

http://www.houseofyin.com Page 1 of 8

Introducing Agile Development into Bioinformatics:
An Experience Report

By David Kane, SRA International (david_kane@sra.com)

Abstract
This experience report describes our efforts to
introduce agile development techniques
incrementally into our customer’s organization in
the National Cancer Institute and develop a
partnering relationship in the process. The report
addresses the steps we have taken not only to
deploy the practices, but also to gain customer
support for them. It addresses variations we have
used to adapt to our customer’s environment,
including our approach to involving customer
personnel at remote locations. We also address
challenges we still must face, including how best
to manage a product-line with agile development
techniques.

1 Context
Our team is responsible for software
development at the Genomics and
Bioinformatics Group in the Laboratory of
Molecular Pharmacology of the National Cancer
Institute in Bethesda, Maryland. [1] The group,
lead by Dr. John Weinstein, includes
experimental biologists as well as those who
focus on bioinformatics exploration. Dr.
Weinstein has a long history of developing tools
and techniques for the biology community in
general, and cancer researchers in particular.
[2][3][4][5][6] The group’s approach has been to
encourage a close collaboration between the
experimental and computational components of
the lab. The needs of the experimental biologists
drive the priorities and directions of the tool
development undertaken by the group. Although
the internal tool needs of the group provide the
primary drive, the tools are generally made
available to other researchers. The assumption is
that the kinds of problems encountered by the
experimental biologists are similar to those that
are also encountered by others in the field, and in
fact, investigators around the world use the tools
developed by the lab.

In 2000 the lab experienced staff turnover, and in
October 2000 a new team of software developers
from SRA International was hired. [7] This was
the first time that the lab had incorporated
contractors to any significant degree. The team

develops new software, maintains previously
developed tools, and integrates tools and
components from other labs. The team works as
part of a staff augmentation contract for which
there are no software deliverables. The work
started with a staff of 1.2 engineers, and reached
the current staffing level of 4 engineers and a
system administrator in August 2001. The team
works most directly with bioinformatics
specialists in the customer’s organization, but
also with the other biologists in the lab. The
team often works directly with external
collaborators of the lab as well.

The new software tools being developed by the
team are primarily written in Java. Some of the
tools are web-based. Two new tools have been
released since the team has been in place,
GoMiner and MatchMiner. [5][6] Other tools are
applications, both GUI and command-line. The
development and operating environments are a
mix of Windows, Mac OS X, Linux and Solaris.
The legacy applications maintained by the team
are mostly written in PERL and S-PLUS. The
most important of these applications are
CIMMaker and MedMiner. [3][4] The team also
maintains the group’s web site. [1]

2 Forces
There are a number of forces that push the
overall effort. The applications built and
maintained by the team support the large and
complex domain of the biology of cancer. It has
been estimated that there are 30,000 to 60,000
human genes. And because each gene can
produce different mRNA splice variants, each of
which codes for a different protein, there appear
to be well over a hundred thousand human
proteins. [8] In addition, there are genomes and
proteomes for mice and other model organisms
that are also used extensively in cancer research.
There are of course many investigators in this
field, and so the state of knowledge in the
domain is advancing rapidly. A great deal of this
information is available in public databases. A
GB of data is regularly pulled from these
repositories to populate the lab’s tools.

Introducing Agile Development into Bioinformatics David Kane
Agile Development Conference June 25th-28th, 2003

http://www.houseofyin.com Page 2 of 8 2

The effort is also characterized by dynamic
requirements. Scientific research is, by its
nature, an exploratory endeavor. As researchers
gain new insight into their investigations, new
avenues for inquiry come into focus. This
dynamism means that new requirements for tool
support are constantly emerging. Cooperation
and competition can also change priorities.
Supporting collaborations with other labs can
cause priorities to change. Similarly, keeping
pace with other scientists to be able to publish
novel work can also drive changes in priorities.

Because many scientists are visual thinkers,
many of the tools require visualizations to help
users gain insight into the data being analyzed.
Other investigators are more mathematically
oriented, so these visualizations need to be
consistent with statistical representation and
analysis of the data.

The results of the tools, as well as the tools
themselves, are included as part of scientific
publications. This means that the results of the
tools must be consistent and reproducible, so that
they will pass the scrutiny of peer-reviewed
journals and other scientists.

3 How We Started
The SRA team started work on a proof-of-
concept for a new visualization tool, and there
were several questions that the customer wanted
to answer with this proof-of-concept. First, the
customer wanted to validate the contractor model
in general, and this team in particular. In
addition, the customer wanted to investigate a
pair of visualization technologies, Scalable
Vector Graphics (SVG) and Spotfire. [9][10] For
the proof-of-concept, we did not attempt to assert
our own practices, but instead we worked with
the practices that our customer already had in
place. There was a general vision for the tool, but
the details and requirements had not yet been
worked out. The requirements were explored as
the tool was built. This early effort was
characterized by many demonstrations. Some of
these demonstrations were for the customer’s
staff, but others were for the customer’s
sponsors. Preparing for these demonstrations was
usually painful because of the lack of
configuration management and integration
practices. It often took a long time to integrate
the work from different engineers on the team.
The tool would work correctly on one machine,
but not another.

4 The Turning Point
Despite some pitfalls along the way, the proof-
of-concept was a success. The customer was
satisfied with the tool itself and the performance
of the team. The sponsors were satisfied, and
another increment of funding was secured. The
funding expanded the team size as well. One
thing learned from proof-of-concept was that to
realize the vision of the tool at an operational
level was a more amb itious task than first
realized. Substantial database and software
development work would be required to bring
the tool to production.

At this point we decided to move the
development team toward an agile development
approach. I had been studying the methods for
some time, and the work in the lab appeared to
be a good match for the sweet spot of these
techniques. The team agreed that an agile
approach would be a good one to take. The
project also appeared to be at a good point to
introduce a change in approach. The team had
been presented with the ambitious objective of
operationalizing the proof-of-concept, and the
team had established trust and confidence with
the customer. When then the first steps of
adopting an agile approach were proposed to the
customer, the suggested approach was accepted.

5 Our Incremental Approach
Our team wanted to adopt agile methods, but we
also needed to continue to make visible progress
towards our customer’s goals. We also had
varying degrees of knowledge about agile
methods on the team, and we needed time to
develop our skills. We decided to adopt an
incremental approach to introducing agile
methods. This incremental approach meant that
the team members could learn the practices a few
at a time. The incremental approach also
enabled us to deliver value and build further trust
as we deployed new practices. It also facilitated
the development of a partnering relationship with
our customer. However, because many agile
practices are intended to work together, we tried
to avoid introducing practices that would throw
the team out of balance.

Introducing Agile Development into Bioinformatics David Kane
Agile Development Conference June 25th-28th, 2003

http://www.houseofyin.com Page 3 of 8 3

On-Site
Customer

Open
Workspace

Configuration
Management

Automated
Builds

Collective
Ownership

Automated
Tests

Coding
Standards

Refactoring

Planning
Game

SCRUM
Meetings

Pair
Programming

Continuous
Integration Code

Reviews

Figure 1: Agile Practices Adopted and the
Dependencies We Considered

6 Core Practices
The team has adopted a number of agile
development practices, as illustrated in Figure 1.
The practices were adapted from a combination
of Extreme Programming and Scrum. [11][12]
The figure also illustrates our perspective on
which practices provide pre-requisites for other
practices. The practices at the top of the figure
are those we had in place first, and the practices
at the bottom of the image are those we have
introduced most recently.

6.1 Practices for Free

Before we started any effort to introduce agile
methods, there were already two practices
already in place. Largely out of necessity, the
team shares an Open Workspace. [13] All of the
developers work in the room, as do the
customer’s bioinformaticians. The experimental
biologists are in a lab space across the hall. Of
course, this facilitates having an On-Site
Customer. [11] At different stages of the work,
the person who has been the primary point of
contact for the team has either worked in the
team’s shared work space or in the lab across the
hall.

6.2 Configuration Management
 (Started August 2001)

One of the first things we did when we started
our agile development effort was to get our code
under better Configuration Management. We
used CVS as our primary tool for version
control. [14] At first, we focused on just the

code for the tools under active development. In
addition to managing the code, we achieved a
VERSION-CONTROLLED ENVIRONMENT, by
keeping the development environment under
configuration control. [15] The code is managed
as a MAINLINE with PRIVATE WORKSPACES for
each developer. [16] At first we checked code
into the repository and integrated on a schedule
of twice a week. Much later on we moved all of
the legacy application and web site code under
configuration control as well.

6.3 Automated Builds (Started August
2001)

We used the Ant tool from the Jakarta project to
write scripts describing our Automated Build
processes. [17] These scripts were written at
about the same time as we were establishing
Configuration Management. The Ant scripts
were effective at tying together the code and
development environment that we had checked
into CVS. In addition to builds, we also used
Ant to automate other processes for data
acquisition and processing tasks. The
combination of Configuration Management and
Automated Builds made an immediate impact on
the project. It made our software more
consistent between the development and the
demonstration machines. It also reduced the
time needed to integrate our code to prepare for
demonstrations.

6.4 Collective Ownership (Started
September 2001)

Before we had Automated Builds and
Configuration Management practices in place,
we had a component ownership model that made
it easier to integrate. Once we had these
practices in place, we moved to a Collective
Ownership model. [11]

6.5 Coding Standards (Started September
2001)

Although we had a corporate Coding Standard
before we had started the agile development
effort, when we started to get our code under
configuration control, we made an effort to
refocus on these standards. [11] We created a
tailoring document that listed project-specific
revisions to tune the corporate standard to our
working styles.

6.6 Automated Tests (Started October
2001)

Our next major activity was to introduce
Automated Tests. [11] Our core tool for writing
the tests is JUnit. At first, we selected a set of

Introducing Agile Development into Bioinformatics David Kane
Agile Development Conference June 25th-28th, 2003

http://www.houseofyin.com Page 4 of 8 4

core classes from our existing code base for
which to write tests. Some of these classes
needed to be reorganized to have a testable
interface. We did not attempt to write tests for
all of the existing code, but we adopted a rule
that as new classes were written, they would
have test cases written as well. Similarly, if
classes were modified that did not yet have test
cases, new tests would be written as part of
modifying the class. The developers run the
tests as part of writing software, and during
integration. We complemented the unit tests
with system tests. We used JUnit in combination
with MaxQ for these system tests. [18][19]

6.7 Refactoring (Started December
2001)

As our test case coverage grew, we started
Refactoring the portions that had the tests.
[20][21] There were a number of “smells” that
had accumulated in the code up until this stage.
In particular, much of the code we had written in
the early proof-of-concept stages of the project
was more tightly coupled than was desirable.
We found that the stability and maintainability of
the application improved. We also became less
hesitant about making changes to existing
portions of the code base. This past fall we
adopted an integrated development environment
with many refactoring tools built-in, IntelliJ.
[22] The tool has been particularly helpful in
automating simple, but tedious refactorings, e.g.
renaming variables, methods and classes.

6.8 The Planning Game (Started
March 2002)

Up until this point of our effort, the agile
development practices we had been introducing
had dealt primarily with the activities within the
software development team. However, the next
practice required changing the dynamics between
the development team and the customer; we
introduced a flavor of The Planning Game . [11]
Before The Planning Game , we managed our
tasks and requirements informally, through email
and conversations. We introduced to the
customer the idea of using The Planning Game
approach, and the customer agreed to try it out.
One of the biologists thought the approach made
a great deal of sense and commented that she
was unsure why anyone would want to do
anything else.

We described each task on an index card. We
did not limit our tasks only to user visible
features, but, we also included features for
systems infrastructure. For features that were

not well understood, we would create tasks for
analysis to investigate the candidate features.
This broad notion of tasks is more like the work
items described in Scrum than the user stories in
XP. For each task we estimated the effort
required to implement the task in the form of
story points. That is, we sought to estimate the
relative effort of the tasks. A member of our
customer’s staff selected tasks for each two-
week iteration. We measured the project
velocity by counting how many points we
completed during each iteration. This project
velocity was given as the budget to our customer
for selecting tasks for the next iteration.

6.9 Scrum Meetings (Started March
2002)

Throughout the effort to adopt agile efforts, we
had made a conscious effort to establish a sense
of rhythm for the project. [23] Our initial twice
weekly integration and the two week iterations of
The Planning Game were examples of
maintaining a regular rhythm. Another practice
that we adopted that also fit this pattern was
daily Scrum Meetings. [12] The software team
meets every morning to report what work had
been done since the prior scrum meeting, what
work was planned to be done before the next
scrum meeting, and obstacles currently faced.

6.10 Continuous Integration (Started
October 2002)

We had been manually integrating our code
baseline at a pace of twice a week for more than
a year when we decided to adopt Continuous
Integration. [11] We used the Cruise Control
tool to monitor our CVS repository for changes
to the code base. When changes are detected, the
Cruise Control tool invokes scripts to checkout
and test the code and then email the results to the
team.

6.11 Pair Programming (Started
January 2003)

This past January the team brainstormed about
what resolutions for new or modification
practices that the team should adopt. Pair
Programming was on everyone’s list of practices
to adopt. [11] However, for a number of reasons
we were unwilling to adopt the practice as our
only mode of operation, so we took an
incremental approach. We selected one day a
week to be pair programming day. We rotate
partners each week. We also made an effort to
recognize ad hoc situations when ad hoc pair
programming would be useful, such as when a

Introducing Agile Development into Bioinformatics David Kane
Agile Development Conference June 25th-28th, 2003

http://www.houseofyin.com Page 5 of 8 5

developer is exploring a new technology or
section of the code base.

6.12 Code Reviews (Started January
2003)

The other approach that surfaced from our New
Year’s resolutions discussion was our decision to
incorporate Code Reviews. [24] However, we did
not want to use code reviews as a gate in our
development process. Instead we wanted a way
to fit code reviews into our other practices, and
to emphasize the ability of code reviews to share
knowledge among the participants. For each
iteration, one developer takes the role of
“author” for the review. That author gets to pick
tasks for that iteration first. The author then
selects 2 to 6 classes to be reviewed from those
that author would expect to touch to complete
the tasks. The others on the team are informed
of the selection, and a review takes place on the
fourth work day of the iteration. A typical code
review meeting is held, and the author is then
responsible for addressing the issues raised in the
review.

We introduced limited Pair Programming at the
same time as we were introduced Code Reviews,
and we found the techniques complemented each
other. While both approaches provide feedback
from other developers, we found the perspective
of reviewing and discussing code offline useful
for two reasons. Issues raised during the review
meetings were shared immediately shared with
the team. It was also easier to recognize
implementation issues that occurred across larger
portions of code.

One reason we adopted code reviews when we
did was that the team was very pleased with the
performance of IntelliJ. [22] In the past, applying
all of the good suggestions from a code review
was very tedious. However the refactoring
power of IntelliJ in combination with the test
cases have made our code reviews more effective
and useful. With these tools, incorporating the
changes suggested by the reviews takes much
less time.

7 Process Interruptions
Although we believe we have been successful
with our incremental approach to introducing
agile methods, we have encountered a number of
obstacles that have required us to take a step
back to re-evaluate our approaches. These issues
cut across a number of the practices areas
described here.

7.1 Customer Relocation

For nearly a year we had been using The
Planning Game for selecting our work for each
two-week iteration. The person on our
customer’s team who had been the “shopper”
responsible for prioritizing the work and
explaining the domain to the team moved to the
west coast. She was going to remain a part of the
customer’s staff and was very interested in
continuing her role guiding the software
development direction. We realized that while
our index card approach worked well when we
were co-located, it would not be a feasible model
for this new distributed environment.

We built a tool we call CardMiner to address this
problem. We had examined other tools that were
available at the time, but we were not satisfied
with them. We wanted to maintain the index
card metaphor, and we also wanted to maintain
the experience of looking at the cards on a table.
CardMiner supports both ideas. It even has a
tabletop UI that simulates how we would lay out
cards during estimation and selection. Figure 2
illustrates the table-top view of CardMiner. We
have a projector and display screen in the
common workspace so we can easily gather
around this “virtual” table. We are still in our
preliminary stages of using this tool. We have
gone through about three iterations. So far the
tool has satisfied our goals of working with our
liaison on the west coast, however, we have not
yet achieved the same sense of fluidity with the
tool that we had found when working with the
index cards.

Figure 2: CardMiner Table-Top View

7.2 Inheritance

Our customer’s lab collaborated with a
university one summer. In a feverish pitch of

Introducing Agile Development into Bioinformatics David Kane
Agile Development Conference June 25th-28th, 2003

http://www.houseofyin.com Page 6 of 8 6

programming, the students who worked as part
of the collaboration built a prototype tool with a
Java Swing user interface. The application
looked great and had significant merit as an
analytical tool, but there were several bugs that
needed to be addressed as well as desired
enhancements after the students had returned to
their school. Our team was asked to pick up
maintenance responsibilities for the tool. We
discovered that the tool did not have any tests
written for it, nor were the component
boundaries inside the tool particularly well suited
to testing. We needed a way to adapt our agile
development processes to make the desired
corrections and enhancements to the tool.

One of the desired features was the addition of a
command-line interface that mirrored the
features of the GUI. We extended the tool to
provide such an interface, while making a
minimum of changes to the core code. We then
used the command-line interface to write a
comprehensive set of systems tests. In designing
the test cases, we included unit-test-like
conditions by ensuring we exercise important
paths in the core units. Once we had these tests
written, we started implementing additional
changes to the application. We started
refactoring the classes into ones with more
testable interfaces, and writing the test cases for
them.

7.3 Re-estimation

As described in the section above on The
Planning Game , we assigned story points when
estimating the effort required to complete a task.
We got better at estimating as we estimated more
tasks. For example, we got better at estimating
not just the work required to complete a feature,
but also the work required to write suitable tests.
However, we began to notice that cards that had
been in our collection for a very long time often
had bad estimates. That is nine months earlier
we might have thought a task would require four
story points, but today if we were to estimate the
same card, we might estimate it at seven points.
For a while, we tended to discount the older
cards as good baselines for new estimates. At
the time, we were moving from our index cards
to our CardMiner tool. We decided that it would
be silly to go through the trouble typing in all of
the cards from our backlog with bad estimates.
We re-estimated all of the cards in our backlog.
We found going through this exercise both
useful and tedious. We asked our customer for a
break from development to make the transition.
We found duplicate cards. Some estimates went

up as we factored in additional work implied by
the features of the task. Other estimates went
down, especially in areas where we were on new
ground when we made the first estimates. We
also found duplicate cards and tasks that had
become overcome by events. For an ongoing
engagement such as this one, we found it helpful
to revisit our backlog. We may find it useful to
do again in another 12-18 months.

8 Open Issues
Although we are pleased with the progress we
have made using agile methods, there are a
number of issues that we hope to address as the
project progresses.

8.1 Product-Line Management

We now have three distinct tools under our
active development baseline and several other
legacy applications as well. It is a challenge to
balance the priorities of these tools and support
them with a relatively small team. Our current
approach is to manage the tools are that are
actively under development from one shared
pool of story points. This pool directs the
activities of most of the team. One software
engineer is dedicated to the operation and
maintenance of the legacy applications. The
legacy applications do not have automated test
suites, and so we are not comfortable with
including those tools in The Planning Game
process.

The challenge with the arrangement is that there
is no explicit structure to help the customer
manage priorities across the tools. We have
taken some simple steps, e.g. we categorize the
tasks to be completed by tool. It would be
helpful if we had an approach to better help our
customer choose between moving forward a little
on all of the tools or to focus on one particular
tool.

8.2 Database Testing

While our goal is to pass our tests always during
integration, we do fail tests from time to time.
The most frequent case of a test case failure is a
database synchronization problem. Our tools are
typically query-oriented, and we have a set of
test data we use to verify our data loading and
data querying components. However, even
though our test data are a fraction of the size of
our production data, we do not reload the data
into the database during each test. When our test
data are stable, the arrangement works well.
When we have changes to the test data, we
manually rerun the dataload on each of the

Introducing Agile Development into Bioinformatics David Kane
Agile Development Conference June 25th-28th, 2003

http://www.houseofyin.com Page 7 of 8 7

developer and test machines, and this is where
things sometimes get out of sync. We are
considering adopting Dbunit to see if it provides
a better way to manage our test data and validate
our database. [25]

8.3 UI Testing

Our user interface layer has proven to be the
most difficult to test. There are a number of
different technologies used in our UI layer
including Java Swing, Javascript executed in a
web browser, and Javascript executed in an SVG
Viewer. We also have a text -based command-
line interface for some applications. There are a
number of issues with these various
technologies. When we started this effort test
frameworks for testing Swing components were
in their infancy. We have focused on testing
code underneath the UI later. Now that tools
such as JFCUnit have been further developed,
we are going to consider incorporating it as well.
[26]

Simulating web browser behavior is another
challenge. While it is fairly straightforward to
test the server components of web applications
by generating appropriate HTTP requests,
simulating behavior that is executed in a web
browser is more difficult. While there have been
some attempts to build Javascript-aware testing
frameworks, our assessment of the tools has been
that while they do execute Javascript correctly,
they do not yet provide sufficient simulation of
the components in a browser environment for us.
These tools do not begin to approach the issue of
web-browser-specific behavior. We will
continue to monitor the available tools, and we
expect to be able to test basic web browser
behavior in the not too distant future. We do not
expect to see low-cost or open-source tools to
address web-browser specific behavior, or test
tools that can interact with plug-ins such as the
Adobe SVG Viewer.

We have a number of command-line tools.
Launching our command-line tools within the
test environment is not a problem. However we
have not found a good way to simulate user
command-line interaction within the test
environment. What we would like to have is a
cross-platform tool similar to an UNIX answer
file that can be integrated into JUnit.

9 General Observations
There are several observations that we have
drawn from our experience with agile methods.
Most significant is that we believe that it is
possible to introduce agile methods

incrementally. Such an approach certainly
requires care because many of the practices
reinforce and complement each other, but it has
worked for us. Our customers became partners
in the agile development approach. The
incremental approach built this partnership by
enabling the team to demonstrate results and
build trust. This created an environment
conducive to the more controversial or disruptive
practices.

We were also fortunate that we had a contract in
place that facilitated the use of agile methods.
Since the work was completed as part of a staff
augmentation project with no explicit software
deliverables, the contract was not an obstacle to
making the content of the developed software
flexible.

We also believe that agile methods are a very
good match for science-driven software
development. The rigor of the automated testing
approaches satisfies the need of science to have
reproducible, correct results. The flexible
approach to requirements is a good match for the
exploratory nature of science.

10 Acknowledgements
This project has been successful because of the
contributions of many people. I would like to
thank our customers past and present: John
Weinstein, Ajay, Kim Bussey and Barry
Zeeberg. I would also like to acknowledge the
software engineers who have been on the project
Hong Cao, Steven Day, Sudar Narasimhan,
Margot Sunshine and Jon Whitmore. I would
also like to thank Tim Ruppert, John Weinstein,
Kim Bussey, and this paper’s shepherd, Rebecca
Wirfs-Brock, for their feedback on this paper.

11 References
[1] National Cancer Institute’s Laboratory of

Molecular Pharmacology’s Genomics and
Bioinformatics Group (Web site:
http://discover.nci.nih.gov).

[2] JN Weinstein, KW Kohn, MR Grever, VN
Viswanadhan, LV Rubinstein, AP Monks,
DA Scudiero, L Welch, AD Koutsoukos, AJ
Chiausa, KD Paull, K. D. Neural computing
in cancer drug development: Predicting
mechanism of action. Science 1992; 258:
447-451.

[3] JN Weinstein, TG Myers, PM O'Connor, SH
Friend, AJ Fornace, KW Kohn, T Fojo, SE
Bates, LV Rubinstein, NL Anderson, JK
Buolamwini, WW van Osdol, AP Monks,
DA Scudiero, EA Sausville, DW Zaharevitz,

Introducing Agile Development into Bioinformatics David Kane
Agile Development Conference June 25th-28th, 2003

http://www.houseofyin.com Page 8 of 8 8

B Bunow, VN Viswanadhan, GS Johnson,
RE Wittes, and KD Paull, An information-
intensive approach to the molecular
pharmacology of cancer. Science 1997;
275:343-349.

[4] L Tanabe, U Scherf, LH Smith, JK Lee, L
Hunter and JN Weinstein, MedMiner: an
Internet Text -Mining Tool for Biomedical
Information, with Application to Gene
Expression Profiling, BioTechniques
December 1999 27:1210-1217.

[5] KJ Bussey, DW Kane, M Sunshine, S
Narasimhan, S Nishizuka, WC Reinhold,
BR Zeeberg, Ajay and JN Weinstein,
MatchMiner: a tool for batch navigation
among gene and gene product identifiers,
Genome Biology, April 2003 4(4):R27.

[6] BR Zeeberg, W Feng, G Wang, MD Wang,
AT Fojo, M Sunshine, S Narasimhan, DW
Kane, WC Reinhold, S Lababidi, KJ Bussey,
J Riss, JC Barrett, and JN Weinstein.
GoMiner: A Resource for Biological
Interpretation of Genomic and Proteomic
Data. Genome Biology, April 2003
4(4):R28.

[7] SRA International (Web site:
http://www.sra.com).

[8] PM Harrison, A Kumar, N Lang, M Snyder
and M Gerstein, A question of size: the
eukaryotic proteome and the problems in
defining it, Nucleic Acids Research, 2002,
30(5):1083-1090.

[9] Spotfire Decisionsite (Web site:
http://www.spotfire.com/products/decision.a
sp).

[10] Scalable Vector Graphics (SVG) 1.0
Specification, W3C Recommendation 04
September 2001,
http://www.w3.org/TR/SVG.

[11] K. Beck, Extreme Programming Explained:
Embrace Change, Addison-Wesley, 1999.

[12] K. Schwaber, M. Beedle, Agile Software
Development with Scrum. Prentice-Hall,
2002.

[13] RC Martin, Agile Software Development,
Principles, Patterns and Practices. Prentice-
Hall, 2002.

[14] Concurrent Version System (Web site:
http://www.cvshome.org).

[15] R Cabrera, B Appleton, SP Berczuk,
Software Reconstruction: Patterns for
Reproducing Software Builds, Pattern
Languages of Programming’99, (Web site:
http://jerry.cs.uiuc.edu/~plop/plop99/procee
dings)

[16] SC Berczuk, B Appleton, Software
Configuration Management Patterns,
Addison-Wesley, 2002.

[17] Ant (Web site: http://ant.apache.org).

[18] Junit (Web site: http://www.junit.org).

[19] MaxQ (Web site: http://maxq.tigris.org).

[20] WF Opdyke, Refactoring Object-Oriented
Frameworks, Ph.D. thesis, University of
Illinois at Urbana-Champaign, 1992.
Available as Technical Report No.
UIUCDCS-R-92-1759.

[21] M Fowler, Refactoring, Addison-Wesley,
1999.

[22] Intellij IDEA (Web site:
http://www.intellij.com/idea).

[23] D Dikel, D Kane, J Wilson, Software
Architecture: Organizational Principles and
Patterns, Prentice-Hall, 2000.

[24] T. Gilb, D. Graham, Software Inspection.
Reading, Massachusetts: Addison-Wesley,
1993.

[25] Dbunit (Web site:
http://dbunit.sourceforge.net).

[26] JFCUnit (Web site:
http://jfcunit.sourceforge.net).

