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This paper gives a state of the art overview about machimailgaapproaches
for information extraction from documents based on finitestechniques and re-
lational learning methods related to inductive logic pesgming.

1 Introduction

For the purposes of this chapter, an information agent caseberibed as a distributed system
that receives a goal through its user interface, gathemnmdtion relevant to this goal from a
variety of sources, processes this content as appropdatédelivers the results to the users.
We focus on the second stage in this generic architecturesufeey a variety of information
extraction techniques that enable information agents tonaatically gather information from
heterogeneous sources.

For example, consider an agent that mediates packagesgel®quests. To satisfy such re-
quests, the agent might need to retrieve address informétion geographic services, ask an
advertising service for freight forwarders that serve thetohation, request quotes from the rel-
evant freight forwarders, retrieve duties and legal caists from government sites, get weather
information to estimate transportation delays, etc.

Information extraction (IE) is a form of shallow documenbgpessing that involves popu-
lating a database with values automatically extracted fdmruments. Over the past decade,
researchers have developed a rich family of generic IE igciess that are suitable for a wide
variety of sources, from rigidly formatted documents sustHaI ML generated automatically
from a template, to natural-language documents such aspapesarticles or email messages.
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In this chapter, we view information extraction as a corebéing technology for a variety
of information agents. We therefore focus specifically oforimation extraction, rather than
tangential (albeit important) issues, such as how agemslisgover relevant sources or verify
the authenticity of the retrieved content, or caching pefichat minimize communication while
ensuring freshness.

Before proceeding, we observe that neither XML nor the Seimayeb initiative will elimi-
nate the need for automatic information extraction. Firetre are terabytes of content available
from numerous legacy services that will probably never exiieir data in XML. Second, it is
impossible to determine “the” correct annotation schemed, applications will have their own
idiosyncratic needs (“should the unit of currency be inelddvhen extracting prices?”, “should
people’s names be split into first and surname?”, “shoulésdatich as ‘Sun. May 14, 67’ be
canonicalized to 14/05/1967?"). For these reasons we eMpaicautomatic information extrac-
tion will continue to be essential for many years.

Scalability is the key challenge to automatic informatiotra&ction. There are two relevant
dimensions. The first dimension is the ability to rapidly gegss large document collections. IE
systems generally scale well in this regard because thgyresimple shallow extraction rules,
rather than sophisticated (and therefore slow) naturguage processing.

The second and more problematic dimension is the numberstifidi sources. For exam-
ple, a package-delivery agent might need to request quates & thousand different freight
forwarders, weather information from dozens of forecastises, etc. IE is challenging in this
scenario because each source might format its contentatiffg, and therefore each source
could require a customized set of extraction rules.

Machine learning is the only domain-independent approacttaling along this second di-
mension. This chapter focuses on the use of machine leatnirgableadaptive information
extractionsystems that automatically learn extraction rules frorming data in order to scale
with the number of sources.

The general idea behind adaptive information extractiotinags a human expert annotates a
small corpus of training documents with the fragments thatugd be extracted, and then the
learning system generalizes from these examples to prasluoe form of knowledge or rules
that reliably extract “similar” content from other docuntenWhile human-annotated training
data can be expensive, the assumption underlying adajifive that it is easier to annotate
documents than to write extraction rules, since the lagguires some degree of programming
expertise. Furthermore, we will describe techniques aiatedinimizing the amount of training
data required for generalization, or even eliminating taedhfor manual annotation entirely.

The adaptive information extraction research community teveloped a wide variety of
techniques and approaches, each tailored to particuleaatixin tasks and document types. We
organize our survey of this research in terms of two distmgproaches. First, we describe
finite-stateapproaches that learn extraction knowledge that is eqenvab (possibly stochastic)
finite-state automata (Section 2). Second, we desecglagonal approaches that learn extraction
knowledge that is essentially in the form of Prolog-like ibgrograms (Section 3). For the
sake of brevity we can not describe these techniques inl detadiseelMuslea, 1999 for more
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information about some of these ideas.

2 Finite-state techniques

Many approaches to Web information extraction can be cataggbas finite-state approaches, in
that the learned extraction knowledge structures are filyraguivalent to (possibly stochastic)
regular grammars or automata. In this section we surveyraepeominent examples, as well as
some additional research that relates to the entire wrditifeecycle” beyond the core learning
task.

2.1 Wrapper induction

Kushmerick first formalized adaptive Web information egtian with his work onwrapper
induction[Kushmericket al., 1997; Kushmerick, 1997; Kushmerick, 2000Kushmerick iden-
tified a family of six wrapper classes, and demonstratedttie@tvrappers were both relatively
expressive (they can learn wrappers for numerous realeWdb sites), and also relatively effi-
cient (only a handful of training examples, and a few CPU sds@er example, are needed for
learning).

To illustrate Kushmerick’s wrapper induction work, coraidghe example Web page shown in
Figure 1(a), its HTML encoding (b), and the content to beawtid (c). This example is clearly
extremely simple, but it exhibits all the features that agesit for our discussion.

Kushmerick’s wrappers consist of a sequence of delimiteiags for finding the desired
content. In the simplest case (shown in Figure 1(d—e)), tmdent is arranged in a tabular
format with K columns, and the wrapper scans for a pair of delimiters fehemlumn, for a
total of K delimiters. The notation#;” indicates the left-hand delimiter for théth column,
and ‘ry” is the kK'th column’s right-hand delimiter. In this case of the cayntode wrapper
ccwrap g, We haveK = 2.

To execute the wrapper, proceduravrap, g (Figure 1(d)) scans for the string =<B> from
the beginning of the document, and then scans ahead untietlte@ccurrence af; =</ B>. The
procedure then extracts the text between these positiotieaslue of the first column of the
first row. The procedure then scans #r=<I > and then for, =</1>, and extracts the text
between these positions as the value of the second colunire dirét row. This process then
starts over again witli;; extraction terminates whefy is missing (indicating the end of the
document).

Figure 1(e) formalizes these ideas as ttedt-Right (LR) wrapper class. An LR wrapper
W r consists of a sef(¢1,r1),...,{l,rg)} of 2K delimiters, one pair for each column to be
extracted, and the “operational semantics” of LR are preditly theexec| g procedure (Figure
1(e)). This procedure scans fér from the beginning of the document, and then scans ahead
until the next occurrence of. The procedure then extracts the text between these pusii®
the value of the first column of the first rowecwrap, g then scans fof, and then forr,, and
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extracts the text between these positions as the value stttend column of the first row. This
process is repeated for &l columns. After searching fark, the procedure starts over again
with /;; extraction terminates whef is missing (indicating the end of the document).

Given this definition, the LR machine learning task is to awdtically construct an LR wrap-
per, given a set of training documents. LR learning is reddyi efficient, because thd<2delim-
iters can all be learned independently. The key insightas Whether a particular candidate is
valid for some delimiter has no impact on the other delimnsit@ased on this observation, Kush-
merick describes a quadratic-time algorithm for learnirfg Wwrappers. The algorithm simply
enumerates over potential values for each delimiter, 8apthe first that satisfies a constraint
that guarantees that the wrapper will work correctly on tiaintng data. Kushmerick demon-
strates (both empirically, and theoretically under the RAGel) that this algorithm requires a
modest training sample to converge to the correct wrapper.

Of course, just because an efficient learning algorithmtexises not mean that the wrappers
are useful' Below, we discuss the limitations of the LR clard show that it can not handle
documents with more complicated formatting. However, etfenvery simple LR class was
able to successfully wrap 53% of Web sites, according to wesuiWhile LR is by no means a
definitive solution to Web information extraction, it clademonstrates that simple techniques
can be remarkably effective.

LR is effective for simple pages, but even minor complicagito the formatting can render LR
ineffective. For example, considéy. The LR class requires a value féarthat reliably indicates
the beginning of the first attribute. However, there may besaoch delimiter. For example,
suppose that Figure 1(b) was modified to include a headBxfountry code |ist</B> at
the top of the document. In this case the delimitee=<B> used byccwrap, g would not work
correctly. Indeed, it is possible to show that there is nalleglue for¢; and hence no LR
wrapper for documents modified in this manner.

Kushmerick tackled these issues by extending LR to a fanfilfive additional wrapper
classes. First, thélead-Left-Right-TailHLRT) class uses two additional delimiters to skip
over potentially-confusing text in either the head (topjaok (bottom) of the page. In the exam-
ple above, a head delimitar(such ash =l i st) could be used to skip over the initigB> at the
top of the document, enabling =<B> to work correctly. Alternatively, th@®pen-Close-Left-
Right (OCLR) class uses two additional delimiters to identify awtire tuple in the document,
and then uses the regular LR strategy within this mini-doenimo extract each attribute in turn.
These two ideas can be combined in fourth wrapper clas$jéael-Open-Close-Left-Right-Tall
(HOCLRT) class.

Finally, Kushmerick explored two simple wrappers for ddtattis not formatted in a sim-
ple tabular fashion. Thélested-Left-Righ(NLR) class can be used to extract hierarchically-
organized data, such as a book’s table of contents. NLR tgselike LR except that, after
processing, there are&k + 1 possibilities (start at levéd + 1, continue levek, return to level
k—1, ..., return to level 1) instead of just one (proceed tdlatte k+ 1). TheNested-Head-
Left-Right-Tail(NHLRT) class combines NLR and HLRT.

Kushmerick developed specialized learning algorithmsdach of these five classes. He
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[E[E Metscape; Some Country Codes B EETD

Congo 242

(a) Egypt 20
Belize 501

Spain 34

— B2

<HTML><TI TLE>Some Country Codes</ Tl TLE><BCDY>
<B>Congo</ B> <I >242</| ><BR>
(b) <B>Egypt </ B> <I >20</| ><BR>
<B>Bel i ze</ B> <I>501</|><BR>
<B>Spai n</ B> <I >34</| ><BR>
</ BODY></ HTM.>

(*Congo’, ‘242’),

(‘Egypt’,20"),
© (‘Belize’,‘501"),

("Spain’, ‘34’)

procedureccwrap r(pageP)
while there are more occurrencesHrof ‘<B>’
for each(fy,ry) € {{'<B>",'</ B>"), (‘<I > *</>")}
scan inP to next occurrence dfy; save position as start &fth attribute
scan inP to next occurrence afi; save position as end &fth attribute
return extracted. .., (country, code, ...} pairs

(d)

procedure=xec r(Wrappemw g = {(¢1,r1),..., {(¢,rk)}, pageP)
m«+—0
while there are more occurrencesRrof /4
© m«—m+1
for each(¢y,ry) € {(€1,r1),..., (lk,rx)}
scan inP to the next occurrence df; save position abm
scan inP to the next occurrence of; save position asm

return labeK. .., ((bm1,em1),.-., (Pmk,emk)),---}

Figure 1: A fictitious Internet site providing informatiorb@ut countries and their telephone
country codes: (a) an example Web page; (b) the HTML documameésponding to
(a); (c) the content to be extracted; (d) wvrap g procedure, which generates (c)
from (b); and (e) thexec g procedure, a generalization afwrap| g.
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demonstrated, both empirically and using complexity thietrat there is a trade-off between
the expressive power of the wrapper classes and the extembitdh they can be efficiently

learned. For example, even though the six classes can stulbesvrap 70% of surveyed sites,
the algorithms for learning NLR and NHLRT wrappers take tithat grows exponentially in

the number of attributes, and a PAC analysis reveals that IHROGequires substantially more
training examples to converge compared to the other classes

2.2 More expressive wrapper classes

Following Kushmerick’s initial investigation of the LR faly of wrappers, there has been sub-
stantial research effort at elaborating various alteweatirapper classes, and deriving more effi-
cient learning algorithms. Even when Kushmerick’s variextended wrapper classes are taken
into consideration, there are numerous limitations. Mageal[Musleaet al, 1999, Hsu and
Dung [Hsu and Dung, 1998 and others have developed various wrapper-learning ithgos
that address the following shortcomings:

Missing attributes. Complicated pages may involve missing or null attributeieal If the cor-
responding delimiters are missing, then a simple wrappknat process the remainder of
the page correctly. For example, a French e-commerce sgktronly specify the country
in addresses outside France.

Multi-valued attributes.  The simple wrapper classes discussed so far assume a setgienal
model in which each attribute has a single value, but nastigeial structures such as
multi-valued attributes are natural in many scenarios. éx@mple, a hotel guide might
explicitly list the cities served by a particular chain, vt than use a wasteful binary
encoding of all possible cities.

Multiple attribute orderings.  The wrappers described so far assume that the attributes (an
therefore the delimiters) will occur in one fixed orderingit lvariant orderings abound
in complicated documents. For example, a movie site mighttie release date before
the title for movies prior to 1999, but after the title for est movies.

Disjunctive delimiters. ~ The wrappers discussed above assume a single delimiteadbr a-
tribute, but complicated sites might use multiple delimstd-or example, an e-commerce
site might list prices with a bold face, except that saleqwiare rendered in red.

Nonexistent delimiters. ~ The wrappers described earlier assume that some irrelbaakground
tokens separate the content to be extracted, but this asisanmpay be violated in some
cases. For example, how can the department code be sepfioatethe course number
in strings such as “COMP4016” or “GEOL2001". This problenalso relevant for many
Asian languages in which words are not tokenized by spaces.
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Typographical errors and exceptions. Real-world documents may contain errors, and if these
errors occur in the formatting that drives extraction, tlaesimplistic wrapper may fail on
the entire page even if just a small portion is badly fornthtte

Sequential delimiters.  So far, the wrapper classes above assumed a single delipeiteat-
tribute, but the simplest way to develop an accurate wrappght be to scan for several
delimiters in sequence. For example, to extract the namere$taurant from a review
it might simpler to scan fokB>, then to scan fokBlI G from that position, and finally
to scan for<FONT>, rather than to force the wrapper to scan the document fonglesi
delimiter that reliably indicates the extracted content.

Hierarchically organized data.  Kushmerick's nested classes are a first step at handling non-
tabular data, but his results are largely negative. In caramd scenarios there is a need
extraction according to a nested or embedded structure.

Hsu and DundHsu and Dung, 1998&ddresses the problem of learning wrappers that corre-
spond to an expressive class of deterministic finite-statestiucers. This formalism handles all
but the last two requirements just mentioned. The transduoeesses the document to extract
a single tuple; after extraction control returns to thetsttate and the second tuple is extracted,
etc. Each extracted attribute is represented as a pair tefsstane state to identify the start of
the attribute value and the second to identify the end.

Since a general automaton model is used, states can be tethinean arbitrary manner, per-
mitting missing attributes (skipped states), multi-valagtributes (cycles) and multiple attribute
orderings (multiple paths from the start to end state). Harrhore, state-transitions are governed
by an expressive rule language that allows disjunctivendtdis. A limited form of exception-
processing is permitted, allowing the system to recovanfformatting errors and exceptions.
Crucially, Hsu and Dung describe an algorithm for efficigidlarning their wrapper transducers
from training data. Empirically, the report that their wpsgy classes handles the 30% sites that
could not be wrapped by Kushmerick’s wrapper classes.

Muslea et a[Musleaet al,, 1999 identify a class of wrappers that, unlike Hsu and Dung,
tackle the last two issues mentioned above. The main digshimng feature of Muslea et al's
wrappers is the use of multiple delimiters that they caldiaarks. Rather than insisting that
there exist a single delimiter that exactly identifies tHevant position deep inside some docu-
ment, landmark-based wrappers use a sequence of delindtersp to the appropriate position
in a series of simple steps. These simple steps are usualisrea learn, and enable more ro-
bust extraction. A second major feature of Muslea et al'skwsthat their “embedded catalog”
formalization of nested data is more expressive than thelsimierarchical approach used by
Kushmerick.
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2.3 Extraction from natural text

The techniques described so far are aimed at highly regatamdents, such as machine-generated
HTML emitted by CGI programs. However, most research onrmfition extraction has fo-
cused on natural free-text documents, such as email messayespaper articles, resumes, etc.
Are the “wrapper” results relevant to these less structdi@dains. Several recent investigations
have shown promising results.

Freitag and KushmerickFreitag and Kushmerick, 200@xplore “boosted wrapper induc-
tion”. They define a class of extraction patterns that is sy the LR class, for the case
when there is exact = 1 attributes. They then enrich this class by permittingrdigérs to
contain wild-cards over token types (ed\un® rather than specific instances suct2as

For example, for a corpus of email seminar announcemer@s|gorithm learns the following
rule for extracting the starting timei([ti me : 1,[<Nun®]), (I, [- <Num» : <*> <Al pha>])},
which matches a document such as Ti.me:  2:00 - 3:00 pm...", where the fragment to
be extracted has been underlined. This rule basically dayfid the start of the time, look for
‘time:” followed by any number; then find the end of the time lbgking for a dash, another
number, a colon, any token at all, and finally an alphanunteken”.

This simple rule language is by itself not very useful forragtion from free text. Freitag
and Kushmerick improve the performance by using boostirge(eeral technique for improving
the accuracy of a weak learning algorithm) to learn many sutds. Each individual rule has
high precision, but low recall; when combined, the rule set both high precision and high
recall. The result is an accurate extraction algorithm tekatompetitive with other state-of-
the-art approaches in a variety of free-text domains, apérgor in many. For example, boosted
wrapper induction performs essentially perfectly at trektaf extracting seminar announcement
times, and better than most competitors at other attrilbsuehl as the speaker name and seminar
location.

Soderland Soderland, 1999describes a related approach to using finite-state techsifpr
information extraction from free text. Soderland’s extrae rules correspond to a restricted
class of regular expressions. These regular expressions seo purposes:. they can be both
contextual pattern for determining whether a particulagfment should be extracted, or de-
limiters for determining the precise boundaries of thedéafgagment. Soderland’s language is
important because it is designed to work for documents tpamh she spectrum from unstruc-
tured natural text through to highly structured Web pagespdnding on the degree of structure
in the training documents, the learning algorithm autooadif creates appropriate patterns. For
example, if simple delimiter-based extraction is suffitigaccurate then the learning algorithm
will not bother to add additional contextual constraints.

For example, consider extracting the price and number ofdmeds from apartment list-
ing documents such a€4pitol HIl- 1 br twnhne. DWWD. Pkg incl $675. 3BR
upper flr no gar. $995. (206) 999-9999". Soderland’s system learns rules such’as “
(<Digit>) "BR * '$ (<Nunb>)”, where the parenthesized portions of the regular expres-
sion indicate the values to be extracted. This rule woulcaexthe contenf(1, 675), (3, 995)}
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from the example document.

2.4 Hidden Markov models

The work of Freitag and Kushmeri¢kreitag and Kushmerick, 200and SoderlanfiSoderland,
1999 are two instances of generalizing finite-state approactwes figidly structured HTML
documents to less structured documents such as email argpaper articles. However, these
approaches are still brittle because they do not have ariljtyféfor evaluating the strength of
the evidence that guides extraction decisions. For exarmspfgose the phrasel | be hel d

i n often precedes a seminar location, but a new document ogrita typographical errav | |

hel d i n. The techniques described so far make binary decisionsharsdhave no way to use
this uncertain evidence.

Hidden Markov Models are a principled and efficient appraadiiandling this sort of inherent
uncertainty. A Hidden Markov Model (HMM) is a stochastic ferstate automaton. States emit
tokens according to a fixed and state-specific distributéom transitions between states occur
according to a fixed distribution. HMMs are an attractive pomational device because there
are efficient algorithms for both learning the model’s disition parameters, and for inferring
the most-likely state sequence given some observed tokgresee.

To use HMM s for information extraction, states are assediatith the tokens to be extracted.
For example, with the email seminar announcement corpad; MM would contain a state for
the start time tokens, the end time tokens, the speaker nakeed, and the location tokens.
Optionally, there may be additional states that generasek@round” tokens. To perform ex-
traction, the standard HMM Viterbi decoding algorithm isedso determine the most-likely
state-sequence to have generated the observed documgthearthe extracted fragments can
simply by read off this most-likely path.

Hidden Markov models have been used successfully by nureeesgarchers in a variety of
extraction scenarios (e§Bikel et al., 1997; Leek, 1991). They key challenge is that there is
no efficient general-purpose algorithm for determining pprapriate state topology (ie, which
state-state distribution probabilities should be foraethd zero and which should be permitted
to be positive). Initial work has generally used a handtedhtopology, in which the states are
connected manually in a “reasonable” way after evaluatiegitaining corpus.

More recently, there have been several attempts to autcatigtiearn an appropriate topol-
ogy. The general approach is to greedily search the spacessilpe topologies for one that
maximizes some objective function. Seymore diSdymoreet al, 1999 attempt to maximize
the probability of the training data given the topology. §Bpproach is reasonably efficient but
potentially misguided: the goal of using an HMM is not to midithe training data per se, but
to perform accurate extraction. Freitag and McCallifreitag and McCallum, 200@herefore
use as the objective function the actual accuracy of thegseg topology for extraction from
a held-out validation corpus. While this approach is sigaifitly slower it can result in a more
compact topology and better generalization.
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2.5 Wrapper maintenance

All of the wrapper-learning work described earlier ignoeas important complication. Infor-
mation agents generally have no control over the sources fuhich they receive data. As
described above, the agent’'s wrappers tend to be relatbrétie, as the invariably rely on id-
iosyncratic formatting details observed during the leagnprocess. Unfortunately, if the source
modifies its formatting (for example, to “remodel” its usetdrface) then the observed regulari-
ties will no longer hold and the wrapper will fail. As a contexample, Figure 2 and Figure 4
show the Altavista search engine, before and after a sitesrgd.
The two key challenges to

wrapper maintenance areap-

per verification(determining ~ =& Eit Yew Go Cemmuncstor Eelp
whether the wrapper is still

operating correctly), andrap- .

per re-induction(learning a
revised wrapper). The sec-
ond challenge is considerably
more difficult, although even
wrapper verification is non-
trivial. The difficulty is that

at most web sites, either the
content to be extracted, or
the formatting regularities, or
both, may have changed, and
the verification algorithm must
distinguish the two. For ex-
ample, suppose that the chan
in the Microsoft stock price

is checked three times at a
stock-quote server, and the

Back Fomwad Felosd Home Search  Guidse Print  Security  Stop

1w Bookmarks B Location:ile:///c)irick/av.him|
“nick TZ MC AY Y'oo IiTi DubHaps Dict/Thes Camputers

[
Search [the Web ~| for documents in | any language ¥

|paprika

search refine

Help Preferences [lew Search - Advanced Search

84130 documents match your query.
Check out our Editors Picks of related sites
Search Amazon.com for top-selling titles about paprika,

Real NameS™ Address - paprika
Subscribe your company, brands and trademarks to the Real Name Syster.

1. paprika's home page
nbsp; Welcome to my home page | Here, you'll be told about a few trivial
subjects, as I've had to admit that T can't talk about any deeper subject
without,
hitp: Awwew, cybercable. tm. fr/~paprikadindex_eng htm - size 3K - 20-Feb-98
- English - Transiate

2. Petrella Paprika

K&ze Katalog Online, Art# 57-9025, Petrella Paprika,  ca, 24% Fett im
Milchanteil, 1 kg Schale. Milchmischprodukt aus Sahne, Mascarpone,...
hitp: Awrwew heider. desartikel Q025 hirmnt - size 2k - 30-Mar-95 - German -
Transiate

e

3. Mama Goldman's Paprika Chicken, Rice Pilaf, and Green Peas
Marma Goldman's Paprika Chicken, Rice Pilaf, and Green Peas. Recipe by: Jon
Goldman. Ingrediants for Paprika Chicken: 1 or 2 packages of cut up

il

[Document: Done

il

extracted values ar€3. 10,

-0. 61 and<B><I MG src=adver
Intuitively our verification al-
gorithm should realize that

t.gif >'Figure 2: Altavista snapshot before redesign

the relatively the first two values are “similar’ and do nadicate trouble, but the third value is
an outlier and probably indicates a defective wrapper.

Kushmerick[Kushmerick, 1999; Kushmerick, 2000Hdescribes a simple and accurate al-
gorithm for wrapper verification. The algorithm first learagprobabilistic model of the data
extracted by the wrapper during a training period when itriewn to be operating correctly.
This model captures various properties of the training datzh as the length or the fraction of
numeric characters of the extracted data. To verify the pea@fter the training period, the
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extracted data is evaluated against the learned modelitoadstthe probability that wrapper is

operating correctly. The algorithm is domain independeut ia not tied to any particular wrap-

per class or learning algorithm, but rather treats the weapg a black-box and inspects only its
output. The algorithm handles (acyclic) XML data, not jusdational data, so it is applicable to

all of the wrapper classes described above.

Wrapper re-induction has also received some attentionmaaret al[Lerman and Minton,
2004 learn a probabilistic model of the extracted data that isilaimio (though substantially
more expressive than) that used by Kushmerick. This morsitsenmodel enables wrapper
re-induction as follows. After a wrapper is deemed to be bmkhe learned model is used to
identify probable target fragments in the (new and unartadjadocuments. This training data is
then post processed to (heuristically) remove noise, amdla is given to a wrapper induction
algorithm. Lerman et al demonstrate empirically that tlmssupervised approach is highly
accurate in many real-world extraction scenarios.

2.6 Post-processing extracted content

The work described so far is highly simplified in that the taslassumed to involve simply
processing a given document to extract particular targeffrents. However, in many extraction
scenarios, the information to be extracted is actuallyridisted across multiple documents, or
an attribute value is given only once on a page but is releiaseveral extracted objects. For
example, Figure 3 shows a simple scenario in which somatttrivalues are “re-used” across
multiple extracted objects, and other values must be hesgtdsom a collection of hyperlinked
documents.

Some of these issues are handled by the wrapper classegideditier. For example, Muslea
et al's embedded catalog formalidilusleaet al., 1999 permits an extracted fragment to be
“shared” across multiple objects. Furthermore, the infation extraction community has long
investigated the issue of cross-document references. Hawbese approaches require consid-
erable linguistic processing and are not applicable to #ample shown in Figure 3 (adapted
from [Jensen and Cohen, 2401

Jensen and Cohddensen and Cohen, 24Giddress these problems by proposing a language
for specifying how the extracted data should be post-psmBksRules express how the raw ex-
tracted data should be grouped into larger composite abjdensen and Cohen argue that their
language is sufficiently expressive to handle the data eeiairom 500 web sites exporting job
and product advertisements. Furthermore, they suggestdthdo not implement) an algorithm
for automatically learning such rules from examples of geedidata.

2.7 Beyond supervision

The key bottleneck with adaptive information extractioroigaining the labeled training data.
The use of machine learning is motivated by the fact that the¢ of labeling documents is
usually considerably less than the cost of writing the weajgpextraction rules by hand. Never-
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Figure 3: A complicated extraction task in which attribu@ues are both distributed across
multiple documents, and reused across objects.

theless, labeling documents can require considerable idogmpertise, and is generally tedious
and error-prone. The approaches described so far simplyressthat an adequate training cor-
pus exists, but considerable research effort has invéstigao-called “active learning” methods
for minimizing the amount of training data required to aski@ satisfactory level of generaliza-
tion.

The basic idea of active learning is to start with a small amaiditraining data, run the learn-
ing algorithm, and then used the learned wrapper to prediitiwof the remaining unlabeled
documents is most informative, in the sense of helping thelag system generalize most with
the one additional training document. As a trivial examglehe corpus contains duplicate
documents, then the learner should not suggest that thederuenent be annotated twice.

As one example of the use of active learning in the context rafpper induction, consider
Muslea et a[Musleaet al, 2004. The basic idea of this approach is that every information
extraction task has a “dual”, and correlations between tiggnal task and its dual can help the
system identify useful unlabeled documents.

Recall that Muslea et al's wrapper learning algorithm Isaansequence of landmarks for
scanning from the beginning of the document to the start ahgnfient to be extracted. An
alternative way of finding the same position is to scan bacttssrom the end of the document
for a (different!) set of landmarks. Muslea’s active-ldag extensions solves both learning
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tasks in parallel on the available training data. The twalltesy wrappers are then applied to

all the unlabeled documents. The system then asks the uksreioone of the documents for

which the two wrappers give different answers. Intuitivélyhe two wrappers agree for a given

unlabeled document, then the document is unlikely to beubisaf subsequent learning.
Muslea et al demonstrate
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The job of the extraction system is then to flesh out this lighas many additional instances as
possible.

Brin’s algorithm iteratively searches the Web for the seatdtgp When it finds a document
that contains a pair, it learns an information extractiottgra for that particular pair, and then
applies this pattern to the remainder of the page. The iegudixtracted pairs are added to the
seeds and the process iterates. There is no guaranteeishatottess will converge or even that
the extracted pairs are correct. Nevertheless, prelimir&periments demonstrated promising
results.

Finally, Crescenzi et dICrescenzit al, 2001 focus on an even bigger challenge: wrapper
learning without any supervision (labeled training datag@lh Consider the pages from some
online bookstore that would be returned by two queries, fmkBns and for Asimov. In most

Figure 4: Altavista snapshot after redesign
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cases, these pages would be formatted the same way, withlthéifbference being the content to
be extracted. The intuition behind Crescenzi et al's apgrasithat a wrapper can be learned by
comparing these two pages and finding similarities anddiffees. The similarities correspond
to common formatting and structural elements; the diffeesrcorrespond to data to be extracted.
By repeatedly replacing the differences with wild-cardsl aoting repetitive structures, their
algorithm can learn a wrapper that corresponds to a reguanar, without the need for any
manually labeled training data. Crescenzi et al reportttigit algorithm works well in a variety
of real-world domains.

3 Relational learning techniques

In this section we introduce adaptive IE systems that ussioell learning techniques. We
present a short introduction to common relational rule oiun algorithms and how they are
used as a basis in several information extraction systenesd®hot focus on the formal foun-
dations of inductive logic programminigiuggleton and Raedt, 1994; Bergadano and Gunetti,
1994; our goal is to provide a summary of relational rule induct@pproaches as they have
been used for adaptive IE over the past decade.

Before introducing the basic concepts of rule inductiorukegive a short motivation for using
relational techniques for learning wrappers. Severalteggechniques for IE (like HMM’s pre-
sented in Section 2) are based on the assumption to detered@vant text parts to be extracted
by statistical means. These finite-state techniques capéeas some sort of rule learning, ie
the learning of production (grammar) rules constrained dyain probability measures. When
we talk about rule learning in the context of relational ridarning we have logical rules in
mind, in the sense of learning rules of first order predicatgd or at least subsets of first order
rules like Horn rules or Prolog programs. As we will see, whiie different rules learned by the
various |IE systems vary in their representation and sigeata general they can all be rewritten
in a uniform predicate logic representation.

Talking about learning logical rules in combination with dly makes sense if we abstract
from the pure lexical representation of documents. Thussa diep to use relational learning
techniques is to find a suitable document representatideadstad the formal framework of logic,
literals and logic rules. The most common representati@d us relational IE is to interpret a
document as a sequence of feature terms or tokens havingbkattebutes describing features
of grouped symbols from the document. How the tokenizatsodane is subject a) to the type
of extractions needed, and b) the learning methods usedxaaonple, the relevant features may
be its type (integer, char, HTML tag), whether it is upper @wvér case, its length, linguistic
knowledge about the word category, its genus or even additisemantic knowledge drawn
from a rich taxonomy.

For example ThomagThomas, 199Puses a document transformation into feature terms,
in which a fragment like<b>Pent i um 90</ b> is written as a list of tokensftoken(type=htmi,
tag=b), token(type=word, txt="Pentium’), token(typetinal=90), token(type=htménd, tag=b)]
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If we replace a feature value likein token(type=html, tag=byith a variabletoken(type=html,
tag=X), we can a) describe the class of all tokens of thpal, and b) use unification methods
to find all non-closing HTML tags in a tokenized document.

It then becomes obvious how more complex patterns can beedefiy the use of first or-
der predicate rules. For example, the rulmk(Description, Url) :- pos(P, token(type=html,
tag=a, href=Url)), sequence(P, E, TokenSeq), not in(t@ikpe=htmlend, tag=a), TokenSeq),
next(E, token(type=htménd, tag=a))extracts tuples of the forra Description, URL> from a
HTML document. For further details of how logic programs danused for information ex-
traction, sed Thomas, 200D In the last decade various representations have beenogedt!
some influenced largely by logic programmihiunkeret al, 1999; Thomas, 1999and other
slot-oriented approaches motivated by natural languageegsing. In essence they all can be
represented without much effort in a first order predicatgdsyntax.

Additional representations
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of relations.

Section 2 already presented several state of the art addptiglgorithms, so what might be
the shortcoming of these systems and what might be the aby@sof relational rule based IE
systems? One answer is that of human readability. A learakedim the relational approach
has a clear conclusion and conjunctive set of premises,hndnie all understandable because
they refer to certain easily recognizable features of th®udtent representation. This of course
only holds if the document representation itself is cleat anderstandable. Thus such a learned
rule will also give a clear explanation why it is used for extion. Another strong argument
is that of extending relational learning approaches. Hasgets of first order rules in mind, it
becomes apparent that adding additional background kulgeldéike ontologies or additional
domain knowledge is easy to do. And even more important thitianal knowledge can also
be incorporated into the rule construction algorithm, dralibhductive rule learning calculus can
be extended by reasoning components from automated dedwsytstems. For example, some
IE systems make use of additional semantic knowledge akfieen a taxonomyCaliff, 1998;
Soderland, 1997

By now we can think of relational learning as a core algoritiiat expects a set of examples
in the form of relation instances, some additional knowkeddne background theory) and a
set of predicates from which rules can be build. The algorithies to construct rules using
the background theory and these special predicates sucthéhaew rules explain (cover) the
presented positive examples and exclude (if given) thetiveganes. Applying this approach
to the tasks of IE involves the use of a appropriate relaticlm@ument representation, text
examples as grounded facts, and additional predicatesapgbagkground theory used to check
certain features of text fragments and tokens. In theoryctive algorithm is not affected by
the representation: by choosing the right representa@ostandard relational rule induction
algorithm can be used as core learning algorithm for adapBv In practice it turns out that due
to complexity issues modification and tailored approachiesnaeded, but the important point
is the theoretical framework of learning logical rul&ergadano and Gunetti, 199provides a
well understood and formal basis for adaptive informatimtraetion.

3.1 Rule Learning

Because IE involves extracting certain fragments from aidwmnt (where the key idea is that the
extracted fragments are rule variable bindings), we witl giscuss propositional rule learning.
Since we adopt the general approach from Section 2 thatatxtnarules consist of delimiters

and slots (extraction variables), we are confronted withgloblem of inducing left and right

delimiters. Additionally many approaches also try to inelgome information about the extrac-
tions itself, by recognizing certain specific features frra provided example fragments. For
example they generalize starting from certain linguisticsemantic features. So far almost all
existing relational approaches are using one of the foligwechniques.
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Sequential-Covering(Targéittribute, Attributes,Examples, Threshold)
LearnedRules— {}
Rule — Learn-One-Rule(TargeAttribute,Attributes,Examples)
while Performance(Rule,Examples) Threshold, do

LearnedRules— LearnedRules + Rule
Examples— Examples {examples correctly classified by Ryle
Rule — Learn-One-Rule(TargeAttribute,Attributes,Examples)

LearnedRules« sort LearnedRules according to Performance over Examples

return LearnedRules

Figure 6: Sequential covering algorithm.

3.1.1 One-shot learning.

Given a set of positive examples and perhaps negative eranghlis additional information
needed (eg the documents the examples are drawn from),appseaches try to learn a rule in
one step. One shot learning approaches do no refinement ah&on at each step during the
rule building process, instead they assume their appliachieg operators are good enough or
they pass the evaluation and further refinement of learnled ta the user. The Autosldgiloff,
1994 system and the T-Wrapper systéfhomas, 199Puse one shot learning approaches.

3.1.2 Sequential covering.

In contrast to One Shot Learning a sequential covering wagén iterative process of refinement
and testing. The general Sequential Covering algorithmh@sve in Figure 6 (adapted from
[Mitchell, 1997). This algorithm learns a disjunctive set of rules depegdin a threshold with
regard to the performance of a learned rule. In other wotds)garned rule set may still cover
some negative examples. The algorithm repeatedly triesatm lone rule meeting the threshold
condition. As long as the threshold is not met the exampldéosehe next iteration is built by
removing the positive and negative examples covered byrihaequsly learned rule. Sequential
Covering serves as a basis for many inductive algorithmse drhcial point of this algorithm
is the function Learn-One-Rule. Clark and Nibl&lark and Niblett, 198Pprovide a K-Beam
Search based algorithm, which is by now one standard appfoatearning one rule.
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FOIL(TargetPredicate, Predicates, Examples)
Pos«— Examples for which TargePredicate is true
Neg <« Examples for which Targeredicate is false
LearnedRules— {}
while Pos, do

NewRule< rule that predicts Targe®redicate with no preconditions
NewRuleNeg— Neg

while NewRuleNeg, do

CandidateL iterals — generate new body literals for NewRule, based on Predi-
cates

BestLiteral — argmax le CandidateLiterals FOIL GAIN(I,NewRule)

add Bestl iteral to preconditions of NewRule

NewRuleNeg— subset of NewRuleNeg that satisfies NewRule preconditions

LearnedRules«+ LearnedRules + NewRule
Pos— Pos -{members of Pos covered by NewRUles

return LearnedRules

Figure 7: The FOIL algorithm.

3.1.3 FOIL: Learning first order rules.

Though the Sequential Covering algorithm builds the basisnfany inductive rule learning
algorithms it is in combination with CN2 a propositional edearner. Nevertheless it builds
a basis for many first order rule learning approaches. A widsled first order rule learning
algorithm is the top-down procedure called FQQuinlan, 199). Modified versions of FOIL
are the basis for most adaptive |E systems using relatieaahing techniques. For example, the
SRV systen{Freitag, 1998 uses a FOIL based core algorithm. FOIL tries to find a desoript
of a target predicate, given a set of examples and some hagakgrknowledge. In general
the background theory and examples are function-free gkdacts, where the examples are
positive and negative instances of the target predicates Riggative instances means explicitly
stating for which instantiations the target predicate Iahatl be true. FOIL uses the closed world
assumption during rule learning: every instance not dedl@ositive is assumed to be negative.
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3.1.4 Using FOIL for wrapper induction.

Assume we chose a document representation where a docvisemhapped to a set of facts
T(D) of the formword(Pos, Token)wherePosis the starting position of the text fragment de-
scribed by the tokerfoken Tokenis a feature term in the previously discussed sense. Further
we have a set of dedicated predicates, which FOIL uses ferammstruction. In general these
predicates are of two different types: one to test for cartaken features and the other to set
tokens into relation to each other. For exampiext(P1, P2Hescribes all tokens at positidghl
and its direct successor token referredR¥ The reader can think of many different relational
predicates likefragment(P1, Length, Fyr nearby(P1,P2) Examples for predicates checking
certain features may beasfeature(type, html, Tokepyhich checks if a tokeokenhas the at-
tribute type and if its value ishtml. An additional background theory provides the definition fo
these predicates. At this point the advantage of relatiandlfirst order rule learning becomes
apparent. Suppose our document representation is moddidthtit contains relational infor-
mation in the sense of a document object model (DOM). Theeamlrules taking advantage of
additional document layout features, we need only exteath#itkground theory with additional
predicates for traversal and retrieval of DOM nodes. Letaisrn to the FOIL algorithm. What
is left to demonstrate FOIL are examples. Assuming we waldam a ruleextract(X,Y) Note
this is a multi slot rule which itself defines a problem classhie IE context. Because examples
have to contain the target predicate our examples will beefdrmextract("Tatonka Kimberley
50”""EUR 174.95”)

Now that we know how to define positive examples let us see boeresent negative ones.
In comparison to some finite state techniques the need fatwegexamples may be a short-
coming. While FOIL needs negative examples, we do not nadgsfave to provide them by
tedious annotating them by hand. Some assumptions candrg skch that negative examples
can be generated automatically. For example we can takesadclworld assumption: negative
examples are all those text tuples not explicitly statedeqbsitive ones. Besides the huge
amount of possible tuples that can be generated, this halsearserious shortcoming: if a doc-
ument contains more relevant fragments than annotated,ifveiminto problems if we rely on
the closed world assumption. So either we must exhaustemlynerate all relevant fragments
of the document, or else we must use heuristics to constegdtive examples automatically.
Examples of such heuristics include text fragments cangistf positive examples but extended
to the left and right or permutation of positive example angmts. FreitagFreitag, 1998uses a
heuristic that constructs negative examples from all tHi@gments with more, or fewer, tokens
than the positive examples.

Let us start FOIL's top-down learning with the most geneude extract(X,Y)« true. As long
as the current rule covers one of the negative examples—xé&mpleextract("Tatonka”,”"EUR”)
(see Figure 5)—the body of the rule is extended by the besttining literal. Most applica-
tions of FOIL in the context of IE use a similar function totlefQuinlan’s FOIL_GAIN which
characterizes the information contained in the ratio oftp@sand negative examples in a set of
examples. The SRV system uses following gain functid®) = —log2(P(S)/(P(S) + N(9))),
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whereP(S) andN(S) are the positive and negative number of examples of the ebeasepS.
GAIN(A) = P(S1)(1(S) — I (Sa)) with Sa is the subset of S covered by the rule after adding the
literal A to it. The computation of the best literal is thus very expanglepending on the docu-
ment sets and the complexity of the predicates. The follgwirkes illustrate some hypothetical
intermediate steps during a possible rule induction prsices
extract(X,Y)« fragment(P1,2,X), fragment(P2,2,Y).
extract(X,Y)— fragment(P1,2,X), neapy(P1,P2,Y), fragment(P2,2,Y).
extract(X,Y)« word(PO,Token1), hateature(type,html, Tokenl),

hasfeature(color,blue, Tokenl1), next(P0,P1), fragmentgFXl),

nearby(P1,P2,Y), fragment(P2,2,Y), in(Token2,Y),

hasfeature(type,float, Token2).

3.2 Relational learning techniques in practice

In the following we will introduce some adaptive IE systernattuse relational learning tech-
nigues or are very strongly connected to it.

3.2.1 One-shot learning.

AutoSlog[Riloff, 1994 learns a set of extraction patterns by specializing a seenégl syn-
tactic patterns. Such patterns are called concept nodesaasist of certain attributes like rule
trigger, constraints, constant slots or enabling conalitio

AutoSlog needs semantic pre-processing which involvegatagag the example documents
with certain semantic labels. The system expects a partegfctp(POS) or linguistically tagged
input document. The key idea is to figure outigger word and matching predefined linguistic
patterns. The algorithm then tries to modify these pattegnseveral heuristics and the use of a
taxonomy. The AutoSlog algorithm does not contain any itidacstep, it is left to the user to
accept or reject a learned rule. It is mentioned in the cdrdérelational learning techniques,
because concept nodes may be easily rewritten in the foriogat fules and thus specializing
among those is similar to relational learning.

Another one shot learning system by Thomas is T-Wrapp&®mas, 1990 Similar to
Kushmerick he defines several wrapper classes assuminghthatssential part for wrapper
construction is it to learn left and right delimiters, whibk calls anchors. Thomas describes
wrapper in a Prolog-like languad&rieseret al, 2004. His approach can be summarized into
three steps: 1) for each argument of each example tuplecttiie left and right text fragments
wrt. to a given length 2) generalize on all left and on all tiffagments, such that for a 3-
tuple for example this generalization process results indghar patterns. 3) depending on the
wrapper clasgGrieseret al, 200q use a pre-defined structural rule layout where the learned
anchors are inserted. Thomas uses a feature term reprgserita text fragments and anti-
unification (LGG) based techniques for generalization.dntast to Riloff he uses a bottom-up
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wrapper{Product, Price) i=
# any and html_end(tag = td, value="</TD>") and
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himl{walue = X1, tag = a, href = X2, target=_top) and hml{value = "<B>", tag = by and
Product = longest_not_infhtml or htrl_end) and
himl_endftag = b, value = "</B>"} and himl_end(tag = a, value = "</A4>") and
himl{value = "<BR>", tag = br} and shertest_not_in{punct{value = :}
int{value = 2{3) and himl{value = "<BR>", tag = br) and
Price = longest_not_in(himl or himl end)
himl_enditag = td, value = "</TD=>") and
{ html{value = "< TD WIDTH="54' HEIGHT="'54"">, tag = td, width = 54, height= 54)
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Figure 9: Learned T-Wrapper rule and extractions.

strategy, starting with the surrounding fragments (the trspgcific ones) of each argument of
each example. The T-Wrapper system learns from positivenpkes only, does not use any
linguistic knowledge (though this can be easily encodealtim¢ feature term representation) and
it learns multi slot extraction rules. Only a handful of exaes is needed to produce wrappers
for HTML documents without the need of post processing thened wrapper. Figure 9 shows
such a learned rule and extractions from the web page showigume 5.

3.2.2 FOIL-based systems: Top-down learning.

One of the most successful ILP and top-down based learnisggrsyused for IE is the SRV
system by Freitaffreitag, 1998 SRV strongly follows the idea of the standard FOIL algarith
as described in Section 3.1. The system is capable of lgpsmgle slot wrappers from natural
and HTML texts. It also follows the key idea in learning lefidaright delimiters. Freitag
also extended SRV'’s feature predicates and document msgieg®n by linguistic information.
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Surprisingly this had little effect on the performance of\SRhough Freitag uses a standard
FOIL algorithm his representation of rules does not folltw strict concept of first order rules

or standard Prolog rules. Junker et[alinkeret al, 1999 illustrates how to use a top-down

sequential covering algorithm to learn Prolog rules. Juekal focuses on single slot extraction
and text documents. Their algorithm can be seen as a spéétdelarner based on a set of
operators used for rule refinement. Each of these operagorbe understood as transformations
or inference rules, replacing or introducing new or modifiégtals to the body of a rule.

3.2.3 Bottom-up learning.

Bottom-up algorithms start with the most specific rules @raple instances and stepwise gen-
eralize these rules until a certain stop criterion is redcf{eg none of the negative examples
are covered and most of the positive ones). Soderland pgeetien Crystal systerfSoderland,
1997, which uses a bottom-up sequential covering algorithm. statyand the later imple-
mented system WebFoot (for HTML documents) use two diffeggmeralization operations:
a unification-based operation for syntactic generaliratand a second based on knowledge
drawn from a taxonomy to generalize on the slot fillers. Farmegle, assume a semantic con-
straint allows as slot fillers instances of the clasPERSON> and a wordhe is an instance
of class< GENERICPERSON which is a subclass ok PERSON>. Then the semantic
constraint for the wordhe is met because of the implication. Furthermore in Crystablelsen-
tences are linguistically pre-processed and annotatedri@ &is examples. The system is able
to learn multi slot extraction rules given positive and riegaexamples.

3.2.4 Hybrid relational learning techniques.

A serious problem using top-down learning algorithms foid b guide the search for good body
literals. Aslong as the search space can be kept small, apuarbiased top-down approach may
be tractable for IE. But in general the great number of neggatxamples and the use of more
sophisticated predicates (eg background theory) for mfimement blows up the search space.
Thus a standard top-down algorithm that exhaustively chedkpossible rule refinements is
infeasible. On the other hand using a standard bottom-ugitiigh often leads to overly specific
rules with very low recall.

The RapiefCaliff, 199§ system combines top-down and bottom-up techniques to &an
gle slot extraction rules from POS-tagged documents. nifases a similar approach adapted
from the ILP system CHILLIN to learn three patterns: preefilpatterns (left delimiter), post-
filler-pattern (right delimiter), and a patterns for thetdiidler itself. Like most of the other
systems it uses a linguistic pre-processing step to arethat document with part of speech
information. For the generalization step Rapier uses a fieddLGG operator, that provides
disjunctions of two patterns to be generalized. Rapierriselgy generalizing two filler patterns.
This generalized pattern is used to initiate a top-downniear step. Elements to be added to
the rule are created by generalizing the appropriate pwstaf the pre-fillers or post-fillers of
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Figure 10: Architecture of the MIA system.

the pair of rules from which the new rule is generalized. Ti@&Qd operator is also modified
such that it uses an additional semantic hierarchy to detiyeer-classes covering instances in
the initial constraints.

Another system combining several learning techniquesaisdhCiravegndCiravegna, 2000
called Pinocchio. He uses a sequential covering algoritfilee system needs as input a col-
lection of texts pre-processed with a POS tagger. Pinodshimique in that it does not try to
learn an extraction rule for a complete slot. Instead itleaules to recognize the left delim-
iter independently from the right one. The algorithm can epasated into three steps: 1) A
bottom-up based rule construction from tag surrounding fragments, where thk best rules
for each instance are retained in a best rule pool. 2) To thiseverall recall rate, some rules
not contained in the best rule pool are considered for funttgnement. The idea is to find a set
of rules that are reliable at least in restricted areas.v@gaa illustrates a method which he calls
contextual tagging. 3) Finally, correction rules are leatnThese rules shift wrongly positioned
tags to their correct position. They are learned with theesafgorithm like the tagging rules
but also match the tags produced during the previous stepscdéhio can be used to extract
multiple slots. Results presented by Ciravegna are vemnjziag.

3.3 Application example

As shown in Figure 10MIA [Beusteret al, 2004 is a multi-agent based information system
focusing on the retrieval of short and precise facts fromvtied. Making the immense amount
of information on the web available fatbiquitous computingn daily life is a great challenge.
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Besides hardware issues for wireless ubiquitous compuikewireless communication, blue-
tooth technologies, wearable computing units, integratibGPS, PDA and telecommunication
devices, one major problem is that of intelligent inforroatiextraction from the WWW.

Instead of overwhelming the mobile user with documents doom the web, the MIA system
offers the user a short precise piece of information shealiyrénterested in with fast query
response timesMIA monitors the position of the mobile users and autonomougtiates the
subject of search whenever necessary. Changes may occuartimMheser travels to a different
location, or when she changes her search interests. ClyrMi supports three different user
types: stationary Web Browser, mobile phone with WAP suppad PDA with GPS device.
The search domains are freely configurable by the user. SMifaris capable of automatic
(multi slot) address extraction; extraction of time-tab#énd event descriptions is also planned.

3.3.1 Using pre-learned wrappers.

One heuristic used in the MIA system is that to use a set oplected web sites as entry points
for the retrieval. This assures to the user that at least gesidts are presented. While some
known information resources are used, the problem remdiagtmcting this information. The
MIA administrator uses MIA's wrapper toolkit to learn wragys for certain domains. Whenever
the extraction agents visit one of these domains during gegrch they use these pre-learned
wrappers to extract information from one of the web pagesrebly the wrapper toolkit uses
a one shot learning strate¢y¥homas, 199Pextended with a special document representation.
Instead of assuming the document to be a linear sequenc&arigdhe DOM model of the
document is used. The general strategy to learn left and aigthors (delimiters) is kept, but
extended to path learning in the DOM of the document. Addélty the general intention is
now to learn one wrapper for a whole document class (eg fotrmhe web domain) instead
learning one wrapper for one document. This is in contrabThmmas, 199Pand the following
method used by MIA.

3.3.2 Learning wrappers during search and retrieval.

The major problem someone is confronted with in the contéxarmautonomous multiagent
system likeMIA is the lack of available examples for learning wrappersranliBecausIA’s
web page classifier provides unknown web pages to the systerwan not assume the existence
of the training data needed for learning. On the one handclimsifier is good enough to
determine if an address is contained on a web page; on thetahd, arbitrary web pages vary
too much for a single general purpose address wrapper toféetieé. While the use of a large
address database and a hame recognizer (POS-tagger or-eatitgdecognizer) might work
better for this particular problem, but MIA is aiming at a geie approach with no hard-wired
solutions.

To overcome this problem MIA uses a learning algorithm theatwes its examples by means
of knowledge representatidiKR) techniques. Thatis, we model our knowledge about addsesse
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Test Setting (meta examples)
pages: 461 tuples: 3158 KB: 5 rules, 6 patterns
wrapper class | pages cov] pos | neg] recall | precision| coverage

semi, no html 319 785 | 85 | 0,69 0,9 0,27
weak, no html 382 1712|904 | 0,83 0,65 0,54
semi, look ahead 339 895 | 156 | 0,73 0,85 0,28

self-supervision:
semi: extractions must be matched by derived pattern from KB
weak: extractions must be matched by generalized pattesnsKB
wrapper wlass
no html: extraction are not allowed to contain HTM
look ahead: extractions are not allowed to contain tokennght delimiter

Figure 11: Performance of MIAs IE component.

with a logic KR language in advance and are able to query tiogvledge base to derive example
patterns. These example patterns can then be used to @irestamples as input to a modified
learner. This allows MIA to learn wrappers even for unknowaggs. This approach called
learning from meta exampleshows very promising results for the automatic constructd
address wrappers (Figure 11). Various experiments shohatdttie knowledge base can also
be used to verify the extracted information on a still linditevel, but nevertheless this idea can
serve as basis for some kind of self-supervision for autangmnnformation extraction agents.

4 Summary

Information extraction is a core enabling technology foridewariety of information-gathering
and -management agents. The central challenge to infaymatitraction is the ability to scale
with the number and variety of information sources. We haeecdbed a variety of adaptive
information extraction approaches that use machine legrt@chniques to automatically learn
extraction rules or knowledge from training data.

Due to the highly practical nature of the IE task, all of themaches described in this chapter
have been tested on various real world examples. That meamggap between pure research and
practical usage in agent systems is smaller than it mighhsaefirst glance. For example,
the IE component of the MIA multi-agent system describedent®n 3.3 is based directly on
techniques described in this chapter.

We have segmented the field of adaptive information extiaatughly into two areadinite
statetechniques that learn extraction knowledge corresponimggular grammars or automata,
and therelational rule learningechniques that learn first-order Prolog-like extractiales. In
addition to the core adaptive IE techniques, we also brigflgussed several issues related to
the entire information extraction “lifecycle”.

The finite-state approaches are generally simpler, and l#gning algorithms are generally
faster and require fewer training examples. On the othedheslational representations are
substantially more expressive, which can be crucial foursianguage domains such as news-
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paper articles that exhibit substantial variability. Ate@ information extraction thus exhibits a
familiar expressiveness—complexity tradeoff.

Perhaps the most fundamental open issue in adaptive infliemextraction is a method for
determining which technique is best suited to any partioetkéraction task. Today, this compli-
cated judgment requires considerable expertise and empetation. Ultimately, we foresee a
semi-automated methodology in which the heterogeneith@fdocuments could be measured
in various dimensions, in order to predict the simplest apph that will deliver satisfactory
performance.
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