as is shown below, so that synchronicity should emerge rather thanbeing a pre-requisite of the situation,{ agents do not have the choice of doing nothing for a while, they always haveto do something,{ the consequence, positive, or negative, is correlated straightforwardly to theaction they chose at the previous time slot,{ no behavior has, or seems to have, no consequence, either positive or nega-tive,{ agents are perfectly aware1 of the potential consequences of their behaviors.Di�erent points of crucial importance have been let apart with regards tomore realistic situations. In nature:{ the consequence of a behavior may be delayed so that the relationship be-tween a behavior and its consequence gets blurred and eventually hard to�gure out,{ lots of behaviors are not rewarded: they are neutral with regards to their con-sequences, hence their selection. Due to the parallelism between the selectionof behaviors and the selection of genes, we emphasize this point because acrucial importance of \neutral mutation" in the evolution of living speciesis suspected.Dealing with the study of the evolution of cooperation in natural/real-worldsituations, we design an experimental situation relaxing IPD limitations and in-volving the previous points. According to a straightforward Skinner's heritage,cooperation naturally emerges, if it ever does, thanks to an exchange of rein-forcements between the agents2.We have worked along a line that confrontates the dynamics of behaviorof human beings with that of animats merely implementing reinforcement al-gorithms. We put a fundamental emphasis on this confrontation for di�erentreasons. To be clear, we obviously do not have the ambition to simulate a hu-man being (!): the algorithms that we use are much cruder. More seriously, forthe problem of cooperation in a certain experimental layout, we aim to com-pare the dynamics of human behaviors with that of reinforcement algorithms.Then, relying on the fact that the algorithms are all selectionist, we suggestthat human beings may behave in the same situation according to selectionistprinciples if both dynamics match. Furthermore, this would suggest that a so-cial behavior can be the consequence of individual behaviors. The aim is alsoto assess the performance of reinforcement algorithms in environments in whichwe try to carefully keep the very essential features of the real world.Based on1 as far as a virtual agent can be aware of something...2 it is remarkable that cooperation emerges at a rather identical rate and pace whetherthe human subjects have been completely told the situation before the experiment,or not, the latter being the normal way the experiment has to be conducted.



4 Delepoulle, Preux, and Darchevilleinsights taken from naturally evolved structures, these algorithms are seldomlyput into environments that somehow mimics the environment they evolved inand to which they have adapted. We think that some \weird"or deceiving per-formance of these algorithms when used in arti�cial environments (related tocombinatorial optimization for instance) is simply due to the fact that they aresuited to the complexity of the environment in which they evolved and not tothe arti�cial environments in which we sometimes use them.In the following, we �rst develop on the idea of cooperation and we describethe experimental situation we have designed. Then, we briey describe the re-inforcement algorithms that were used, most of them being directly inspired byprinciples of the analysis of behavior. Based on simulations, we discuss their abil-ity to evolve cooperation. Finally, we draw some conclusions and discuss variousperspectives of this work.3 A behavioral perspective on human cooperation3.1 Description of a \minimal social situation"As stated by Hake and Vuklich [10] within a behavioral framework, cooperationis de�ned by the fact that the reinforcement of two individuals must be \at leastin part dependent upon the responses of the other individual". In cooperativeprocedures, an individual can improve not only his own payo� but also thepayo� of his, or her, party.In order to understand the development of cooperation, we use a very sim-ple situation, namely a \minimal social situation". In that situation, subjects(humans) can interact through a controlled device, a computer. Each responseof a subject is made on a computer, each subject being located in a separateroom, and being unaware of the presence of his, or her, party. Thus, they are nottold that they are in a social situation. As a matter of fact, most subjects claimat the end of the experimentation that they were alone in front of a computer,without any interaction of any kind with anything (e.g. an animat), or anyoneelse.The experimental layout is directly inspired by Sidowski's experiments [21,22]. In this situation, subjects are invited to interact with a computer duringthirty minutes. On the computer screen, a window includes two buttons and acounter. When subject A (resp. B) clicks on button 1, B's counter (resp. A's) isincremented (rewarding action, or R action). When A (resp. B) clicks on button2, B's counter (resp. A's) is decremented (punishing action, or P action). Then,the behavior of a subject has no result on his, or her, own counter but on thecounter of his, or her, party. It is noteworthy that a subject may choose to donothing for a while, or even during the whole experiment. Furthermore, agentactions are not synchronous: they do not have to click at the same time and oneclick is immediately taken into account to provide its consequence to the othersubject. This is a fundamental di�erence between the situation we use and otherpublished work in the �eld.



Evolution of cooperation 53.2 ResultsThirteen couples of subjects underwent this experiment. During the �rst minutesof the experiment, clicks are equally shared on the two buttons but after a fewminutes the rate of clicks on the button 1 increases. At the end of the experiment,subjects click about �ve times more on button 1. These results accord with otherstudies using similar procedures with humans [21,22], and with animals [4].3.3 InterpretationAccording to the experimental analysis of behavior [24, 26] we can suggest howcooperative behaviors emerge. In this approach, behaviors are selected by theirconsequences [9]. The behavior of an organism varies; if these variations arepro�table to this organism, they are likely to be selected.In the experiment we made, if the action (R, or P) of both subjects are donesynchronously, three combinations are possible.{ If both subjects press button 1, each one gains 1 point. In that case, clickingon button 1 is reinforced and they will continue clicking on button 1,{ If both subjects press button 2, each one loses 1 point. So, they will changetheir behavior and press button 1. Then, the subjects comes to the previoussituation,{ If one subject presses button 1 while the other one presses button 2, the �rstsubject loses 1 point while the second gains 1 point. The �rst will change his,or her, behavior and the second will not. Then, subjects are in the secondsituation, which again leads to the �rst.BnA clicks on button 1 clicks on button 2clicks on button 1 +1 +1 +1 -1- #clicks on button 2 -1 +1 ! -1 -1Table 1. This table gives the payo� for both subjects of their actions. The �rst payo�(�1) of the couple is that of A, the second is that of B. See the text for explanationsof the arrows.Table 1 displays the consequences of the subject's choices if they act syn-chronously. If their actions are synchronous, the spaces of states is made of4 states. Arrows show the trajectory among the states. State (+1 +1) is anattractor for all initial states. Thus, cooperation is an attractor for the dynam-ics of behaviors in this experimental situation: if agents behaves synchronously,cooperation appears very quickly and remains. We observe this phenomenonexperimentally: originally behaving asynchronously, cooperation appears in thegroup exactly at the very moment when responses become synchronized.



6 Delepoulle, Preux, and DarchevilleEach pair of subjects can be represented in a two dimensional space, the axisbeing the cooperative rate of the two subjects. Figures 1(a) and 1(c) representthe evolution of the cooperative rate of the 13 couples of subjects. In �gure 1(a)representing the begining of the experiment, we notice that reponses form a twodimensional gaussian-like distribution at the center. That distribution may bethe result of random responses of the two subjects. Figure 1(c) shows the resultduring the four last minutes of the experiment. The major part of the distributionis concentrated on a corner, this point represents the maximumcooperation ratefor both subjects. Considering the results of each group, we notice that when apair of subjects is entering in that state, they always stay in it. After a certainamount of time (very variable), most of groups switch to that state.To �nish the analysis of the situation, we notice that a mere stimulus-responsearchitecture is not able to solve the minimal social situation even in this veryrestricted case where each agent can either reward or punish his, or her, party,and actions are synchronous. A response-stimulus architecture is required whichopens up the road to operant conditioning.4 Reinforcement learning algorithm facing cooperationThe interest of the experiment is not to show that human subjects can learnto behave in very simple social situations because we know that humans canlearn much more complex social situations like imitation or verbal behavior. Theinterest is to show that a social situation can be explained by the knowledge ofthe individual law of behavior. Social organization can be the emergent result ofindividual behaviors. This analysis can also be supported by experimental workon social insects. It was shown that insects living in societies (ants for example)can perform complex tasks without the presence of an individualized centralorganizer [8, 30]. Many works have used this model to construct self-organisedpopulation of agents (see [19,20] for instance).The previous section has shown how the behavior of humans subjects canbe explained using the principle of behavioral selection. So we propose to useagents based on a selectionist architecture. Reinforcement learning algorithms(RL) meet this requirement [17].We have used �ve reinforcement-learning architectures, four of them beingdirectly originated from the analysis of behavior while the �fth is the well-knownQ-learning algorithm.An agent can emit only three behaviors. It can reinforce its party (R), pun-ish its party (P), or do nothing (N). We introduce the \do nothing" behavior tohave an asynchronized situation at the beginning of the simulation. As we haveshown in the experimental section, synchronization makes selection of coopera-tion easier because the consequence of a behavior is received immediately.In the sequel of this section, we present the 5 reinforcement learning algo-rithms very briey and give the experimental results in the next section.



Evolution of cooperation 7
(a) Humans: initial state (0-3 min.). (b) Staddon-Zhang: initial state (step1-100).
(c) Humans: �nal state (26-29 min.). (d) Staddon-Zhang: �nal state (step901-1000).Fig. 1. Graphical representation of the cooperative rate of the couples of subjects(1st column) and Staddon-Zhang simulation (2nd column) at the beginning of anexperiment (a), and at the end of the experiment (c). The abscissa is the rate of clickson button 1 of subject, or agent, A, the ordinate is the rate of clicks on button 1 ofsubject, or agent, B. At the beginning of the experiment, the distribution is rathergaussian at the center, meaning that clicks are somehow equally shared between thetwo buttons. At the end of the experiment, there is a clear spike corresponding to thecooperation: both subjects, or agents, click only on button 1. Of course, some noisealways occurs which explains the little blobs here and there.



8 Delepoulle, Preux, and Darcheville4.1 The law of e�ectAt the end of the XIXth century, Thorndike [31,32] has studied the animalbehavior and he has suggested a law to predict the evolution of behaviors withregards to their consequences (positive or negative). We formalize his \law ofe�ect" as follows:if Ci 6= 0; let s = Ci:�jCij ; then8<:pi = pi+s1+spj = pj1+s for j 6= iwhere pi is the probability of apparition of a behavior i, Ci, the consequenceof behavior i and � is the learning rate, that is the relative weight of currentstimuli with regards to behaviors emitted previously.4.2 Hilgard and Bower's lawIn Hilgard and Bower's law [13], very similar to the law of e�ect, named \lin-ear reward{inaction algorithm", all non-reinforced actions are weakened. Thisalgorithm always converges with a propability 1 on a particular action (but notalways on the best action). This can be expressed by:if Ci > 08<:pi = pi + �(1� pi)pj = pj � �pj for j 6= iwith pi, Ci and � de�ned as in the law of e�ect.4.3 Staddon-Zhang ModelIn 1991, Staddon and Zhang [27] proposed a model in order to solve the assignment-of-credit problem without teacher (unsupervised learning). Staddon and Zhangshow that this model accounts for qualitative properties of response selection.Their model accords itself not only with regular data in behavior analysis butalso with \abnormal" behaviors (autoshaping, superstition and instinctive drift).In this model, each behavior has a value Vi. All values Vi are in competitionand a \winner-take-all" rule is used to select the behavior to emit at each timeslot. The values Vi are updated at each time slot according to the equation:Vi = �Vi + �(1� �) + �Viwhere 0 < � < 1 (� is a kind of short term memory parameter), �, thereinforcement parameter should be positive for rewards and negative for punish-ments, and � is a white noise.



Evolution of cooperation 94.4 Action-value methodThe goal of this method is to estimate the mean consequence for each behaviorand to choose the best one to emit in order to optimize the reward. Sutton [29]gives an iterative method to calculate this estimation. Vi is the estimation ofmean consequence and Ni is the number of occurences of behavior i in the past.If behavior i is emitted, then8<: Vi+1 = 1Ni [Ci + (Ni � 1):Vi]Ni+1 = Ni + 1Such a method converges quickly if we allow it to explore di�erent behaviors.So in complement to the behavior driven by the previous equations, the agentis allowed to emit a random behavior with probability �.4.5 Q-LearningQ-Learning is one of the most famous reinforcement learning method. Basedon Sutton and Barto's Time Derivative (TD) model [28], this method has beenproposed by Watkins [33]. Q-Learning is an algorithm for solving rapidly andeasily stochastic optimal control problem. Qs;a represents the expected futurepayo� for action a in state s. Q-Learning works by modi�ng Qs;a for each pairof state-action using the following equation:Qs;a = Qs;a + �[r+ maxb Qs0;a �Qs;a]In a markovian environment and if the problem is stationary, it was shownthat this algorithm converges with probability one to the optimal value. In prac-tice, Q-Learning does not explore the environment su�ciently. Thus, it has beensuggested to produce variability by adding noise. Contrary to the four other rein-forcement learning methods presented above, Q-Learning is not \context-free":if a behavior is reinforced only in a precise situation, the animat will be able toemit this behavior in that situation only.5 Results of simulationAgents are tested in two situations. For the �rst(individual situation), they canchoose between three behaviors which have direct consequences on their owncounter. In the second situation (interactive situation), agents are put by couplesin the same condition than human subjects. The algorithm performs a numberof behavior that is rather similar as for human subjectIn the individual situation (see columns 2, 3, and 4 of table 2), the envi-ronment is very simple and all algorithms succeed in adapting their behaviorto optimize their rewards. The di�erence between algorithms is the speed of



10 Delepoulle, Preux, and Darcheville individual socialalgorithm R P N R P Nlaw of e�ect 100 0 0 53 16 31Hilgard and Bower 100 0 0 35 28 37Mean earning 89 7 4 54 42 4Q-Learning 89 7 4 58 17 25Staddon-Zhang 66 0 34 86 1 13Table 2. Distribution of di�erent behaviors among a hundred agents after one thousandsteps of simulation. R represents the behavior that provides reinforcements to its party,P is the bahavior that provides punishment and N is doing nothing. Reinforcementscan be given to itself (individual situation) or to the other agent (social situation).convergence. The only algorithm which exhibits a di�erent behavior is Staddon-Zhang's law: within about thirty percent cases, it has a behavior which yieldsno consequence at all, which may seem a major weakness. However, a carefulexamination of the behavior of this algorithm shows that it keeps exploring itsenvironment while all other algorithms have settled into a rest point.In the \social" situation (see columns 5, 6, and 7 of table 2), results are op-posite. By far, results of Staddon-Zhang are the best: at the end, it cooperatesnearly nine times out of ten. Only Staddon-Zhang, the law of e�ect, and Q-Learning exhibit results that di�ers signi�cantly from a random behavior. Thevery good results of the Staddon-Zhang's algorithm clearly show that the per-formance of a method designed for stationary problems can be very di�erent ina dynamical situation. As said before, amongst the 5 algorithms, the algorithmrelying on Staddon-Zhang's law has the unique feature to keep exploring its envi-ronment. This feature might be held as a weakness in a stationary environment,but it is the source of its strength in a dynamical situation. Cooperative rate areplotted on �gure 1(b) and 1(d) at the beginning and at the end of simulationfrom random behavior, the algorithm comes to mostly cooperate.6 Discussion and perspectivesBy using a minimal social situation, we show how cooperation, is possible ifthe behavior of subjects is selected by their environment. The interest of suchsituations is twofolds. First, there can be a precise recording of emitted behaviorsso that the analysis is possible. Second, they can be simulated by simple adaptiveagents.The minimal social situation used has shown that the asynchronization ofagents' behavior is an important issue since synchronization implies cooperationstraightforwardly with a high probability. So, the emergence of the synchroniza-tion of the agents' behavior is an important part of the route towards coop-eration. More generally, it should be clear that the synchronization of actions,which generally lies implicitly in the background of lots of works dealing withsimulations, is not a mere detail.



Evolution of cooperation 11By using a minimal social situation, we may suppose that behavioral selec-tion can be important to account for the emergence of cooperation. The use ofadaptive agents in the same situation supports such an analysis. So, adaptiveagents are a precious tool to test hypothesis about social behaviors. However, weemphasize that simulations never proove anything �rmly. Reciprocally, experi-ments based on human or animal behavior provide insights into the design ofagents. In many cases, animal behavior, as the result of million years of evolution,is able to optimize very complex situations. By knowing the mathematical rela-tion between physical characteristics of environment and behaviors, we might beable to build a new generation of architectures of arti�cial agents, able to learnin many situation. This kind of agents should be able, for instance, to learn toimitate and to learn from verbal instruction [14,15].This procedure | controlled social situation and simulation by agents |will be used in order to study more complex behaviors such as work division orsequential decision making in social situations. If the situation is more complex,many reinforcement learning algorithms used in this paper may become unusablebecause, apart for Q-Learning, they are \context free". Hence their behaviorcannot be truly controlled by the characteristics of their environment, unlessthey are adapted to integrate the context. Due to its performance in a dynamicalenvironment as well as its soundness with regards to the experimental analysis ofbehavior, we will work towards making Staddon-Zhang's law context sensitive.References[1] Attonaty, J.M., Chatelin, M.H., Garcia, F., and Ndiaye S.M., Using extendedmachine learning and simulation technics to design crop management stategies.In EFITA First European Conference for Information Technology in Agriculture,(1997) Copenhagen[2] Axelrod, R., The evolution of cooperation, Basic Book Inc. (1984)[3] Bergen, D.E., Hahn, J.K., Bock, P., An adaptive approch for reactive actor design,Proc. European Conference on Arti�cial Life, (1997).[4] Boren, J.J., An experimental social relation between two monkeys, Journal of theexperimental analysis of behavior, 9 (1966) 691{700.[5] David S. Touretzky, Lisa M. Saksida, Skinnerbots, Proc. 4th Int'l Conf. on Simu-lation of Adaptive Behavior, From Animals to Animats 4, Maes, Mataric, Meyer,Pollack, Wilson (eds), MIT Press, 1996[6] Dawkins, R., The Sel�sh Gene, Oxford University Press, Oxford (1976)[7] Delepoulle S., Preux Ph., and Darcheville J.C., Partage des tâches et apprentissagepar renforcement, Proc. Journ�ees Francophones d'Apprentissage, (1998), 201{204(in french)[8] Deneubourg, J.L., and Goss S., Collective paterns and decision-making, EthologyEcology and Evolution, 1 (1989) 295{311.[9] Donahoe, J.W., Burgos, J.E., and Palmer, D.C., A selectionist approach to rein-forcement, Journal of the experimental analysis of behavior, 60 (1993) 17{40.[10] Hake, D.F., Vukelich, R., Analysis of the control exerted by a complex cooperationprocedure, Journal of the experimental analysis of behavior, 19 (1973) 3{16.[11] Hamilton, W. D., The Genetical Evolution of Social Behaviour, Journal of Theo-ritical Biology 7 (1964) 1{52.
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