
Representing, Verifying and Applying SoftwareDevelopment Steps using the PVS System?Axel DoldAbt. K�unstliche Intelligenz,Universit�at Ulm,D-89069 Ulm, Germanydold@informatik.uni-ulm.deAbstract. In this paper generic software development steps of di�erentcomplexity are represented and veri�ed using the (higher-order, stronglytyped) speci�cation and veri�cation system PVS. The transformationsconsidered in this paper include \large" powerful steps encoding gene-ral algorithmic paradigms as well as \smaller" transformations for theoperationalization of a descriptive speci�cation. The application of thesetransformation patterns is illustrated by means of simple examples. Fur-thermore, we show how to guide proofs of correctness assertions aboutdevelopment steps. Finally, this work serves as a case-study and test forthe usefulness of the PVS system.1 IntroductionThe methodology of stepwise re�nement is widely accepted in modern softwareengineering. The idea is to start from an abstract requirement speci�cation ofa given problem and successively apply correctness preserving transformationpatterns to �nally yield an executable program. These transformations can com-prise development steps of di�erent complexity. One large powerful step can besu�cient to synthesize a program while a series of smaller steps has to be appliedto reach a similar result.In this paper we focus on the representation of development steps of di�erentcomplexity and kind in a rigorous formal manner. \Large" steps encode generalprogramming knowledge which forms the basis of many algorithms. Such know-ledge is frequently applied implicitly when constructing programs but even whenit is explicitly described in the literature it often appears informal and lacks arigorous formal (error-free) treatment. In a formal treatment, such developmentsteps can be represented as schematic algorithms which, instantiated with a? to appear in the Proceedings of the Fourth International Conference on AlgebraicMethodology and Software Technology, AMAST'95. Part of the research reportedherein has been funded by the German Federal Ministry of Research and Technology(BMFT) under contract no. 01 IS 203 K5 (KORSO).

speci�c problem, synthesize a solution to this problem. These \algorithm theo-ries" have intensively been investigated by Doug Smith [12, 13, 14] who de�nes,among other things, a hierarchy of algorithm theories encoding well-known pro-gramming paradigms such as divide-and-conquer, global search, generate-and-testand others. However, his approach is only semi-formal, some important aspectsremain informal.The transformations developed in the CIP-project and its descendants [2, 3,10] can be considered as \smaller" development steps since they mainly operateon the level of functions. Among them one can �nd transformations for optimi-zing functions, recursion simpli�cation, and as well, steps which operationalizea descriptive speci�cation.The goal of this paper is to completely formalize and verify two selecteddevelopment steps, one of each kind, and to correctly apply them to examp-les. In order to represent software development steps higher-order logic greatlyfacilitates the formalization process. Therefore, and in order to have adequatesystem support we choose the speci�cation and veri�cation system PVS [7] inwhich the whole process of representation and veri�cation can be carried out.The Prototype Veri�cation System (PVS) consists of a higher-order speci�ca-tion language with a rich typing system, a set of supporting tools for creating,analyzing, modifying and documenting theories and proofs, and a powerful in-teractive Gentzen-style theorem prover. Furthermore, a library of standard theo-ries such as natural numbers, polymorphic sets, and lists, booleans, relations isprede�ned. The type system provides type constructors to form dependent andnon-dependent function, tuple, record, and semantic subtypes. Speci�cations arerealized as PVS theories which can be parameterized where the parameters canbe constrained by means of assumptions. Detailed information about the lan-guage, prover and the usage of the system can be found in [8, 9]. A distinctivefeature of the typing system is the automatic generation of proof obligations,especially when instantiating the general scheme with a speci�c problem.All considered steps are represented within a parameterized PVS theorywhich de�nes the required data structures and formalizes the application con-ditions by means of assumptions. Applying this step to a speci�c situation iscarried out by importing the parameterized theory where the formal theory pa-rameters are replaced by the speci�c problem parameters.Another purpose of this paper is to investigate the veri�cation process and toprovide comprehensible, reusable proof methods. We show, for example, how toutilize the use of measure-induction in order to prove properties about recursivefunctions and to use the subtyping mechanism in order to encode correctnessproperties. Finally, we hope that this work serves as an interesting case-studyand test for the usefulness of the PVS system.The rest of this paper is organized as follows: the next section presents aformalization and veri�cation of the schematic algorithm divide-and-conquer andan application of it to a binary-search problem. The operationalization of adescriptive speci�cation is presented in Sect. 3 and is applied to the problem of�nding a minimum element in a list.

Related WorkThe formalization of transformations using higher-order functions has been con-sidered by several researchers. In [4], for example, program transformations forrecursion removal are expressed as second-order patterns de�ned in the simplytyped �-calculus. Independently from the work described herein, my colleagueHarald Rue� has formalized, among other things, the divide-and-conquer para-digm in his dissertation [11] using the calculus of constructions and has givena veri�cation with the LEGO proof checker [6]. Similar work dealing with therepresentation of existing approaches to program synthesis, development steps,and programming paradigms as well as a library of standard theories in thecontext of the Nuprl system has been carried out by Christoph Kreitz [5].2 Divide-and-ConquerThe well-known algorithmic paradigm divide-and-conquer is based on the princi-ple of solving primitive problem instances directly, and large problem instancesby decomposing them into `smaller' instances, solving them independently andcomposing the resulting solutions. Here, we consider the decomposition of theproblem into two subproblems. A general decomposition scheme would be trea-ted analogously. Following Smith's notation of a problem speci�cation, we para-meterize theories with a descriptive problem speci�cation described as a 4-tuple(D;R; I;O) where D denotes the problem domain,R denotes the problem range,I is a predicate constraining D to meaningful inputs, and O describes the pro-blem as an input-/output predicate. A solution of such a problem is a functioncomputing feasible solutions, i.e. for an input x satisfying condition I it compu-tes a y of type R such that condition O(x; y) holds. We represent this principleas a parameterized PVS theory which has a problem description (D;R; I;O)and functions decompose, compose, dir solve, a predicate primitive? , a map ltfrom domain D to natural numbers as its parameters. PVS only allows totalfunctions, it must be ensured that all (recursive) functions terminate. For thispurpose, a measure-function is used. Its domain matches that of the recursivefunction, and its range is Nat or Ordinal. The de�nition of a recursive func-tion f generates a type correctness condition (TCC) which must be dischargedin order to guarantee well-de�nedness of f . Here, the function lt serves as ameasure-function. Four assumptions describe the meaning of the parameters.They state that1. the subproblems created by the decomposition operator are smaller than theoriginal problem when applied to the measure-function lt.2. if the problem is primitive enough dir solve creates a solution.3. solutions to the subproblems z1; z2 can be composed to build a solution tothe original problem.4. all subproblems generated by the decomposition operator satisfy the inputcondition I of the problem (D;R; I;O).

div and conq[D : type;R : type; I : [D! boolean];O : [D;R! boolean]; decompose : [D! [D;D]];dir solve : [D! R]; compose : [D;R;R! R];primitive? : [D! boolean]; lt : [D! nat]] : theorybeginassumingx : var D z1; z2 : var Rax1 :assumption(I(x) ^ : (primitive?(x)))�((lt(proj 1(decompose(x))) < lt(x))^ (lt(proj 2(decompose(x))) < lt(x)))ax2 : assumption (I(x) ^ primitive?(x)) � O(x; dir solve(x))ax3 :assumption(I(x)̂ : (primitive?(x))^ O(proj 1(decompose(x)); z1) ^ O(proj 2(decompose(x)); z2))� O(x; compose(x;z1; z2))ax4 :assumption(I(x) ^ : (primitive?(x)))� (I(proj 1(decompose(x))) ^ I(proj 2(decompose(x))))endassumingusing measure induction[D; nat; lt; (� (x; y : nat) : x � y)]f dc(x : fy : D j I(y)g) : recursive R =if primitive?(x) then dir solve(x)else letx1 = proj 1(decompose(x)); x2 = proj 2(decompose(x));rec1 = f dc(x1); rec2 = f dc(x2)in compose(x; rec1; rec2)endifmeasure (� (x : fy : D j I(y)g) : lt(x))correct : theorem (8 (x : D) : I(x) � O(x; f dc(x)))end div and conq Fig. 1. Theory of Divide-and-conquer

The built in selector proj i(x) selects the i-th element of a tuple. The recursivefunction f dc realizes the schematic algorithm. Its domain is speci�ed using thesubtype-mechanism of PVS. It is given by the type D such that input conditionI holds. Termination is established by the given measure function lt for whichwe must show that it decreases in size for the recursive arguments. This is givenimmediately by the �rst assumption. Figure 1 shows the (LaTEX pretty-printed)PVS theory. Type-checking this theory generates the following type correctnessconditions (TCC's):% Subtype TCC generated (line 35) for x1% proved - completef_dc_TCC2: OBLIGATION (FORALL (x: {y: D | I(y)}):NOT primitive?(x) IMPLIES I(PROJ_1(decompose(x))))% Termination TCC generated (line 35) for f_dc% proved - completef_dc_TCC3: OBLIGATION (FORALL (x: {y: D | I(y)}):NOT primitive?(x) IMPLIES lt(PROJ_1(decompose(x))) < lt(x))% Subtype TCC generated (line 36) for x2% proved - completef_dc_TCC4: OBLIGATION (FORALL (x: {y: D | I(y)}):NOT primitive?(x) IMPLIES I(PROJ_2(decompose(x))))% Termination TCC generated (line 36) for f_dc% proved - completef_dc_TCC5: OBLIGATION (FORALL (x: {y: D | I(y)}):NOT primitive?(x) IMPLIES lt(PROJ_2(decompose(x))) < lt(x))f dc TCC2 and f dc TCC4 are generated in order to ensure that the subprobleminstances satisfy the condition I while both f dc TCC3 and f dc TCC5 ensuretermination of f dc. All obligations follow immediately from the assumptionsax1 and ax4. The correctness of this schematic algorithm is stated by theoremcorrect: f dc exactly calculates a solution of the given problem (D;R; I;O).2.1 Proof of correctIn order to prove properties about recursive functions, a measure-inductionprinciple is required which is prede�ned in PVS:measure induction[T;M : type;m : [T ! M];� : (well founded?[M])] : theorybeginmeasure induction :lemma(8 (p : pred[T]) :(8 (x : T) : (8 (y : T) : m(y) � m(x) ^ m(y) 6= m(x) � p(y)) � p(x))� (8 (x : T) : p(x)))end measure induction

Measure induction builds on well-founded induction. It allows induction over atype T for which a measure functionm is de�ned. Here, the theory is instantiatedwith D;Nat; lt;�Nat.In the following we give the main ideas of the PVS proof.2 We start with thesequence:|-------{1} (FORALL (x: D): I(x) IMPLIES O(x, f_dc(x)))We have written a strategy which instantiates the measure-induction principleand discharges the obligation that �Nat is well-founded. In the �rst step weapply this strategy, expand the de�nition of f dc and obtain:{-1} (FORALL (y: D): lt(y) <= lt(x!1) AND lt(y) /= lt(x!1)IMPLIES I(y) IMPLIES O(y, f_dc(y))){-2} I(x!1)|-------{1} O(x!1,IF primitive?(x!1) THEN dir_solve(x!1) ELSEcompose(x!1, f_dc(proj_1(decompose(x!1))),f_dc(proj_2(decompose(x!1))))ENDIF)Case analysis on primitive?(x!1) yields two subgoals:correct.1 :{-1} primitive?(x!1)[-2] (FORALL (y: D): lt(y) <= lt(x!1) AND lt(y) /= lt(x!1)IMPLIES I(y) IMPLIES O(y, f_dc(y)))[-3] I(x!1)|-------{1} O(x!1, dir_solve(x!1))Applying assumption ax2 completes this branch.For the other branch where primitive?(x!1) is false we apply ax3. Thisyields four subgoals:32 The prover maintains a proof tree. The goal is to construct a proof tree which iscomplete, in the sense that all of the leaves are recognized as true. Each proof goalis a sequent consisting of a sequence of antecedent formulas (indicated by negativenumbers) and consequent formulas (indicated by positive numbers). The intuitivemeaning of such a goal is that the conjunction of the antecedents implies the dis-junction of the consequents.3 We omit the subgoals correct.2.2 and correct.2.4 since they correspond tocorrect.2.1 and correct.2.3 respectively, just substitute proj 2 for proj 1 in for-mula f1g.

correct.2.1 :[-1] (FORALL (y: D): lt(y) <= lt(x!1) AND lt(y) /= lt(x!1)IMPLIES I(y) IMPLIES O(y, f_dc(y)))[-2] I(x!1)|-------{1} O(proj_1(decompose(x!1)), f_dc(proj_1(decompose(x!1))))[2] primitive?(x!1)[3] O(x!1, compose(x!1, f_dc(proj_1(decompose(x!1))),f_dc(proj_2(decompose(x!1)))))correct.2.3 (TCC):[-1] (FORALL (y: D): lt(y) <= lt(x!1) AND lt(y) /= lt(x!1)IMPLIES I(y) IMPLIES O(y, f_dc(y)))[-2] I(x!1)|-------{1} I(proj_2(decompose(x!1)))[2] primitive?(x!1)[3] O(x!1, compose(x!1, f_dc(proj_1(decompose(x!1))),f_dc(proj_2(decompose(x!1)))))Consider the �rst subgoal correct.2.1. Automatically instantiation of the termproj 1(decompose(x!1)) for y and applying assumptions ax1 and ax4 comple-tes the proof. The second subgoal is immediately proved by applying ax4. ut2.2 Example: Binary SearchWe apply the schematic algorithm divide-and-conquer to solve the followingproblem: Given a function f on natural numbers, a key element and two boundsi1; i2 denoting the interval fn : Nat j i1 � n � i2g the problem is to check if fapplied to one of the elements of the interval is equal to the key element. Thisproblem is described by D1; R1; I1; O1 where{ D1 is the problem domain consisting of a function f , a key element key andbounds i1; i2.{ R1 is the type of booleans.{ I1 constrains domain D1 such that i1 is positive and i2 � i1.{ O1 describes the input-/output condition informally given above.Furthermore, applying the scheme of divide-and-conquer we have to explicitlygive functions and predicates primitive1? , dir solve1 , decompose1 , and compose1plus a measure-function lt1. The idea is to use a binary-search mechanism to solvethe given problem. Therefore, we choose the following divide-and-conquer-theoryinstance:{ The problem is primitive if the given interval is trivial, i.e. i1 = i2.{ If the problem is primitive we can directly solve it by checking if f(i1) = key:

bs : theorybeginimporting divD1 : type = [f : [nat ! nat]; key : nat; i1 : nat; i2 : nat]R1 : type = booleanI1(x : D1) : boolean =let i1 = proj 3(x); i2 = proj 4(x) in (i1 > 0) ^ (i2 � i1)O1(x : D1 ; y : R1) : boolean =let f = proj 1(x); key = proj 2(x); i1 = proj 3(x); i2 = proj 4(x)in y = (9 (z : fn1 : nat j i1 � n1 ^ n1 � i2g) : (f(z) = key))primitive1?(x : D1) : boolean =let i1 = proj 3(x); i2 = proj 4(x) in (i1 = i2)dir solve1(x : D1) : R1 =let f = proj 1(x); key = proj 2(x); i1 = proj 3(x) in (f(i1) = key)decompose1(x : D1) : [D1;D1] =let f = proj 1(x); key = proj 2(x); i1 = proj 3(x); i2 = proj 4(x)in ((f; key; i1; div(i1 + i2; 2)); (f; key; 1 + div(i1 + i2; 2); i2))compose1(x : D1; y1 : R1; y2 : R1) : R1 = (y1 _ y2)lt1(x : D1) : nat = let i1 = proj 3(x); i2 = proj 4(x) in abs(i2 � i1)importing div and conq[D1;R1; I1;O1;decompose1; dir solve1; compose1; primitive1?; lt1]end bs Fig. 2. A binary-search problem{ Decomposition is done by splitting the range given by i1; i2 into two parts.{ The results of the search process in both subintervals are disjunctively com-posed.{ The required measure lt1 is de�ned by the size of the interval.All the entities are combined in the PVS theory bs, see Fig. 2. The PVS theorydiv de�ning the div-function on natural numbers together with some propertiesis imported. We omit this theory since it is not of great signi�cance. All proofobligations and lemmata of div have been successfully discharged.Consider the bs theory, we have to show that it is indeed a correct instanceof the general divide-and-conquer theory. Type-checking bs, PVS automaticallygenerates the four required obligations where the �rst one is given asIMPORTING1_TCC1: OBLIGATION(FORALL (x: D1): (I1(x) & NOT (primitive1?(x)))IMPLIES ((lt1(PROJ_1(decompose1(x))) < lt1(x)) &(lt1(PROJ_2(decompose1(x))) < lt1(x))))

The proofs of all TCC's are established by simply expanding the de�nitions andusing some elementary properties of div. Finally, having discharged all TCC'swe obtain a correct solution using the instantiated algorithm f dc.3 Operationalization of a Descriptive Speci�cationIn this section we represent a transformation called operationalization of a choicegiven in [10]. We closely follow the method described in the previous section inrepresenting this step. However, we give another possibility to establish the cor-rectness of such a formalization. Here, instead of using an explicit correctnesstheorem we encode this information into the type of the recursive function uti-lizing the subtyping mechanism of PVS. The transformation works as follows:Starting from a given problem (D;R; I;O), the idea is to �nd a predicate B suchthat1. B(x)) O(x;H(x)), and2. :B(x)) O(x; y) = O(K(x); y)In the �rst case, whenever B(x) holds H(x) is a feasible solution, in the secondcase y is a solution to input x if and only if y is a solution to K(x), where Kmodi�es x such that it decreases w.r.t the given measure-function. A solution ofthe problem, i.e. a function f for which O(x; f(x)) holds for all x satisfying I,is then immediately obtained by the recursive function fun given as:fun(x) = if B(x) then H(x) else fun(K(x))Figure 3 shows the PVS theory. As noted above, the correctness is stated usingthe subtype mechanism of PVS. The range of function fun is of type R suchthat the input-/output condition O of the problem holds. Type-checking thistheory automatically generates the required correctness conditions:fun_TCC2: OBLIGATION(FORALL (x: {x1: D | I(x1)}): B(x) IMPLIES o(x, H(x)))fun_TCC3: OBLIGATION(FORALL (x: {x1: D | I(x1)}): NOT B(x) IMPLIES I(K(x)))fun_TCC4: OBLIGATION(FORALL (v: [x: {x1: D | I(x1)} -> {y: R | o(x, y)}]),(x: {x1: D | I(x1)}):NOT B(x) IMPLIES o(x, v(K(x))))All but the third obligation are trivial and follow immediately from the assump-tions. The only interesting obligation is the third one. The proof is establishedby adding type information of v(K(x)) and applying assumptions ax2 and ax3.

op of choice I[D : type;R : type; I : [D! boolean];O : [D;R! boolean];B : [D! boolean];H : [D! R];K : [D! D]; lt : [D! nat]] :theorybeginassumingx : var D y : var Rax1 : assumption (I(x) ^ B(x)) � O(x;H(x))ax2 :assumption (I(x) ^ (: B(x))) � (O(x; y) = O(K(x); y))ax3 :assumption(I(x) ^ (: B(x))) � (I(K(x)) ^ lt(K(x)) < lt(x))endassumingfun(x : fx1 : D j I(x1)g) : recursive fy : R j O(x; y)g =if B(x) then H(x) else fun(K(x)) endifmeasure (� (x : fx1 : D j I(x1)g) : lt(x))end op of choice I Fig. 3. Transformation op of choice I3.1 Example: Minimum ElementSuppose we are given the problem of �nding a minimum element in a given(non-empty) list of natural numbers. We formalize this problem as the following4-tuple (D1; R1; I1; O1):{ D1, the problem domain, is de�ned as a tuple type Nat�List(Nat), wherethe �rst component denotes the temporary minimum.{ R1 is the type of natural numbers.{ I1 is the constant true function.{ O1(x; y) is true, if y is less than or equal to x's �rst parameter and everyelement of x's second parameter (denoting the list).In order to correctly apply the above transformation we further have to supplyspeci�c values B1;H1;K1; a measure function lt1, and have to discharge allarising proof obligations.{ B1 is true if and only if the list is empty.{ H1 yields the �rst component of the tuple.{ K1 yields the minimum of the head element and the temporary minimumelement plus the tail of the list.{ lt1 is de�ned as the length of the list.

minel : theorybeginimporting list propD1 : type = [nat; list[nat]]R1 : type = natI1 : [D1 ! boolean] = (� (x : D1) : true)O1(x : D1; y : R1) : boolean =((y = proj 1(x) _ member?(y; proj 2(x)))^ (y � proj 1(x)) ^ (8 (n : nat) : member?(n; proj 2(x)) � y � n))B1 : [D1 ! boolean] = (� (x : D1) : null?(proj 2(x)))H1 : [D1 ! R1] = (� (x : D1) : proj 1(x))K1 : [D1 ! D1] =(� (x : D1) :(if null?(proj 2(x)) then xelse((if proj 1(x) � car(proj 2(x)) then proj 1(x)else car(proj 2(x))endif);cdr(proj 2(x)))endif))lt1 : [D1 ! nat] = (� (x : D1) : length(proj 2(x)))importing op of choice I[D1;R1; I1;O1; B1;H1;K1; lt1]minelf(s : fs1 : list[nat] j : (null?(s1))g) : recursive nat =let x = (car(s); cdr(s)) in fun(x)measure(� (s : fs1 : list[nat] j : (null?(s1))g) : let x = (car(s); cdr(s)) in lt1(x))end minel Fig. 4. The minimum element problemThe function minelf then computes the minimumelement of a given non-emptylist of natural numbers using function fun which is called with the tuple con-sisting of the list's head and tail, see Fig. 4. When type-checking this theorythe three required TCC's (the instantiated assumptions of op of choice I) aregenerated where the second one is given as(*) IMPORTING1_TCC2: OBLIGATION(FORALL (x: D1), (y: R1):(I1(x) & (NOT B1(x))) IMPLIES (O1(x, y) = O1(K1(x), y))

The �rst and last obligation are easy to prove (simply rewrite all de�nitions)whereas the proof of the second obligation is lengthy and requires analyses ofmany cases. The complete proof script is given in the appendix. All proof obli-gations, lemmata and theorems have been successfully discharged, and the proofscripts are available by the author.4 Concluding RemarksIn this paper we have demonstrated that it is possible to elegantly formalize andverify software development steps in a rigorous mathematical manner using thePVS system.We have considered steps of di�erent complexity, both steps codingwell-known algorithmic paradigms and \smaller" steps de�ned in the context ofthe CIP project. The use of higher-order logic with a rich type system greatlysupported the formalization of very general transformation schemes. The me-thod described in this paper can readily be used to represent other developmentsteps of both kinds as we have demonstrated within the BMFT project KORSO(correct software). In another paper, for example, we have formalized the theoryof global-search algorithms using a type-theoretic framework [1]. This frameworkin which all entities of the software development process can be formally repre-sented and reasoned about has also been developed within this project. We referto [15] for more information about the framework and the project.Furthermore, we have shown how to synthesize a speci�c algorithm for somegiven problem simply by \�lling the holes" of a general scheme. The concept ofsemantic subtypes has turned out to be an adequate tool to establish the correct-ness of the formalized steps since the type-check mechanism of PVS producesthe required proof obligations automatically.There are of course some aspects which can be improved in future versionsof PVS. For example, when representing hierarchies of software developmentsteps following the ideas of Smith [14] it is desirable to de�ne theories whichhave other theories as their parameters. This is not possible in the current ver-sion. Furthermore, it is not possible to express properties about theories suchas re�nements between theories (theory morphisms). PVS does not allow typesas parameters or results of functions. Therefore, functions like the polymorphicidentity cannot be expressed directly. Finally, pattern matching could improvethe readability of PVS speci�cations avoiding the use of projections.AcknowledgementI wish to thank F. W. von Henke, Harald Rue�, Martin Strecker, Detlef Schwier,and Erc�ument Canver for many discussions and comments on draft versions ofthis paper. The constructive criticisms and suggestions provided by the anony-mous referees have greatly improved the paper.

References1. A. Dold. Formalisierung schematischer Algorithmen. Technical Report UIB-94-10,Fakult�at f�ur Informatik, Universit�at Ulm, January 1994.2. The CIP Language Group. The Munich Project CIP, Volume I: The Wide Spec-trum Language CIP-L. LNCS 183. Springer-Verlag, 1985.3. The CIP System Group. The Munich Project CIP - Volume II: The ProgramTransformation System CIP-S. LNCS 292. Springer-Verlag, 1987.4. G. Huet and B. Lang. Proving and Applying Program Transformations Expressedwith Second-Order-Patterns. Acta Informatica, 11:31{55, 1978.5. C. Kreitz. Metasynthesis - Deriving Programs that Develop Programs. Techni-cal Report AIDA-93-03, Fachgebiet Intellektik, Technische Hochschule Darmstadt,1993.6. Z. Luo and R. Pollack. LEGO Proof Development System: User's Manual. Uni-versity of Edinburgh, May 1992.7. S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Veri�cation System.In Deepak Kapur, editor, 11th International Conference on Automated Deduction(CADE), volume 607 of Lecture Notes in Arti�cial Intelligence, pages 748{752,Saratoga, NY, 1992. Springer-Verlag.8. S. Owre, N. Shankar, and J.M. Rushby. The PVS Proof Checker: A Reference Ma-nual. Computer Science Laboratory, SRI International, Menlo Park, CA, February1993.9. S. Owre, N. Shankar, and J.M. Rushby. User Guide for the PVS Speci�cationand Veri�cation System. Computer Science Laboratory, SRI International, MenloPark, CA, February 1993.10. H.A. Partsch. Speci�cation and Transformation of Programs. Springer-Verlag,1990.11. H. Rue�. Metaprogrammierung in einer typtheoretischen Umgebung. PhD thesis,Universit�at Ulm, Abt. KI, to appear in 1995.12. Douglas R. Smith. Applications of a Strategy for Designing Divide-and-Conquer-Algorithms. Science of Computer Programming, (8):213{229, 1987.13. Douglas R. Smith. Structure and Design of Global Search Algorithms. TechnicalReport KES.U.87.12, Kestrel Institute, Palo Alto, CA, 1987.14. Douglas R. Smith and Michael R. Lowry. Algorithm Theories and Design Tactics.Science of Computer Programming, (14):305{321, 1990.15. F.W. von Henke, A. Dold, H. Rue�, D. Schwier, and M. Strecker. Constructionand Deduction Methods for the Formal Development of Software. In M. Broy andS. J�ahnichen, editors, KORSO, Correct Software by Formal Methods. Springer-Verlag, Lecture Notes in Computer Science, to appear in 1995, also available asTechnical Report UIB-94-09, Fakult�at f�ur Informatik, Universit�at Ulm.

A Proof ScriptWe give the proof script of formula (*). The obligation can be proved using theprover command (TERM-TCC) which expands all relevant de�nitions, skolemizesby automatically generating skolem constants, tries to automatically instantiatethe quanti�ers, and does propositional simpli�cation. The application of thiscommand results in two subgoals. The boolean equality is then converted to anequivalence by (IFF). Applying (PROP) for propositional simpli�cation to eachof the subgoals yields a lot of new subgoals each of which is proved either by(TCC) or by (THEN* (INST? :SUBST ("n" "car(proj 2(x!1))")) (ASSERT))instantiating the term car(proj 2(x!1)) for quanti�er n and invoking the de-cision procedures. The generated proof script looks as:("" (TERM-TCC)(("1" (IFF)(SPLIT)(("1" (FLATTEN)(SPLIT)(("1" (SPLIT)(("1" (FLATTEN) (PROPAX)) ("2" (PROPAX))("3" (TCC))))("2" (SPLIT)(("1" (FLATTEN)(INST? :SUBST("n" "car(proj_2(x!1))"))(ASSERT))("2" (PROPAX))("3" (TCC))))("3" (SPLIT)(("1" (FLATTEN) (PROPAX)) ("2" (PROPAX))("3" (TCC))))))("2" (FLATTEN)(SPLIT)(("1" (SPLIT)(("1" (FLATTEN) (PROPAX)) ("2" (PROPAX))("3" (TCC))))("2" (SPLIT)(("1" (FLATTEN) (PROPAX)) ("2" (PROPAX))("3" (TCC))))))))("2" (IFF)(SPLIT)(("1" (FLATTEN)(SPLIT)(("1" (SPLIT)(("1" (FLATTEN)(INST? :SUBST("n" "car(proj_2(x!1))"))(ASSERT)(PROPAX))

("2" (INST? :SUBST("n" "car(proj_2(x!1))"))(ASSERT)(PROPAX))("3" (TCC))))("2" (SPLIT)(("1" (FLATTEN) (PROPAX))("2" (INST? :SUBST("n" "car(proj_2(x!1))"))(ASSERT))("3" (TCC))))("3" (SPLIT)(("1" (FLATTEN) (PROPAX))("2" (INST? :SUBST("n" "car(proj_2(x!1))"))(ASSERT)(PROPAX))("3" (TCC))))))("2" (FLATTEN)(SPLIT)(("1" (SPLIT)(("1" (FLATTEN) (PROPAX))("2" (INST? :SUBST("n" "car(proj_2(x!1))"))(ASSERT))("3" (TCC))))("2" (SPLIT)(("1" (FLATTEN) (PROPAX))("2" (INST? :SUBST("n" "car(proj_2(x!1))"))(ASSERT))("3" (TCC))))))))))
This article was processed using the LaTEX macro package with LLNCS style

