
Adaptive information extraction:
Core technologies for

information agents

Nicholas Kushmerick, Bernd Thomas

9/2003

Fachberichte
INFORMATIK

Universität Koblenz-Landau
Institut für Informatik, Universitätsstr. 1, D-56070 Koblenz

E-mail: researchreports@uni-koblenz.de,

WWW: http://www.uni-koblenz.de/fb4/

Adaptive information extraction:
Core technologies for information agents

Nicholas Kushmerick
Computer Science Department

University College Dublin
nick@ucd.ie

Bernd Thomas
Institut für Informatik

Universiẗat Koblenz-Landau
bthomas@uni-koblenz.de

February 25, 2003

This paper gives a state of the art overview about machine learning approaches
for information extraction from documents based on finite state techniques and re-
lational learning methods related to inductive logic programming.

1 Introduction

For the purposes of this chapter, an information agent can bedescribed as a distributed system
that receives a goal through its user interface, gathers information relevant to this goal from a
variety of sources, processes this content as appropriate,and delivers the results to the users.
We focus on the second stage in this generic architecture. Wesurvey a variety of information
extraction techniques that enable information agents to automatically gather information from
heterogeneous sources.

For example, consider an agent that mediates package-delivery requests. To satisfy such re-
quests, the agent might need to retrieve address information from geographic services, ask an
advertising service for freight forwarders that serve the destination, request quotes from the rel-
evant freight forwarders, retrieve duties and legal constraints from government sites, get weather
information to estimate transportation delays, etc.

Information extraction (IE) is a form of shallow document processing that involves popu-
lating a database with values automatically extracted fromdocuments. Over the past decade,
researchers have developed a rich family of generic IE techniques that are suitable for a wide
variety of sources, from rigidly formatted documents such as HTML generated automatically
from a template, to natural-language documents such as newspaper articles or email messages.

1 Introduction 2

In this chapter, we view information extraction as a core enabling technology for a variety
of information agents. We therefore focus specifically on information extraction, rather than
tangential (albeit important) issues, such as how agents can discover relevant sources or verify
the authenticity of the retrieved content, or caching policies that minimize communication while
ensuring freshness.

Before proceeding, we observe that neither XML nor the Semantic Web initiative will elimi-
nate the need for automatic information extraction. First,there are terabytes of content available
from numerous legacy services that will probably never export their data in XML. Second, it is
impossible to determine “the” correct annotation scheme, and applications will have their own
idiosyncratic needs (“should the unit of currency be included when extracting prices?”, “should
people’s names be split into first and surname?”, “should dates such as ‘Sun. May 14, 67’ be
canonicalized to 14/05/1967?”). For these reasons we expect that automatic information extrac-
tion will continue to be essential for many years.

Scalability is the key challenge to automatic information extraction. There are two relevant
dimensions. The first dimension is the ability to rapidly process large document collections. IE
systems generally scale well in this regard because they rely on simple shallow extraction rules,
rather than sophisticated (and therefore slow) natural language processing.

The second and more problematic dimension is the number of distinct sources. For exam-
ple, a package-delivery agent might need to request quotes from a thousand different freight
forwarders, weather information from dozens of forecast services, etc. IE is challenging in this
scenario because each source might format its content differently, and therefore each source
could require a customized set of extraction rules.

Machine learning is the only domain-independent approach to scaling along this second di-
mension. This chapter focuses on the use of machine learningto enableadaptive information
extractionsystems that automatically learn extraction rules from training data in order to scale
with the number of sources.

The general idea behind adaptive information extraction isthat a human expert annotates a
small corpus of training documents with the fragments that should be extracted, and then the
learning system generalizes from these examples to producesome form of knowledge or rules
that reliably extract “similar” content from other documents. While human-annotated training
data can be expensive, the assumption underlying adaptive IE is that it is easier to annotate
documents than to write extraction rules, since the latter requires some degree of programming
expertise. Furthermore, we will describe techniques aimedat minimizing the amount of training
data required for generalization, or even eliminating the need for manual annotation entirely.

The adaptive information extraction research community has developed a wide variety of
techniques and approaches, each tailored to particular extraction tasks and document types. We
organize our survey of this research in terms of two distinctapproaches. First, we describe
finite-stateapproaches that learn extraction knowledge that is equivalent to (possibly stochastic)
finite-state automata (Section 2). Second, we describerelationalapproaches that learn extraction
knowledge that is essentially in the form of Prolog-like logic programs (Section 3). For the
sake of brevity we can not describe these techniques in detail, but see[Muslea, 1999] for more

2 Finite-state techniques 3

information about some of these ideas.

2 Finite-state techniques

Many approaches to Web information extraction can be categorized as finite-state approaches, in
that the learned extraction knowledge structures are formally equivalent to (possibly stochastic)
regular grammars or automata. In this section we survey several prominent examples, as well as
some additional research that relates to the entire wrapper“life-cycle” beyond the core learning
task.

2.1 Wrapper induction

Kushmerick first formalized adaptive Web information extraction with his work onwrapper
induction[Kushmericket al., 1997; Kushmerick, 1997; Kushmerick, 2000a]. Kushmerick iden-
tified a family of six wrapper classes, and demonstrated thatthe wrappers were both relatively
expressive (they can learn wrappers for numerous real-world Web sites), and also relatively effi-
cient (only a handful of training examples, and a few CPU seconds per example, are needed for
learning).

To illustrate Kushmerick’s wrapper induction work, consider the example Web page shown in
Figure 1(a), its HTML encoding (b), and the content to be extracted (c). This example is clearly
extremely simple, but it exhibits all the features that are salient for our discussion.

Kushmerick’s wrappers consist of a sequence of delimiters strings for finding the desired
content. In the simplest case (shown in Figure 1(d–e)), the content is arranged in a tabular
format with K columns, and the wrapper scans for a pair of delimiters for each column, for a
total of 2K delimiters. The notation “ℓk” indicates the left-hand delimiter for thek’th column,
and “rk” is the k’th column’s right-hand delimiter. In this case of the country-code wrapper
ccwrapLR, we haveK = 2.

To execute the wrapper, procedureccwrapLR (Figure 1(d)) scans for the stringℓ1 = from
the beginning of the document, and then scans ahead until thenext occurrence ofr1 =. The
procedure then extracts the text between these positions asthe value of the first column of the
first row. The procedure then scans forℓ2 =<I> and then forr2 =</I>, and extracts the text
between these positions as the value of the second column of the first row. This process then
starts over again withℓ1; extraction terminates whenℓ1 is missing (indicating the end of the
document).

Figure 1(e) formalizes these ideas as theLeft-Right (LR) wrapper class. An LR wrapper
wLR consists of a set{〈ℓ1, r1〉, . . . ,〈ℓK , rK〉} of 2K delimiters, one pair for each column to be
extracted, and the “operational semantics” of LR are provided by theexecLR procedure (Figure
1(e)). This procedure scans forℓ1 from the beginning of the document, and then scans ahead
until the next occurrence ofr1. The procedure then extracts the text between these positions as
the value of the first column of the first row.ccwrapLR then scans forℓ2 and then forr2, and

2 Finite-state techniques 4

extracts the text between these positions as the value of thesecond column of the first row. This
process is repeated for allK columns. After searching forrK , the procedure starts over again
with ℓ1; extraction terminates whenℓ1 is missing (indicating the end of the document).

Given this definition, the LR machine learning task is to automatically construct an LR wrap-
per, given a set of training documents. LR learning is relatively efficient, because the 2K delim-
iters can all be learned independently. The key insight is that whether a particular candidate is
valid for some delimiter has no impact on the other delimiters. Based on this observation, Kush-
merick describes a quadratic-time algorithm for learning LR wrappers. The algorithm simply
enumerates over potential values for each delimiter, selecting the first that satisfies a constraint
that guarantees that the wrapper will work correctly on the training data. Kushmerick demon-
strates (both empirically, and theoretically under the PACmodel) that this algorithm requires a
modest training sample to converge to the correct wrapper.

Of course, just because an efficient learning algorithm exists does not mean that the wrappers
are useful! Below, we discuss the limitations of the LR classand show that it can not handle
documents with more complicated formatting. However, eventhe very simple LR class was
able to successfully wrap 53% of Web sites, according to a survey. While LR is by no means a
definitive solution to Web information extraction, it clearly demonstrates that simple techniques
can be remarkably effective.

LR is effective for simple pages, but even minor complications to the formatting can render LR
ineffective. For example, considerℓ1. The LR class requires a value forℓ1 that reliably indicates
the beginning of the first attribute. However, there may be nosuch delimiter. For example,
suppose that Figure 1(b) was modified to include a headingCountry code list at
the top of the document. In this case the delimiterℓ1 = used byccwrapLR would not work
correctly. Indeed, it is possible to show that there is no legal value forℓ1 and hence no LR
wrapper for documents modified in this manner.

Kushmerick tackled these issues by extending LR to a family of five additional wrapper
classes. First, theHead-Left-Right-Tail(HLRT) class uses two additional delimiters to skip
over potentially-confusing text in either the head (top) ortail (bottom) of the page. In the exam-
ple above, a head delimiterh (such ash =list) could be used to skip over the initial at the
top of the document, enablingℓ1 = to work correctly. Alternatively, theOpen-Close-Left-
Right (OCLR) class uses two additional delimiters to identify an entire tuple in the document,
and then uses the regular LR strategy within this mini-document to extract each attribute in turn.
These two ideas can be combined in fourth wrapper class, theHead-Open-Close-Left-Right-Tail
(HOCLRT) class.

Finally, Kushmerick explored two simple wrappers for data that is not formatted in a sim-
ple tabular fashion. TheNested-Left-Right(NLR) class can be used to extract hierarchically-
organized data, such as a book’s table of contents. NLR operates like LR except that, after
processingrk, there arek+ 1 possibilities (start at levelk+ 1, continue levelk, return to level
k−1, . . . , return to level 1) instead of just one (proceed to attribute k+ 1). TheNested-Head-
Left-Right-Tail(NHLRT) class combines NLR and HLRT.

Kushmerick developed specialized learning algorithms foreach of these five classes. He

2 Finite-state techniques 5

(a)

(b)

<HTML><TITLE>Some Country Codes</TITLE><BODY>
Congo <I>242</I>

Egypt <I>20</I>

Belize <I>501</I>

Spain <I>34</I>

</BODY></HTML>

(c)















〈‘Congo’ , ‘242’ 〉,
〈‘Egypt’ , ‘20’ 〉,
〈‘Belize’ , ‘501’ 〉,
〈‘Spain’ , ‘34’ 〉















(d)

procedureccwrapLR(pageP)
while there are more occurrences inP of ‘’

for each〈ℓk, rk〉 ∈ {〈‘’ , ‘’ 〉,〈‘<I>’ , ‘</I>’ 〉}
scan inP to next occurrence ofℓk; save position as start ofk’th attribute
scan inP to next occurrence ofrk; save position as end ofk’th attribute

return extracted{. . . ,〈country, code〉, . . .} pairs

(e)

procedureexecLR(wrapperwLR = {〈ℓ1, r1〉, . . . ,〈ℓK , rK〉}, pageP)
m← 0
while there are more occurrences inP of ℓ1

m←m+1
for each〈ℓk, rk〉 ∈ {〈ℓ1, r1〉, . . . ,〈ℓK , rK〉}

scan inP to the next occurrence ofℓk; save position asbm,k

scan inP to the next occurrence ofrk; save position asem,k

return label{. . . ,〈〈bm,1,em,1〉, . . . ,〈bm,K ,em,K〉〉, . . .}

Figure 1: A fictitious Internet site providing information about countries and their telephone
country codes: (a) an example Web page; (b) the HTML documentcorresponding to
(a); (c) the content to be extracted; (d) theccwrapLR procedure, which generates (c)
from (b); and (e) theexecLR procedure, a generalization ofccwrapLR.

2 Finite-state techniques 6

demonstrated, both empirically and using complexity theory, that there is a trade-off between
the expressive power of the wrapper classes and the extent towhich they can be efficiently
learned. For example, even though the six classes can successfully wrap 70% of surveyed sites,
the algorithms for learning NLR and NHLRT wrappers take timethat grows exponentially in
the number of attributes, and a PAC analysis reveals that HOCLRT requires substantially more
training examples to converge compared to the other classes.

2.2 More expressive wrapper classes

Following Kushmerick’s initial investigation of the LR family of wrappers, there has been sub-
stantial research effort at elaborating various alternative wrapper classes, and deriving more effi-
cient learning algorithms. Even when Kushmerick’s variousextended wrapper classes are taken
into consideration, there are numerous limitations. Muslea et al[Musleaet al., 1999], Hsu and
Dung [Hsu and Dung, 1998], and others have developed various wrapper-learning algorithms
that address the following shortcomings:

Missing attributes. Complicated pages may involve missing or null attribute values. If the cor-
responding delimiters are missing, then a simple wrapper will not process the remainder of
the page correctly. For example, a French e-commerce site might only specify the country
in addresses outside France.

Multi-valued attributes. The simple wrapper classes discussed so far assume a simple relational
model in which each attribute has a single value, but non-relational structures such as
multi-valued attributes are natural in many scenarios. Forexample, a hotel guide might
explicitly list the cities served by a particular chain, rather than use a wasteful binary
encoding of all possible cities.

Multiple attribute orderings. The wrappers described so far assume that the attributes (and
therefore the delimiters) will occur in one fixed ordering, but variant orderings abound
in complicated documents. For example, a movie site might list the release date before
the title for movies prior to 1999, but after the title for recent movies.

Disjunctive delimiters. The wrappers discussed above assume a single delimiter for each at-
tribute, but complicated sites might use multiple delimiters. For example, an e-commerce
site might list prices with a bold face, except that sale prices are rendered in red.

Nonexistent delimiters. The wrappers described earlier assume that some irrelevantbackground
tokens separate the content to be extracted, but this assumption may be violated in some
cases. For example, how can the department code be separatedfrom the course number
in strings such as “COMP4016” or “GEOL2001”. This problem isalso relevant for many
Asian languages in which words are not tokenized by spaces.

2 Finite-state techniques 7

Typographical errors and exceptions. Real-world documents may contain errors, and if these
errors occur in the formatting that drives extraction, thena simplistic wrapper may fail on
the entire page even if just a small portion is badly formatted.

Sequential delimiters. So far, the wrapper classes above assumed a single delimiterper at-
tribute, but the simplest way to develop an accurate wrappermight be to scan for several
delimiters in sequence. For example, to extract the name of arestaurant from a review
it might simpler to scan for, then to scan for<BIG> from that position, and finally
to scan for, rather than to force the wrapper to scan the document for a single
delimiter that reliably indicates the extracted content.

Hierarchically organized data. Kushmerick’s nested classes are a first step at handling non-
tabular data, but his results are largely negative. In complicated scenarios there is a need
extraction according to a nested or embedded structure.

Hsu and Dung[Hsu and Dung, 1998] addresses the problem of learning wrappers that corre-
spond to an expressive class of deterministic finite-state transducers. This formalism handles all
but the last two requirements just mentioned. The transducer processes the document to extract
a single tuple; after extraction control returns to the start state and the second tuple is extracted,
etc. Each extracted attribute is represented as a pair of states: one state to identify the start of
the attribute value and the second to identify the end.

Since a general automaton model is used, states can be connected in an arbitrary manner, per-
mitting missing attributes (skipped states), multi-valued attributes (cycles) and multiple attribute
orderings (multiple paths from the start to end state). Furthermore, state-transitions are governed
by an expressive rule language that allows disjunctive delimiters. A limited form of exception-
processing is permitted, allowing the system to recover from formatting errors and exceptions.
Crucially, Hsu and Dung describe an algorithm for efficiently learning their wrapper transducers
from training data. Empirically, the report that their wrapper classes handles the 30% sites that
could not be wrapped by Kushmerick’s wrapper classes.

Muslea et al[Musleaet al., 1999] identify a class of wrappers that, unlike Hsu and Dung,
tackle the last two issues mentioned above. The main distinguishing feature of Muslea et al’s
wrappers is the use of multiple delimiters that they call landmarks. Rather than insisting that
there exist a single delimiter that exactly identifies the relevant position deep inside some docu-
ment, landmark-based wrappers use a sequence of delimitersto jump to the appropriate position
in a series of simple steps. These simple steps are usually easier to learn, and enable more ro-
bust extraction. A second major feature of Muslea et al’s work is that their “embedded catalog”
formalization of nested data is more expressive than the simple hierarchical approach used by
Kushmerick.

2 Finite-state techniques 8

2.3 Extraction from natural text

The techniques described so far are aimed at highly regular documents, such as machine-generated
HTML emitted by CGI programs. However, most research on information extraction has fo-
cused on natural free-text documents, such as email messages, newspaper articles, resumes, etc.
Are the “wrapper” results relevant to these less structureddomains. Several recent investigations
have shown promising results.

Freitag and Kushmerick[Freitag and Kushmerick, 2000] explore “boosted wrapper induc-
tion”. They define a class of extraction patterns that is essentially the LR class, for the case
when there is exactlyK = 1 attributes. They then enrich this class by permitting delimiters to
contain wild-cards over token types (eg,<Num> rather than specific instances such as23).

For example, for a corpus of email seminar announcements, the algorithm learns the following
rule for extracting the starting time:{([time :],[<Num>]), ([], [- <Num> : <*> <Alpha>])},
which matches a document such as “. . .Time: 2:00 - 3:00 pm . . . ”, where the fragment to
be extracted has been underlined. This rule basically says “to find the start of the time, look for
‘time:’ followed by any number; then find the end of the time bylooking for a dash, another
number, a colon, any token at all, and finally an alphanumerictoken”.

This simple rule language is by itself not very useful for extraction from free text. Freitag
and Kushmerick improve the performance by using boosting (ageneral technique for improving
the accuracy of a weak learning algorithm) to learn many suchrules. Each individual rule has
high precision, but low recall; when combined, the rule set has both high precision and high
recall. The result is an accurate extraction algorithm thatis competitive with other state-of-
the-art approaches in a variety of free-text domains, and superior in many. For example, boosted
wrapper induction performs essentially perfectly at the task of extracting seminar announcement
times, and better than most competitors at other attributessuch as the speaker name and seminar
location.

Soderland[Soderland, 1999] describes a related approach to using finite-state techniques for
information extraction from free text. Soderland’s extraction rules correspond to a restricted
class of regular expressions. These regular expressions serve two purposes: they can be both
contextual pattern for determining whether a particular fragment should be extracted, or de-
limiters for determining the precise boundaries of the target fragment. Soderland’s language is
important because it is designed to work for documents that span the spectrum from unstruc-
tured natural text through to highly structured Web pages. Depending on the degree of structure
in the training documents, the learning algorithm automatically creates appropriate patterns. For
example, if simple delimiter-based extraction is sufficiently accurate then the learning algorithm
will not bother to add additional contextual constraints.

For example, consider extracting the price and number of bedrooms from apartment list-
ing documents such as “Capitol Hill- 1 br twnhme. D/W W/D. Pkg incl $675. 3BR
upper flr no gar. $995. (206) 999-9999”. Soderland’s system learns rules such as “*
(<Digit>) ’BR’ * ’$’ (<Numb>)”, where the parenthesized portions of the regular expres-
sion indicate the values to be extracted. This rule would extract the content{(1, 675), (3, 995)}

2 Finite-state techniques 9

from the example document.

2.4 Hidden Markov models

The work of Freitag and Kushmerick[Freitag and Kushmerick, 2000] and Soderland[Soderland,
1999] are two instances of generalizing finite-state approaches from rigidly structured HTML
documents to less structured documents such as email and newspaper articles. However, these
approaches are still brittle because they do not have any facility for evaluating the strength of
the evidence that guides extraction decisions. For example, suppose the phrasewill be held
in often precedes a seminar location, but a new document contains the typographical errorwill
held in. The techniques described so far make binary decisions and thus have no way to use
this uncertain evidence.

Hidden Markov Models are a principled and efficient approachto handling this sort of inherent
uncertainty. A Hidden Markov Model (HMM) is a stochastic finite-state automaton. States emit
tokens according to a fixed and state-specific distribution,and transitions between states occur
according to a fixed distribution. HMMs are an attractive computational device because there
are efficient algorithms for both learning the model’s distribution parameters, and for inferring
the most-likely state sequence given some observed token sequence.

To use HMMs for information extraction, states are associated with the tokens to be extracted.
For example, with the email seminar announcement corpus, the HMM would contain a state for
the start time tokens, the end time tokens, the speaker name tokens, and the location tokens.
Optionally, there may be additional states that generate “background” tokens. To perform ex-
traction, the standard HMM Viterbi decoding algorithm is used to determine the most-likely
state-sequence to have generated the observed document, and then the extracted fragments can
simply by read off this most-likely path.

Hidden Markov models have been used successfully by numerous researchers in a variety of
extraction scenarios (eg,[Bikel et al., 1997; Leek, 1997]). They key challenge is that there is
no efficient general-purpose algorithm for determining an appropriate state topology (ie, which
state-state distribution probabilities should be forced to be zero and which should be permitted
to be positive). Initial work has generally used a hand-crafted topology, in which the states are
connected manually in a “reasonable” way after evaluating the training corpus.

More recently, there have been several attempts to automatically learn an appropriate topol-
ogy. The general approach is to greedily search the space of possible topologies for one that
maximizes some objective function. Seymore et al[Seymoreet al., 1999] attempt to maximize
the probability of the training data given the topology. This approach is reasonably efficient but
potentially misguided: the goal of using an HMM is not to model the training data per se, but
to perform accurate extraction. Freitag and McCallum[Freitag and McCallum, 2000] therefore
use as the objective function the actual accuracy of the proposed topology for extraction from
a held-out validation corpus. While this approach is significantly slower it can result in a more
compact topology and better generalization.

2 Finite-state techniques 10

2.5 Wrapper maintenance

All of the wrapper-learning work described earlier ignoresan important complication. Infor-
mation agents generally have no control over the sources from which they receive data. As
described above, the agent’s wrappers tend to be relativelybrittle, as the invariably rely on id-
iosyncratic formatting details observed during the learning process. Unfortunately, if the source
modifies its formatting (for example, to “remodel” its user interface) then the observed regulari-
ties will no longer hold and the wrapper will fail. As a concrete example, Figure 2 and Figure 4
show the Altavista search engine, before and after a site redesign.

The two key challenges to

Figure 2: Altavista snapshot before redesign

wrapper maintenance arewrap-
per verification(determining
whether the wrapper is still
operating correctly), andwrap-
per re-induction(learning a
revised wrapper). The sec-
ond challenge is considerably
more difficult, although even
wrapper verification is non-
trivial. The difficulty is that
at most web sites, either the
content to be extracted, or
the formatting regularities, or
both, may have changed, and
the verification algorithm must
distinguish the two. For ex-
ample, suppose that the change
in the Microsoft stock price
is checked three times at a
stock-quote server, and the
extracted values are+3.10,
-0.61 and.
Intuitively our verification al-
gorithm should realize that
the relatively the first two values are “similar” and do not indicate trouble, but the third value is
an outlier and probably indicates a defective wrapper.

Kushmerick[Kushmerick, 1999; Kushmerick, 2000b] describes a simple and accurate al-
gorithm for wrapper verification. The algorithm first learnsa probabilistic model of the data
extracted by the wrapper during a training period when it is known to be operating correctly.
This model captures various properties of the training datasuch as the length or the fraction of
numeric characters of the extracted data. To verify the wrapper after the training period, the

2 Finite-state techniques 11

extracted data is evaluated against the learned model to estimate the probability that wrapper is
operating correctly. The algorithm is domain independent and is not tied to any particular wrap-
per class or learning algorithm, but rather treats the wrapper as a black-box and inspects only its
output. The algorithm handles (acyclic) XML data, not just relational data, so it is applicable to
all of the wrapper classes described above.

Wrapper re-induction has also received some attention. Lerman et al[Lerman and Minton,
2000] learn a probabilistic model of the extracted data that is similar to (though substantially
more expressive than) that used by Kushmerick. This more sensitive model enables wrapper
re-induction as follows. After a wrapper is deemed to be broken, the learned model is used to
identify probable target fragments in the (new and unannotated) documents. This training data is
then post processed to (heuristically) remove noise, and the data is given to a wrapper induction
algorithm. Lerman et al demonstrate empirically that this semi-supervised approach is highly
accurate in many real-world extraction scenarios.

2.6 Post-processing extracted content

The work described so far is highly simplified in that the taskis assumed to involve simply
processing a given document to extract particular target fragments. However, in many extraction
scenarios, the information to be extracted is actually distributed across multiple documents, or
an attribute value is given only once on a page but is relevantto several extracted objects. For
example, Figure 3 shows a simple scenario in which some attribute values are “re-used” across
multiple extracted objects, and other values must be harvested from a collection of hyperlinked
documents.

Some of these issues are handled by the wrapper classes defined earlier. For example, Muslea
et al’s embedded catalog formalism[Musleaet al., 1999] permits an extracted fragment to be
“shared” across multiple objects. Furthermore, the information extraction community has long
investigated the issue of cross-document references. However, these approaches require consid-
erable linguistic processing and are not applicable to the example shown in Figure 3 (adapted
from [Jensen and Cohen, 2001]).

Jensen and Cohen[Jensen and Cohen, 2001] address these problems by proposing a language
for specifying how the extracted data should be post-processed. Rules express how the raw ex-
tracted data should be grouped into larger composite objects. Jensen and Cohen argue that their
language is sufficiently expressive to handle the data extracted from 500 web sites exporting job
and product advertisements. Furthermore, they suggest (though do not implement) an algorithm
for automatically learning such rules from examples of grouped data.

2.7 Beyond supervision

The key bottleneck with adaptive information extraction isobtaining the labeled training data.
The use of machine learning is motivated by the fact that the cost of labeling documents is
usually considerably less than the cost of writing the wrapper’s extraction rules by hand. Never-

2 Finite-state techniques 12

Figure 3: A complicated extraction task in which attribute values are both distributed across
multiple documents, and reused across objects.

theless, labeling documents can require considerable domain expertise, and is generally tedious
and error-prone. The approaches described so far simply assumes that an adequate training cor-
pus exists, but considerable research effort has investigated so-called “active learning” methods
for minimizing the amount of training data required to achieve a satisfactory level of generaliza-
tion.

The basic idea of active learning is to start with a small amount of training data, run the learn-
ing algorithm, and then used the learned wrapper to predict which of the remaining unlabeled
documents is most informative, in the sense of helping the learning system generalize most with
the one additional training document. As a trivial example,if the corpus contains duplicate
documents, then the learner should not suggest that the samedocument be annotated twice.

As one example of the use of active learning in the context of wrapper induction, consider
Muslea et al[Musleaet al., 2000]. The basic idea of this approach is that every information
extraction task has a “dual”, and correlations between the original task and its dual can help the
system identify useful unlabeled documents.

Recall that Muslea et al’s wrapper learning algorithm learns a sequence of landmarks for
scanning from the beginning of the document to the start of a fragment to be extracted. An
alternative way of finding the same position is to scan backwards from the end of the document
for a (different!) set of landmarks. Muslea’s active-learning extensions solves both learning

2 Finite-state techniques 13

tasks in parallel on the available training data. The two resulting wrappers are then applied to
all the unlabeled documents. The system then asks the user tolabel one of the documents for
which the two wrappers give different answers. Intuitively, if the two wrappers agree for a given
unlabeled document, then the document is unlikely to be useful for subsequent learning.

Muslea et al demonstrate

Figure 4: Altavista snapshot after redesign

that the active-learning ver-
sion of their algorithm requires
significantly less training data
to obtain the same level of
generalization. For example,
averaged across a variety of
challenging extraction tasks,
the error of the learned wrap-
per is about 50% less when
the user annotates ten train-
ing documents chosen in this
intelligent manner, compared
to ten documents chosen ran-
domly.

Brin [Brin, 1998] explores
a different sort of extraction
task, in which the user gives
the system examples of some
concept. For example, to learn
to extract book title/author
pairs, the user would supply
a small sample of pairs, such
as{(Isaac Asimov, The Robots
of Dawn), (Charles Dickens,
Great Expectations), . . .}.
The job of the extraction system is then to flesh out this list with as many additional instances as
possible.

Brin’s algorithm iteratively searches the Web for the seed pairs. When it finds a document
that contains a pair, it learns an information extraction pattern for that particular pair, and then
applies this pattern to the remainder of the page. The resulting extracted pairs are added to the
seeds and the process iterates. There is no guarantee that this process will converge or even that
the extracted pairs are correct. Nevertheless, preliminary experiments demonstrated promising
results.

Finally, Crescenzi et al[Crescenziet al., 2001] focus on an even bigger challenge: wrapper
learning without any supervision (labeled training data) at all. Consider the pages from some
online bookstore that would be returned by two queries, for Dickens and for Asimov. In most

3 Relational learning techniques 14

cases, these pages would be formatted the same way, with the only difference being the content to
be extracted. The intuition behind Crescenzi et al’s approach is that a wrapper can be learned by
comparing these two pages and finding similarities and differences. The similarities correspond
to common formatting and structural elements; the differences correspond to data to be extracted.
By repeatedly replacing the differences with wild-cards and noting repetitive structures, their
algorithm can learn a wrapper that corresponds to a regular grammar, without the need for any
manually labeled training data. Crescenzi et al report thattheir algorithm works well in a variety
of real-world domains.

3 Relational learning techniques

In this section we introduce adaptive IE systems that use relational learning techniques. We
present a short introduction to common relational rule induction algorithms and how they are
used as a basis in several information extraction systems. We do not focus on the formal foun-
dations of inductive logic programming[Muggleton and Raedt, 1994; Bergadano and Gunetti,
1996]; our goal is to provide a summary of relational rule induction approaches as they have
been used for adaptive IE over the past decade.

Before introducing the basic concepts of rule induction letus give a short motivation for using
relational techniques for learning wrappers. Several existing techniques for IE (like HMM’s pre-
sented in Section 2) are based on the assumption to determinerelevant text parts to be extracted
by statistical means. These finite-state techniques can be seen as some sort of rule learning, ie
the learning of production (grammar) rules constrained by certain probability measures. When
we talk about rule learning in the context of relational rulelearning we have logical rules in
mind, in the sense of learning rules of first order predicate logic or at least subsets of first order
rules like Horn rules or Prolog programs. As we will see, while the different rules learned by the
various IE systems vary in their representation and signature, in general they can all be rewritten
in a uniform predicate logic representation.

Talking about learning logical rules in combination with IEonly makes sense if we abstract
from the pure lexical representation of documents. Thus a first step to use relational learning
techniques is to find a suitable document representation suited to the formal framework of logic,
literals and logic rules. The most common representation used in relational IE is to interpret a
document as a sequence of feature terms or tokens having several attributes describing features
of grouped symbols from the document. How the tokenization is done is subject a) to the type
of extractions needed, and b) the learning methods used. Forexample, the relevant features may
be its type (integer, char, HTML tag), whether it is upper or lower case, its length, linguistic
knowledge about the word category, its genus or even additional semantic knowledge drawn
from a rich taxonomy.

For example Thomas[Thomas, 1999] uses a document transformation into feature terms,
in which a fragment likePentium 90 is written as a list of tokens:[token(type=html,
tag=b), token(type=word, txt=’Pentium’), token(type=int, val=90), token(type=htmlend, tag=b)].

3 Relational learning techniques 15

If we replace a feature value likeb in token(type=html, tag=b)with a variabletoken(type=html,
tag=X), we can a) describe the class of all tokens of typehtml, and b) use unification methods
to find all non-closing HTML tags in a tokenized document.

It then becomes obvious how more complex patterns can be defined by the use of first or-
der predicate rules. For example, the rulelink(Description, Url) :- pos(P, token(type=html,
tag=a, href=Url)), sequence(P, E, TokenSeq), not in(token(type=html end, tag=a), TokenSeq),
next(E, token(type=htmlend, tag=a))extracts tuples of the form<Description, URL> from a
HTML document. For further details of how logic programs canbe used for information ex-
traction, see[Thomas, 2000]. In the last decade various representations have been developed,
some influenced largely by logic programming[Junkeret al., 1999; Thomas, 1999], and other
slot-oriented approaches motivated by natural language processing. In essence they all can be
represented without much effort in a first order predicate logic syntax.

Additional representations

Figure 5: An online catalogue

may be used to capture the
documents layout. For ex-
ample, a parse tree of the
HTML structure can give in-
formation on paragraphs, ti-
tles, subsections, enumera-
tions, tables. For informa-
tion extraction tasks tailored
for HTML or XML docu-
ments, the Document Ob-
ject Model (DOM) can pro-
vide additional information
into the learning and the later
extraction process. Systems
like that of Cohen[Cohen
et al., 2002] and the wrap-
per toolkit of the MIA sys-
tem (Section 3.3) make use
of such representations. In
general the document rep-
resentation can not be con-
sidered to be independent
from the extraction task. For
example, if someone wants
to extract larger paragraphs from free natural language documents she probably will use a doc-
ument representation and therefore relational representation reflecting larger document blocks,
compared to someone interested in prices from online catalogues. Nevertheless if relational
methods are to be used no matter which representation is chosen it must be presented in terms

3 Relational learning techniques 16

of relations.
Section 2 already presented several state of the art adaptive IE algorithms, so what might be

the shortcoming of these systems and what might be the advantages of relational rule based IE
systems? One answer is that of human readability. A learned rule in the relational approach
has a clear conclusion and conjunctive set of premises, which are all understandable because
they refer to certain easily recognizable features of the document representation. This of course
only holds if the document representation itself is clear and understandable. Thus such a learned
rule will also give a clear explanation why it is used for extraction. Another strong argument
is that of extending relational learning approaches. Having sets of first order rules in mind, it
becomes apparent that adding additional background knowledge like ontologies or additional
domain knowledge is easy to do. And even more important this additional knowledge can also
be incorporated into the rule construction algorithm, and the inductive rule learning calculus can
be extended by reasoning components from automated deduction systems. For example, some
IE systems make use of additional semantic knowledge derived from a taxonomy[Califf, 1998;
Soderland, 1997].

By now we can think of relational learning as a core algorithmthat expects a set of examples
in the form of relation instances, some additional knowledge (the background theory) and a
set of predicates from which rules can be build. The algorithm tries to construct rules using
the background theory and these special predicates such that the new rules explain (cover) the
presented positive examples and exclude (if given) the negative ones. Applying this approach
to the tasks of IE involves the use of a appropriate relational document representation, text
examples as grounded facts, and additional predicates plusa background theory used to check
certain features of text fragments and tokens. In theory thecore algorithm is not affected by
the representation: by choosing the right representation,a standard relational rule induction
algorithm can be used as core learning algorithm for adaptive IE. In practice it turns out that due
to complexity issues modification and tailored approaches are needed, but the important point
is the theoretical framework of learning logical rules[Bergadano and Gunetti, 1996] provides a
well understood and formal basis for adaptive information extraction.

3.1 Rule Learning

Because IE involves extracting certain fragments from a document (where the key idea is that the
extracted fragments are rule variable bindings), we will not discuss propositional rule learning.
Since we adopt the general approach from Section 2 that extraction rules consist of delimiters
and slots (extraction variables), we are confronted with the problem of inducing left and right
delimiters. Additionally many approaches also try to induce some information about the extrac-
tions itself, by recognizing certain specific features fromthe provided example fragments. For
example they generalize starting from certain linguistic or semantic features. So far almost all
existing relational approaches are using one of the following techniques.

3 Relational learning techniques 17

Sequential-Covering(TargetAttribute,Attributes,Examples,Threshold)

LearnedRules← {}

Rule← Learn-One-Rule(TargetAttribute,Attributes,Examples)

while Performance(Rule,Examples)> Threshold, do

LearnedRules← LearnedRules + Rule

Examples← Examples -{examples correctly classified by Rule}

Rule← Learn-One-Rule(TargetAttribute,Attributes,Examples)

LearnedRules← sort LearnedRules according to Performance over Examples

return LearnedRules

Figure 6: Sequential covering algorithm.

3.1.1 One-shot learning.

Given a set of positive examples and perhaps negative examples plus additional information
needed (eg the documents the examples are drawn from), theseapproaches try to learn a rule in
one step. One shot learning approaches do no refinement and evaluation at each step during the
rule building process, instead they assume their applied learning operators are good enough or
they pass the evaluation and further refinement of learned rules to the user. The Autoslog[Riloff,
1994] system and the T-Wrapper system[Thomas, 1999] use one shot learning approaches.

3.1.2 Sequential covering.

In contrast to One Shot Learning a sequential covering involves an iterative process of refinement
and testing. The general Sequential Covering algorithm is shown in Figure 6 (adapted from
[Mitchell, 1997]). This algorithm learns a disjunctive set of rules depending on a threshold with
regard to the performance of a learned rule. In other words, the learned rule set may still cover
some negative examples. The algorithm repeatedly tries to learn one rule meeting the threshold
condition. As long as the threshold is not met the example setfor the next iteration is built by
removing the positive and negative examples covered by the previously learned rule. Sequential
Covering serves as a basis for many inductive algorithms. The crucial point of this algorithm
is the function Learn-One-Rule. Clark and Niblet[Clark and Niblett, 1989] provide a K-Beam
Search based algorithm, which is by now one standard approach for learning one rule.

3 Relational learning techniques 18

FOIL(TargetPredicate, Predicates, Examples)

Pos← Examples for which TargetPredicate is true

Neg← Examples for which TargetPredicate is false

LearnedRules← {}

while Pos, do

NewRule← rule that predicts TargetPredicate with no preconditions

NewRuleNeg← Neg

while NewRuleNeg, do

CandidateLiterals← generate new body literals for NewRule, based on Predi-
cates

Best Literal← argmax l∈ CandidateLiterals FOIL GAIN(l,NewRule)

add BestLiteral to preconditions of NewRule

NewRuleNeg← subset of NewRuleNeg that satisfies NewRule preconditions

LearnedRules← LearnedRules + NewRule

Pos← Pos -{members of Pos covered by NewRules}

return LearnedRules

Figure 7: The FOIL algorithm.

3.1.3 FOIL: Learning first order rules.

Though the Sequential Covering algorithm builds the basis for many inductive rule learning
algorithms it is in combination with CN2 a propositional rule learner. Nevertheless it builds
a basis for many first order rule learning approaches. A widely used first order rule learning
algorithm is the top-down procedure called FOIL[Quinlan, 1990]. Modified versions of FOIL
are the basis for most adaptive IE systems using relational learning techniques. For example, the
SRV system[Freitag, 1998] uses a FOIL based core algorithm. FOIL tries to find a description
of a target predicate, given a set of examples and some background knowledge. In general
the background theory and examples are function-free ground facts, where the examples are
positive and negative instances of the target predicate. Here negative instances means explicitly
stating for which instantiations the target predicate shall not be true. FOIL uses the closed world
assumption during rule learning: every instance not declared positive is assumed to be negative.

3 Relational learning techniques 19

3.1.4 Using FOIL for wrapper induction.

Assume we chose a document representation where a documentD is mapped to a set of facts
T(D) of the formword(Pos,Token), wherePos is the starting position of the text fragment de-
scribed by the tokenToken. Token is a feature term in the previously discussed sense. Further
we have a set of dedicated predicates, which FOIL uses for rule construction. In general these
predicates are of two different types: one to test for certain token features and the other to set
tokens into relation to each other. For example,next(P1, P2)describes all tokens at positionP1
and its direct successor token referred byP2. The reader can think of many different relational
predicates like:fragment(P1, Length, F)or nearby(P1,P2). Examples for predicates checking
certain features may behasfeature(type, html, Token), which checks if a tokenTokenhas the at-
tribute type and if its value ishtml. An additional background theory provides the definition for
these predicates. At this point the advantage of relationaland first order rule learning becomes
apparent. Suppose our document representation is modified so that it contains relational infor-
mation in the sense of a document object model (DOM). Then to learn rules taking advantage of
additional document layout features, we need only extend the background theory with additional
predicates for traversal and retrieval of DOM nodes. Let us return to the FOIL algorithm. What
is left to demonstrate FOIL are examples. Assuming we want tolearn a ruleextract(X,Y). Note
this is a multi slot rule which itself defines a problem class in the IE context. Because examples
have to contain the target predicate our examples will be of the formextract(”Tatonka Kimberley
50”,”EUR 174.95”).

Now that we know how to define positive examples let us see how to represent negative ones.
In comparison to some finite state techniques the need for negative examples may be a short-
coming. While FOIL needs negative examples, we do not necessarily have to provide them by
tedious annotating them by hand. Some assumptions can be taken, such that negative examples
can be generated automatically. For example we can take a closed world assumption: negative
examples are all those text tuples not explicitly stated to be positive ones. Besides the huge
amount of possible tuples that can be generated, this has another serious shortcoming: if a doc-
ument contains more relevant fragments than annotated, we will run into problems if we rely on
the closed world assumption. So either we must exhaustivelyenumerate all relevant fragments
of the document, or else we must use heuristics to construct negative examples automatically.
Examples of such heuristics include text fragments consisting of positive examples but extended
to the left and right or permutation of positive example arguments. Freitag[Freitag, 1998] uses a
heuristic that constructs negative examples from all thosefragments with more, or fewer, tokens
than the positive examples.

Let us start FOIL’s top-down learning with the most general ruleextract(X,Y)← true.As long
as the current rule covers one of the negative examples—for exampleextract(”Tatonka”,”EUR”)
(see Figure 5)—the body of the rule is extended by the best constraining literal. Most applica-
tions of FOIL in the context of IE use a similar function to that of Quinlan’sFOIL GAIN which
characterizes the information contained in the ratio of positive and negative examples in a set of
examples. The SRV system uses following gain function:I(S) = −log2(P(S)/(P(S)+ N(S))),

3 Relational learning techniques 20

whereP(S) andN(S) are the positive and negative number of examples of the example setS.
GAIN(A) = P(SA)(I(S)− I(SA)) with SA is the subset of S covered by the rule after adding the
literal A to it. The computation of the best literal is thus very expensive depending on the docu-
ment sets and the complexity of the predicates. The following rules illustrate some hypothetical
intermediate steps during a possible rule induction process:
extract(X,Y)← fragment(P1,2,X), fragment(P2,2,Y).
extract(X,Y)← fragment(P1,2,X), nearby(P1,P2,Y), fragment(P2,2,Y).
extract(X,Y)← word(P0,Token1), hasfeature(type,html,Token1),

hasfeature(color,blue,Token1), next(P0,P1), fragment(P1,2,X),
nearby(P1,P2,Y), fragment(P2,2,Y), in(Token2,Y),
hasfeature(type,float,Token2).

3.2 Relational learning techniques in practice

In the following we will introduce some adaptive IE systems that use relational learning tech-
niques or are very strongly connected to it.

3.2.1 One-shot learning.

AutoSlog[Riloff, 1994] learns a set of extraction patterns by specializing a set of general syn-
tactic patterns. Such patterns are called concept nodes andconsist of certain attributes like rule
trigger, constraints, constant slots or enabling condition.

AutoSlog needs semantic pre-processing which involves a user to tag the example documents
with certain semantic labels. The system expects a part of speech (POS) or linguistically tagged
input document. The key idea is to figure out atrigger word and matching predefined linguistic
patterns. The algorithm then tries to modify these patternsby several heuristics and the use of a
taxonomy. The AutoSlog algorithm does not contain any inductive step, it is left to the user to
accept or reject a learned rule. It is mentioned in the context of relational learning techniques,
because concept nodes may be easily rewritten in the form of logic rules and thus specializing
among those is similar to relational learning.

Another one shot learning system by Thomas is T-Wrappers[Thomas, 1999]. Similar to
Kushmerick he defines several wrapper classes assuming thatthe essential part for wrapper
construction is it to learn left and right delimiters, whichhe calls anchors. Thomas describes
wrapper in a Prolog-like language[Grieseret al., 2000]. His approach can be summarized into
three steps: 1) for each argument of each example tuple collect the left and right text fragments
wrt. to a given length 2) generalize on all left and on all right fragments, such that for a 3-
tuple for example this generalization process results in 6 anchor patterns. 3) depending on the
wrapper class[Grieseret al., 2000] use a pre-defined structural rule layout where the learned
anchors are inserted. Thomas uses a feature term representation for text fragments and anti-
unification (LGG) based techniques for generalization. In contrast to Riloff he uses a bottom-up

3 Relational learning techniques 21

Figure 9: Learned T-Wrapper rule and extractions.

strategy, starting with the surrounding fragments (the most specific ones) of each argument of
each example. The T-Wrapper system learns from positive examples only, does not use any
linguistic knowledge (though this can be easily encoded into the feature term representation) and
it learns multi slot extraction rules. Only a handful of examples is needed to produce wrappers
for HTML documents without the need of post processing the learned wrapper. Figure 9 shows
such a learned rule and extractions from the web page shown inFigure 5.

3.2.2 FOIL-based systems: Top-down learning.

One of the most successful ILP and top-down based learning system used for IE is the SRV
system by Freitag[Freitag, 1998]. SRV strongly follows the idea of the standard FOIL algorithm
as described in Section 3.1. The system is capable of learning single slot wrappers from natural
and HTML texts. It also follows the key idea in learning left and right delimiters. Freitag
also extended SRV’s feature predicates and document representation by linguistic information.

3 Relational learning techniques 22

Surprisingly this had little effect on the performance of SRV. Though Freitag uses a standard
FOIL algorithm his representation of rules does not follow the strict concept of first order rules
or standard Prolog rules. Junker et al[Junkeret al., 1999] illustrates how to use a top-down
sequential covering algorithm to learn Prolog rules. Junker et al focuses on single slot extraction
and text documents. Their algorithm can be seen as a special ILP learner based on a set of
operators used for rule refinement. Each of these operators can be understood as transformations
or inference rules, replacing or introducing new or modifiedliterals to the body of a rule.

3.2.3 Bottom-up learning.

Bottom-up algorithms start with the most specific rules or example instances and stepwise gen-
eralize these rules until a certain stop criterion is reached (eg none of the negative examples
are covered and most of the positive ones). Soderland presents the Crystal system[Soderland,
1997], which uses a bottom-up sequential covering algorithm. Crystal and the later imple-
mented system WebFoot (for HTML documents) use two different generalization operations:
a unification-based operation for syntactic generalization, and a second based on knowledge
drawn from a taxonomy to generalize on the slot fillers. For example, assume a semantic con-
straint allows as slot fillers instances of the class< PERSON> and a wordhe is an instance
of class< GENERICPERSON> which is a subclass of< PERSON>. Then the semantic
constraint for the wordhe is met because of the implication. Furthermore in Crystal whole sen-
tences are linguistically pre-processed and annotated to serve as examples. The system is able
to learn multi slot extraction rules given positive and negative examples.

3.2.4 Hybrid relational learning techniques.

A serious problem using top-down learning algorithms for IEis to guide the search for good body
literals. As long as the search space can be kept small, a purenon-biased top-down approach may
be tractable for IE. But in general the great number of negative examples and the use of more
sophisticated predicates (eg background theory) for rule refinement blows up the search space.
Thus a standard top-down algorithm that exhaustively checks all possible rule refinements is
infeasible. On the other hand using a standard bottom-up algorithm often leads to overly specific
rules with very low recall.

The Rapier[Califf, 1998] system combines top-down and bottom-up techniques to learnsin-
gle slot extraction rules from POS-tagged documents. In fact it uses a similar approach adapted
from the ILP system CHILLIN to learn three patterns: pre-filler patterns (left delimiter), post-
filler-pattern (right delimiter), and a patterns for the slot-filler itself. Like most of the other
systems it uses a linguistic pre-processing step to annotate the document with part of speech
information. For the generalization step Rapier uses a modified LGG operator, that provides
disjunctions of two patterns to be generalized. Rapier begins by generalizing two filler patterns.
This generalized pattern is used to initiate a top-down learning step. Elements to be added to
the rule are created by generalizing the appropriate portions of the pre-fillers or post-fillers of

3 Relational learning techniques 23

Figure 10: Architecture of the MIA system.

the pair of rules from which the new rule is generalized. The LGG operator is also modified
such that it uses an additional semantic hierarchy to derivesuper-classes covering instances in
the initial constraints.

Another system combining several learning techniques is that of Ciravegna[Ciravegna, 2000]
called Pinocchio. He uses a sequential covering algorithm.The system needs as input a col-
lection of texts pre-processed with a POS tagger. Pinocchiois unique in that it does not try to
learn an extraction rule for a complete slot. Instead it learns rules to recognize the left delim-
iter independently from the right one. The algorithm can be separated into three steps: 1) A
bottom-up based rule construction from tag surrounding text fragments, where thek best rules
for each instance are retained in a best rule pool. 2) To raisethe overall recall rate, some rules
not contained in the best rule pool are considered for further refinement. The idea is to find a set
of rules that are reliable at least in restricted areas. Ciravegna illustrates a method which he calls
contextual tagging. 3) Finally, correction rules are learned. These rules shift wrongly positioned
tags to their correct position. They are learned with the same algorithm like the tagging rules
but also match the tags produced during the previous steps. Pinocchio can be used to extract
multiple slots. Results presented by Ciravegna are very promising.

3.3 Application example

As shown in Figure 10,MIA [Beusteret al., 2000] is a multi-agent based information system
focusing on the retrieval of short and precise facts from theweb. Making the immense amount
of information on the web available forubiquitous computingin daily life is a great challenge.

3 Relational learning techniques 24

Besides hardware issues for wireless ubiquitous computing, like wireless communication, blue-
tooth technologies, wearable computing units, integration of GPS, PDA and telecommunication
devices, one major problem is that of intelligent information extraction from the WWW.

Instead of overwhelming the mobile user with documents found on the web, the MIA system
offers the user a short precise piece of information she is really interested in with fast query
response times.MIA monitors the position of the mobile users and autonomously updates the
subject of search whenever necessary. Changes may occur when the user travels to a different
location, or when she changes her search interests. Currently MIA supports three different user
types: stationary Web Browser, mobile phone with WAP support and PDA with GPS device.
The search domains are freely configurable by the user. So farMIA is capable of automatic
(multi slot) address extraction; extraction of time-tables and event descriptions is also planned.

3.3.1 Using pre-learned wrappers.

One heuristic used in the MIA system is that to use a set of pre-selected web sites as entry points
for the retrieval. This assures to the user that at least someresults are presented. While some
known information resources are used, the problem remains of extracting this information. The
MIA administrator uses MIA’s wrapper toolkit to learn wrappers for certain domains. Whenever
the extraction agents visit one of these domains during their search they use these pre-learned
wrappers to extract information from one of the web pages. Currently the wrapper toolkit uses
a one shot learning strategy[Thomas, 1999] extended with a special document representation.
Instead of assuming the document to be a linear sequence of tokens the DOM model of the
document is used. The general strategy to learn left and right anchors (delimiters) is kept, but
extended to path learning in the DOM of the document. Additionally the general intention is
now to learn one wrapper for a whole document class (eg found at one web domain) instead
learning one wrapper for one document. This is in contrast to[Thomas, 1999] and the following
method used by MIA.

3.3.2 Learning wrappers during search and retrieval.

The major problem someone is confronted with in the context of an autonomous multiagent
system likeMIA is the lack of available examples for learning wrappers online. BecauseMIA’s
web page classifier provides unknown web pages to the system,we can not assume the existence
of the training data needed for learning. On the one hand, theclassifier is good enough to
determine if an address is contained on a web page; on the other hand, arbitrary web pages vary
too much for a single general purpose address wrapper to be effective. While the use of a large
address database and a name recognizer (POS-tagger or named-entity recognizer) might work
better for this particular problem, but MIA is aiming at a generic approach with no hard-wired
solutions.

To overcome this problem MIA uses a learning algorithm that derives its examples by means
of knowledge representation(KR) techniques. That is, we model our knowledge about addresses

4 Summary 25

Test Setting (meta examples)
pages: 461 tuples: 3158 KB: 5 rules, 6 patterns

wrapper class pages cov. pos neg recall precision coverage

semi, no html 319 785 85 0,69 0,9 0,27
weak, no html 382 1712 904 0,83 0,65 0,54

semi, look ahead 339 895 156 0,73 0,85 0,28
self-supervision:
semi: extractions must be matched by derived pattern from KB
weak: extractions must be matched by generalized patterns from KB

wrapper wlass
no html: extraction are not allowed to contain HTML
look ahead: extractions are not allowed to contain tokens ofright delimiter

Figure 11: Performance of MIA’s IE component.

with a logic KR language in advance and are able to query this knowledge base to derive example
patterns. These example patterns can then be used to construct examples as input to a modified
learner. This allows MIA to learn wrappers even for unknown pages. This approach called
learning from meta examplesshows very promising results for the automatic construction of
address wrappers (Figure 11). Various experiments showed that the knowledge base can also
be used to verify the extracted information on a still limited level, but nevertheless this idea can
serve as basis for some kind of self-supervision for autonomous information extraction agents.

4 Summary

Information extraction is a core enabling technology for a wide variety of information-gathering
and -management agents. The central challenge to information extraction is the ability to scale
with the number and variety of information sources. We have described a variety of adaptive
information extraction approaches that use machine learning techniques to automatically learn
extraction rules or knowledge from training data.

Due to the highly practical nature of the IE task, all of the approaches described in this chapter
have been tested on various real world examples. That means the gap between pure research and
practical usage in agent systems is smaller than it might seem at first glance. For example,
the IE component of the MIA multi-agent system described in Section 3.3 is based directly on
techniques described in this chapter.

We have segmented the field of adaptive information extraction roughly into two areas:finite
statetechniques that learn extraction knowledge correspondingto regular grammars or automata,
and therelational rule learningtechniques that learn first-order Prolog-like extraction rules. In
addition to the core adaptive IE techniques, we also briefly discussed several issues related to
the entire information extraction “lifecycle”.

The finite-state approaches are generally simpler, and their learning algorithms are generally
faster and require fewer training examples. On the other hand, relational representations are
substantially more expressive, which can be crucial for natural language domains such as news-

References 26

paper articles that exhibit substantial variability. Adaptive information extraction thus exhibits a
familiar expressiveness–complexity tradeoff.

Perhaps the most fundamental open issue in adaptive information extraction is a method for
determining which technique is best suited to any particular extraction task. Today, this compli-
cated judgment requires considerable expertise and experimentation. Ultimately, we foresee a
semi-automated methodology in which the heterogeneity of the documents could be measured
in various dimensions, in order to predict the simplest approach that will deliver satisfactory
performance.

Acknowledgments. Kushmerick was supported by grant N00014-00-1-0021 from the US Of-
fice of Naval Research, and grant SFI/01/F.1/C015 from Science Foundation Ireland. Thomas
and the MIA project was supported by grant from the state of Rhineland-Palatinate, Germany.

References

[Bergadano and Gunetti, 1996] Francesco Bergadano and Daniele Gunetti.Inductive Logic
Programming. MIT Press, 1996.

[Beusteret al., 2000] Gerd Beuster, Bernd Thomas, and Christian Wolff. MIA - A Ubiquitous
Multi-Agent Web Information System. InProceedings of International ICSC Symposium on
Multi-Agents and Mobile Agents in Virtual Organizations and E-Commerce (MAMA’2000),
December 2000.

[Bikel et al., 1997] D. Bikel, S. Miller, R. Schwartz, and R. Weischedel. Nymble:A high-
performqance learning name-finder. InProc. Conf. on Applied Natural Language Processing,
1997.

[Brin, 1998] S. Brin. Extracting patterns and relations from the World Wide Web. InProc.
SIGMOD Workshop on Databases and the Web, 1998.

[Califf, 1998] Mary Elaine Califf.Relational Learning Techniques for Natural Language Infor-
mation Extraction. PhD thesis, University of Texas at Austin, August 1998.

[Ciravegna, 2000] Fabio Ciravegna. Learning to Tag for Information Extraction from Text. In
Workshop Machine Learning for Information Extraction, European Conference on Artifical
Intelligence ECCAI, August 2000. Berlin, Germany.

[Clark and Niblett, 1989] Peter Clark and Tim Niblett. The CN2 induction algorithm.Machine
Learning, 3:261–283, 1989.

[Cohenet al., 2002] William Cohen, Matthew Hurst, and Lee S. Jensen. A flexible learning
system for wrapping tables and lists in html documents. InThe Eleventh International World
Wide Web Conference WWW-2002, 2002.

References 27

[Crescenziet al., 2001] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrun-
ner: Towards automatic data extraction from large web sites. In The VLDB Journal, pages
109–118, 2001.

[Freitag and Kushmerick, 2000] Dayne Freitag and Nicholas Kushmerick. Boosted Wrapper
Induction. InProceedings of the Seventh National Conference on Artificial, pages 577–583,
July 30 - August 3 2000. Austin, Texas.

[Freitag and McCallum, 2000] Dayne Freitag and Andrew McCallum. Information Extraction
with HMM structures learned by stochastic optimization. InProceedings of the Seventh
National Conference on Artificial, July 30 - August 3 2000. Austin, Texas.

[Freitag, 1998] Dayne Freitag.Machine Learning for Information Extraction in Informal Do-
mains. PhD thesis, Computer Science Department, Carnegie MellonUniversity, Pittsburgh,
PA, November 1998.

[Grieseret al., 2000] Gunter Grieser, Klaus P. Jantke, Steffen Lange, and Bernd Thomas. A
Unifying Approach to HTML Wrapper Representation and Learning. In Proceedings of the
Third International Conference on Discovery Science, December 2000. Kyoto, Japan.

[Hsu and Dung, 1998] C. Hsu and M. Dung. Generating finite-state transducers for semistruc-
tured data extraction from the web.J. Information Systems, 23(8):521–538, 1998.

[Jensen and Cohen, 2001] L. Jensen and W. Cohen. Grouping extracted fields. InProc. IJCAI-
01 Workshop on Adaptive Text Extraction and Mining, 2001.

[Junkeret al., 1999] Markus Junker, Michael Sintek, and Matthias Rinck. Learning for Text
Categorization and Information Extraction with ILP. InProc. Workshop on Learning Lan-
guage in Logic, June 1999. Bled, Slovenia.

[Kushmericket al., 1997] Nicholas Kushmerick, Daniel S. Weld, and Robert Doorenbos.
Wrapper Induction for Information Extraction. In Martha E.Pollack, editor,Fifteenth In-
ternational Joint Conference on Artificial Intelligence, volume 1, pages 729–735, August
1997. Japan.

[Kushmerick, 1997] Nicholas Kushmerick.Wrapper Induction for Information Extraction. PhD
thesis, University of Washington, 1997.

[Kushmerick, 1999] N. Kushmerick. Regression testing for wrapper maintenance. In Proc.
National Conference on Artificial Intelligence, pages 74–79, 1999.

[Kushmerick, 2000a] N. Kushmerick. Wrapper induction: Efficiency and expressiveness.Arti-
ficial Intelligence, 118(1–2):15–68, 2000.

[Kushmerick, 2000b] N. Kushmerick. Wrapper verification.World Wide Web Journal, 3(2):79–
94, 2000.

References 28

[Leek, 1997] T. Leek. Information extraction using hidden Markov models. Master’s thesis,
University of California, San Diego, 1997.

[Lerman and Minton, 2000] K. Lerman and S. Minton. Learning the common structure of data.
In Proc. National Conference on Artificial Intelligence, 2000.

[Mitchell, 1997] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[Muggleton and Raedt, 1994] Stephen Muggleton and Luc De Raedt. Inductive logic program-
ming: Theory and methods.Journal of Logic Programming, 19(20):629–679, 1994.

[Musleaet al., 1999] Ion Muslea, Steve Minton, and Craig Knoblock. A hierarchical approach
to wrapper induction. InProc. Third International Conference on Autonomous Agents, pages
190–197, 1999.

[Musleaet al., 2000] I. Muslea, S. Minton, and C. Knoblock. Selective sampling with redun-
dant views. InProc. National Conference on Artificial Intelligence, 2000.

[Muslea, 1999] I. Muslea. Extraction patterns for information extractiontasks: A survey. In
Proc. AAAI-99 Workshop on Machine Learning for InformationExtraction, 1999.

[Quinlan, 1990] J. R. Quinlan. Learning logical definitions from relations.Machine Learning,
5:239–266, 1990.

[Riloff, 1994] Ellen M. Riloff. Information Extraction as a Basis for Portable Text Classifica-
tion Systems. PhD thesis, University of Massachusetts Amherst, 1994.

[Seymoreet al., 1999] K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden Markov
model structure for information extraction. InProc. AAAI-99 Workshop on Machine Learning
for Information Extraction, 1999.

[Soderland, 1997] Stephen G. Soderland.Learning Text Analysis Rules for Domain-Specific
Natural Language Processing. PhD thesis, University of Massachusetts Amherst, 1997.

[Soderland, 1999] Stephen Soderland. Learning information extraction rulesfor semi-
structured and free text.Machine Learning, 34(1-3):233–272, 1999.

[Thomas, 1999] Bernd Thomas. Anti-Unification Based Learning of T-Wrappers for Informa-
tion Extraction. InProc. AAAI-99 Workshop on Machine Learning for InformationExtrac-
tion, 1999.

[Thomas, 2000] Bernd Thomas. Token-Templates and Logic Programs for Intelligent Web
Search.Intelligent Information Systems, 14(2/3):241–261, March-June 2000. Special Issue:
Methodologies for Intelligent Information Systems.

Available Research Reports (since 1998):

2003

9/2003 Nicholas Kushmerick, Bernd Thomas.
Adaptive information extraction: Core
technologies for information agents.

8/2003 Bernd Thomas.Bottom-Up Learning of Logic
Programs for Information Extraction from
Hypertext Documents.

7/2003 Ulrich Furbach.AI - A Multiple Book
Review.

6/2003 Peter Baumgartner, Ulrich Furbach, Margret
Groß-Hardt.Living Books.

5/2003 Oliver Obst.Using Model-Based Diagnosis to
Build Hypotheses about Spatial Environments.

4/2003 Daniel Lohmann, J̈urgen Ebert.A
Generalization of the Hyperspace Approach
Using Meta-Models.

3/2003 Marco Kögler, Oliver Obst.Simulation
League: The Next Generation.

2/2003 Peter Baumgartner, Margret Groß-Hardt, Alex
Sinner.Living Book – Deduction, Slicing and
Interaction.

1/2003 Peter Baumgartner, Cesare Tinelli.The Model
Evolution Calculus.

2002

12/2002 Kurt Lautenbach.Logical Reasoning and
Petri Nets.

11/2002 Margret Groß-Hardt.Processing of Concept
Based Queries for XML Data.

10/2002 Hanno Binder, J́erôme Diebold, Tobias
Feldmann, Andreas Kern, David Polock,
Dennis Reif, Stephan Schmidt, Frank Schmitt,
Dieter Zöbel.Fahrassistenzsystem zur
Unterstützung beim Rückwärtsfahren mit
einachsigen Gespannen.

9/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
4. Workshop Software Reengineering (Bad
Honnef, 29./30. April 2002).

8/2002 Richard C. Holt, Andreas Winter, Jingwei Wu.
Towards a Common Query Language for
Reverse Engineering.

7/2002 Jürgen Ebert, Bernt Kullbach, Volker Riediger,
Andreas Winter.GUPRO – Generic
Understanding of Programs, An Overview.

6/2002 Margret Groß-Hardt.Concept based querying
of semistructured data.

5/2002 Anna Simon, Marianne Valerius.User
Requirements – Lessons Learned from a
Computer Science Course.

4/2002 Frieder Stolzenburg, Oliver Obst, Jan Murray.
Qualitative Velocity and Ball Interception.

3/2002 Peter Baumgartner.A First-Order Logic
Davis-Putnam-Logemann-Loveland Procedure.

2/2002 Peter Baumgartner, Ulrich Furbach.
Automated Deduction Techniques for the
Management of Personalized Documents.

1/2002 Jürgen Ebert, Bernt Kullbach, Franz Lehner.
3. Workshop Software Reengineering (Bad
Honnef, 10./11. Mai 2001).

2001

13/2001 Annette Pook.Schlussbericht “FUN -
Funkunterrichtsnetzwerk”.

12/2001 Toshiaki Arai, Frieder Stolzenburg.
Multiagent Systems Specification by UML
Statecharts Aiming at Intelligent
Manufacturing.

11/2001 Kurt Lautenbach.Reproducibility of the
Empty Marking.

10/2001 Jan Murray.Specifying Agents with UML in
Robotic Soccer.

9/2001 Andreas Winter.Exchanging Graphs with
GXL.

8/2001 Marianne Valerius, Anna Simon.Slicing Book
Technology — eine neue Technik für eine neue
Lehre?.

7/2001 Bernt Kullbach, Volker Riediger.Folding: An
Approach to Enable Program Understanding of
Preprocessed Languages.

6/2001 Frieder Stolzenburg.From the Specification of
Multiagent Systems by Statecharts to their
Formal Analysis by Model Checking.

5/2001 Oliver Obst.Specifying Rational Agents with
Statecharts and Utility Functions.

4/2001 Torsten Gipp, J̈urgen Ebert.Conceptual
Modelling and Web Site Generation using
Graph Technology.

3/2001 Carlos I. Ches̃nevar, J̈urgen Dix, Frieder
Stolzenburg, Guillermo R. Simari.Relating
Defeasible and Normal Logic Programming
through Transformation Properties.

2/2001 Carola Lange, Harry M. Sneed, Andreas
Winter.Applying GUPRO to GEOS – A Case
Study.

1/2001 Pascal von Hutten, Stephan Philippi.
Modelling a concurrent ray-tracing algorithm
using object-oriented Petri-Nets.

2000

8/2000 Jürgen Ebert, Bernt Kullbach,
Franz Lehner (Hrsg.).2. Workshop Software
Reengineering (Bad Honnef, 11./12. Mai
2000).

7/2000 Stephan Philippi.AWPN 2000 - 7. Workshop
Algorithmen und Werkzeuge für Petrinetze,
Koblenz, 02.-03. Oktober 2000 .

6/2000 Jan Murray, Oliver Obst, Frieder Stolzenburg.
Towards a Logical Approach for Soccer Agents
Engineering.

5/2000 Peter Baumgartner, Hantao Zhang (Eds.).
FTP 2000 – Third International Workshop on
First-Order Theorem Proving, St Andrews,
Scotland, July 2000.

4/2000 Frieder Stolzenburg, Alejandro J. Garcı́a,
Carlos I. Ches̃nevar, Guillermo R. Simari.
Introducing Generalized Specificity in Logic
Programming.

3/2000 Ingar Uhe, Manfred Rosendahl.Specification
of Symbols and Implementation of Their
Constraints in JKogge.

2/2000 Peter Baumgartner, Fabio Massacci.The
Taming of the (X)OR.

1/2000 Richard C. Holt, Andreas Winter, Andy Schürr.
GXL: Towards a Standard Exchange Format.

1999

10/99 Jürgen Ebert, Luuk Groenewegen, Roger
Süttenbach.A Formalization of SOCCA.

9/99 Hassan Diab, Ulrich Furbach, Hassan Tabbara.
On the Use of Fuzzy Techniques in Cache
Memory Managament.

8/99 Jens Woch, Friedbert Widmann.Implementation
of a Schema-TAG-Parser.

7/99 Jürgen Ebert, and Bernt Kullbach, Franz
Lehner (Hrsg.).Workshop
Software-Reengineering (Bad Honnef, 27./28.
Mai 1999).

6/99 Peter Baumgartner, Michael K̈uhn.Abductive
Coreference by Model Construction.

5/99 Jürgen Ebert, Bernt Kullbach, Andreas Winter.
GraX – An Interchange Format for
Reengineering Tools.

4/99 Frieder Stolzenburg, Oliver Obst, Jan Murray,
Björn Bremer.Spatial Agents Implemented in a
Logical Expressible Language.

3/99 Kurt Lautenbach, Carlo Simon.Erweiterte
Zeitstempelnetze zur Modellierung hybrider
Systeme.

2/99 Frieder Stolzenburg.Loop-Detection in
Hyper-Tableaux by Powerful Model
Generation.

1/99 Peter Baumgartner, J.D. Horton, Bruce Spencer.
Merge Path Improvements for Minimal Model
Hyper Tableaux.

1998

24/98 Jürgen Ebert, Roger S̈uttenbach, Ingar Uhe.
Meta-CASE Worldwide.

23/98 Peter Baumgartner, Norbert Eisinger, Ulrich
Furbach.A Confluent Connection Calculus.

22/98 Bernt Kullbach, Andreas Winter.Querying as
an Enabling Technology in Software
Reengineering.

21/98 Jürgen Dix, V.S. Subrahmanian, George Pick.
Meta-Agent Programs.

20/98 Jürgen Dix, Ulrich Furbach, Ilkka Niemelä .
Nonmonotonic Reasoning: Towards Efficient
Calculi and Implementations.

19/98 Jürgen Dix, Steffen Ḧolldobler.Inference
Mechanisms in Knowledge-Based Systems:
Theory and Applications (Proceedings of WS
at KI ’98).

18/98 Jose Arrazola, J̈urgen Dix, Mauricio Osorio,
Claudia Zepeda.Well-behaved semantics for
Logic Programming.

17/98 Stefan Brass, J̈urgen Dix, Teodor C.
Przymusinski.Super Logic Programs.

16/98 Jürgen Dix.The Logic Programming Paradigm.

15/98 Stefan Brass, J̈urgen Dix, Burkhard Freitag,
Ulrich Zukowski.Transformation-Based
Bottom-Up Computation of the Well-Founded
Model.

14/98 Manfred Kamp.GReQL – Eine Anfragesprache
für das GUPRO–Repository –
Sprachbeschreibung (Version 1.2).

12/98 Peter Dahm, J̈urgen Ebert, Angelika Franzke,
Manfred Kamp, Andreas Winter.TGraphen und
EER-Schemata – formale Grundlagen.

11/98 Peter Dahm, Friedbert Widmann.Das
Graphenlabor.

10/98 Jörg Jooss, Thomas Marx.Workflow Modeling
according to WfMC.

9/98 Dieter Zöbel.Schedulability criteria for age
constraint processes in hard real-time systems.

8/98 Wenjin Lu, Ulrich Furbach.Disjunctive logic
program = Horn Program + Control program.

7/98 Andreas Schmid.Solution for the counting to
infinity problem of distance vector routing.

6/98 Ulrich Furbach, Michael K̈uhn, Frieder
Stolzenburg.Model-Guided Proof Debugging.

5/98 Peter Baumgartner, Dorothea Schäfer.Model
Elimination with Simplification and its
Application to Software Verification.

4/98 Bernt Kullbach, Andreas Winter, Peter Dahm,
Jürgen Ebert.Program Comprehension in
Multi-Language Systems.

3/98 Jürgen Dix, Jorge Lobo.Logic Programming
and Nonmonotonic Reasoning.

2/98 Hans-Michael Hanisch, Kurt Lautenbach, Carlo
Simon, Jan Thieme.Zeitstempelnetze in
technischen Anwendungen.

1/98 Manfred Kamp.Managing a Multi-File,
Multi-Language Software Repository for
Program Comprehension Tools — A Generic
Approach.

