

Service-Based Software: The Future for Flexible Software

Keith Bennett1, Paul Layzell2 *, David Budgen3, Pearl Brereton3, Linda Macaulay2, Malcolm Munro1

1 Department of Computer Science, University of Durham, UK
2 Department of Computation, UMIST, UK
3 Department of Computer Science, Keele University, UK
* Contact for correspondence (email: paul.layzell@umist.ac.uk)

Abstract

For the past 40 years, the techniques, processes and
methods of software development have been dominated by
supply-side issues, giving rise to a software industry
oriented towards developers rather than users. To
achieve the levels of functionality, flexibility and time to
market required by users, a radical shift is required in the
development of software, with a more demand-centric
view leading to software which will be delivered as a
service within the framework of an open marketplace.
Already, there are some signs that this approach is being
adopted by industry but in a very limited way. We
summarise research and a research method which has
resulted in a long-term strategic view of software
engineering innovation. Based on this foundation, we
describe more recent work, which has resulted in an
innovative demand-side model for the future of software.
We propose a service architecture in which components
may be bound instantly, just at the time they are needed –
and then the binding may be discarded. A major benefit of
this approach is that it leads to highly flexible and agile
software, that should be able to meet rapidly changing
business needs.

1. Introduction

For many years, software engineers have striven to
produce methods to address key problems which inhibit
the development and deployment of increasingly
sophisticated software-based systems [7]. Initially, such
problems focused around the delivery of software and the
management of its inherent complexity. For over 40
years, this focus of attention has ranged from a crude
division of complexity into data and process, through an
understanding of structure and decomposition leading to
structured programming and stepwise refinement, into the
age of process and methods (such as SSADM, JSD and

OMT) and such object-centred concepts as design
patterns.

Any analysis of its short history cannot fail to recognise
the significant impact that software development
techniques have had on the quantity, quality and
complexity of delivered software and the impact that such
software has had on wealth creation and improving the
quality of life.

However, the internet age has ushered in a new era of
highly dynamic and agile organisations which must be in
a constant state of evolution if they are to compete and
survive in an increasingly global marketplace. This era
poses significantly new problems for software
development, characterised by a shift in emphasis from
producing ‘a system’ to the need to produce ‘a family of
systems’, with each system being an evolution from a
previous version, developed and deployed in shorter and
shorter business cycles.

In 1995, British Telecommunications plc (BT) recognised
the need to undertake long-term research which would
lead to different, and possibly radical, ways in which to
develop software for the future. BT commissioned a
group of UK universities to undertake this research.
Senior academics from UMIST, Keele University and the
University of Durham, came together with staff at BT to
form DiCE (The Distributed Centre of Excellence in
Software Engineering), the body which would work
towards the development of a new approach to the
production of highly flexible, but robust, software to meet
the needs of the new, emerging organisations that would
drive economies in the 21st century. The method and
outcome of this research is summarised in Section 2 of
the paper. In Section 3, we express the objectives of the
current phase of the research in terms of the vision for
software- how it will behave, be structured and developed
in the future. In turn, the vision developed by the group
presented a grand challenge for software engineering-
how to deliver the vision. Thus from 1998, the core

group of researchers switched attention to developing a
new overall paradigm for software engineering, leading to
the development of a service-based approach to
structuring, developing and deploying software. This
new approach is described in the second half of this
paper. The core technical issue is the service architecture,
and this is presented in sections 4 and 5. An example is
given in section 6, whilst related work, particularly
addressing interdisciplinary issues, is summarised in
section 7.

2. Developing a Future Vision

Software has become a critical element in all aspects of
modern life, supporting wealth creation and being
deployed in products and processes designed to improve
the quality of life. The demands placed on the software
engineering community, such as productivity, flexibility,
robustness and quality, have increased at an exponential
rate, leading to new development paradigms, formalisms
and methods of working, the success of which have been
truly remarkable.

However, in spite of the ability of the software
engineering community to respond to these demands,
there is still criticism of software systems and the
methods employed in their development, such as high
cost, long time-to-market and poor flexibility. Many of
these issues have been accentuated through the
widespread use of the internet and the acceleration of
business cycles that is enabled by e-business and its
support technology.

The aim of the BT-funded work conducted by the DiCE
group was to form a vision of the future of software and
software development, based upon systematic use of
expert judgement and peer review, leading to the
establishment of a long-term research agenda that could
help meet the needs of society for software that is
reasonably priced, reliable, adaptable and available when
and where needed. The detailed rationale for this work is
contained in [1].

From the outset, part of the DiCE philosophy was that the
group should take a holistic view of software and
software engineering. In particular, the group wanted to
avoid the pitfalls inherent in viewing software from a
specialist perspective, either in terms of technologies (e.g.
formal methods, object orientation, component based
approaches, agents), or in terms of life cycle phases.
Therefore five hypotheses were developed, the aim of
which was to postulate how software working practices
might change in the period up to 2005, irrespective of
how these might be realised. In summary the hypotheses
were:

H1. There will be a shift in control of service

development from software centres to customer and
user sites.

H2. There will be a change in working practices within
development and within customer sites involving
greater globalisation of development teams and
greater user involvement in system delivery.

H3. There will be a change from one view of quality to
many different views, each having a different
approach to evaluation.

H4. There will be a change in attitude towards software
development and towards business practice which
will improve acceptance and take-up of new
technology.

H5. There will be a change from the inability to predict
service behaviour to managing complexity.

From these hypotheses, the DiCE group formulated three
questions about the future of software: How will software
be used? How will software behave? How will software
be developed? In answering these questions, a number of
key issues emerged.

K1. Software will need to be developed to meet

necessary and sufficient requirements, i.e. for the
majority of users whilst there will be a minimum set
of requirements software must meet, over-
engineered systems with redundant functionality are
not required. For example, users of a sophisticated
word processor may only need a very small subset
of its capabilities and, from the user’s point of view,
should only need to acquire and pay for that subset.

K2. Software will be personalised. Software is
currently packaged and marketed as a generic
product with little scope for configuration or
personalisation. In future, software will be capable
of personalisation, providing users with their own
tailored, unique working environment which is best
suited to their personal needs and working styles,
thus meeting the goal of software which will meet
necessary and sufficient requirements.

K3. Software will be self-adapting. Software will
contain reflective processes which monitor and
understand how it is being used and will identify
and implement ways in which it can change in order
to better meet user requirements, interface styles
and patterns of working. It will also identify the
need to commission new or changed software and
decommission redundant software as and when user
requirements change and thus supporting
personalisation.

K4. Software will be fine-grained. Future software will
be structured in small simple units which co-operate
through rich communication structures and

information gathering. This will provide a high
degree of resilience against failure in part of the
software network and allow software to re-negotiate
use of alternatives in order to facilitate self-
adaptation and personalisation.

K5. Software will operate in a transparent manner.
Software may continue to be seen as a single
abstract object even when distributed across
different platforms and geographical locations. This
is an essential property if software is to be able to
reconfigure itself and substitute one component or
network of components for another without user or
professional intervention.

3. An Interdisciplinary View of Software

Having established a baseline vision of the future, the
DiCE group tested its hypotheses, questions and issues in
a Forecasting the Future workshop. At this, senior
academics from a range of disciplines (organisational
sociology, psychology, law, retail marketing, engineering
and biochemistry) were invited to validate the work and
enhance it with their own contributions.

The outcome was a significant turning point in the work
of the DiCE group as it identified a fourth question: How
will software and society interact? Analysis of this
question gave rise to a number of further important issues
which serve to highlight the true interdisciplinary nature
of software and the software engineering process.

Trust and confidence emerged as a key issue when using
software, ranging from the concept of brand (luxury v.
utility software) to the extent to which users need
appropriate mental models of software behaviour in order
to have trust and confidence in its performance. In the
latter case, the problem of introducing a new user to a
mature and sophisticated product was highlighted,
together with the need for the software to ‘grow’ with the
user’s experience.

Related to trust and confidence are the issues of risk,
responsibility, recovery and redress; what happens
when software fails and, with the emergence of
component-based approaches, how can you ensure
accountability in system development and evolution.

The nature of software with respect to individualism v.
control opened a range of issues about the political
nature of software and the extent to which users can be
safely permitted to evolve and adapt software, relating
closely to the issue of software personalisation and
adaptation.

After analysing the outputs from this first phase of work,
it became clear that the issue of interdisciplinarity
would be critical to developing a future vision of
software. A significant proportion of software does not
exist in isolation but in a political, social, economic and
legal context. To fully understand software and to
achieve the highest levels of productivity and quality, it is
essential that the rigid boundaries between software and
its environment are broken down (as shown in the figure
below) so that software naturally incorporates an
understanding of its environment and context rather than
simply interacting with them. Clearly this view of
software relates to systems which directly interact with
users—the set of issues for embedded and real-time
control systems are somewhat different, and are not
addressed in this research.

4. The Service-Based Vision

4.1 Supporting Emergent Organisations

Most software engineering techniques are conventional
supply-side methods, driven by technological advance.
This works well for systems with rigid boundaries of
concern, such as embedded systems, but it breaks down
for applications where system boundaries are not fixed
and are subject to constant urgent change. These
applications are typically found in emergent
organisations- “organisations in a state of continual
process change, never arriving, always in transition” [2].
Examples are e-businesses or more traditional companies
which continually need to reinvent themselves to gain
competitive advantage [3]. An example of this may be
that of a firm of stockbrokers who may have a need to
introduce a new service overnight; the service may only
exist for another 24 hours before it is replaced by an
updated version.

The subsequent research by the core DiCE group has
taken a demand-led approach to the provision of
software services, addressing delivery mechanisms and
processes which, when embedded in emergent
organisations, give a software solution in emergent terms-
one with continual change. The solution never ends and
neither does the provision of software. This is most
accurately termed engineering for emergent solutions.

4.2 A Service-Based Approach

This service-based model of software is one in which
services are configured to meet a specific set of
requirements at a point in time, executed and discarded-
the vision of instant service, thus conforming to the
widely accepted definition of a service:

“an act or performance offered by one party to
another. Although the process may be tied to a
physical product, the performance is essentially
intangible and does not normally result in
ownership of any of the factors of production”
[4].

Services are composed out of smaller ones (and so on
recursively), procured and paid for on demand, as and
when needed. A service is not a mechanised process; it
involves humans managing supplier-consumer
relationships. This is a radically new industrial model for
software, which could function within markets ranging
from a genuine open market (requiring software
functional equivalence) to a keisetzu market, where there
is only one supplier and consumer, and both work
together with access to each other’s information systems
to optimise the service to each other.

This strategy enables users to create, compose and
assemble a service by bringing together a number of
suppliers to meet needs at a specific point in time. An
analogy is selling cars: today manufacturers do not sell
cars from a pre-manufactured stock with given colour
schemes, features etc.; instead customers configure their
desired car from series of options and only then is the
final product assembled. This is only possible because
the technology of production has advanced to a state
where assembly of the final car can be undertaken
sufficiently quickly.

Software vendors attempt to offer a similar model of
provision by offering products with a series of
configurable options. However this offers only extremely
limited choice - consumers are not free to substitute

functions with those from another
supplier since the software is subject to
binding which configures and links the
component parts and makes it very
difficult to perform substitution. The aim
of this research is to develop the
technology which will enable binding to
be delayed until immediately before the
point of execution of a system. This will
enable consumers to select the most
appropriate combination of services
required at any point in time.

However late binding comes at a price,
and for many consumers, issues of
reliability, security, cost and convenience
may mean that they prefer to enter into
contractual agreements to have some
early binding for critical or stable parts of
a system, leaving more volatile functions
to late binding and thereby maximising

competitive advantage. The consequence is that any
future approach to software development must be
interdisciplinary so that non-technical issues, such as
supply contracts, terms and conditions, certification, and
redress for software failure are an integral part of the new
technology.

4.3 Current Approaches

The term “software as a service” is beginning to gain
acceptance in the market-place; however the notion of
service-based software extends beyond these emerging
concepts. We have identified three notions of software
service that are currently in use.

The rental model is based upon the rent or hire of
software from a producer, as a means of reducing upfront
costs. For example, more than half of UK companies are
planning, within the next year, to use services that allow
them to rent certain software items rather than buying
them [5]. Strictly, the rental model does not imply any
change to the physical structure or installation location of
software, and so is merely a change in payment method.

The server model is based upon the use of thin clients to
offer software from a central server with a charging
regime based on pay-per-use, typically to avoid upfront
procurement costs by user organisations and achieve up-
to-the-minute maintenance through access to the latest
release of software. However this model does not
necessarily require any change to the basic structure of
the software and relies on achieving user flexibility
through the distribution network. The problem of
maintenance and delivering flexibility is passed to the

Software
Licences and

ownership

Responsibilities
prior to use

System failure
recovery and

redress

Organisational
procedures and

impact

Personalisation
and

configuration
Privacy,

protection
and security

Performance
criteria

Payment terms
and conditions

Figure 1: A Service Delivery Environment

host organisation and provides little scope for easily
delivering software variants and personalised solutions.

The service package model is based on a well
established trend for products to be packaged with a
range of services designed to support and enhance
product use. For example, an airline offering seats as its
core product, may offer a range of additional, value-
adding services as a package. Similarly, some software
producers offer business solutions comprising product
and service elements. Again, this concept does not imply
any change in the nature of the underlying software
product itself, although users may be provided with
different experiences through the service layer
surrounding the product.

A concept that bears some relationship to that of the
service is that of the component [8]. Indeed, component
technology may well be an important interim step on the
way to developing a realisation of the service concept.
Component-based development already includes such
technical concepts as composition, substitution and
evolution, as well as more consumer and market-oriented
issues such as supplier confidence [9]. However,
components are very much a system implementation
concept, and both constructional issues such as binding
mechanisms and architectural forms as well as conceptual
issues such as characterisation of components require to
be resolved in order for components to realise their full
potential.

4.4 Bind Once-Execute Once

A truly service-based role for software is far more radical
than current approaches, in that it seeks to change the
very nature of software. To meet users’ needs of
flexibility and personalisation, an open market-place
framework is necessary in which the most appropriate
versions of software products come together, are bound
and executed as and when needed. At the extreme, the
binding which takes place prior to execution, is discarded
immediately after execution in order to permit the
‘system’ to evolve for the next point of execution.
Flexibility and personalisation are achieved through a
variety of service providers offering functionality through
a competitive market-place, with each software provision
being accompanied by explicit properties of concern for
binding (e.g. dependability, performance, quality, licence
details etc), covering both technical and non-technical
properties of binding.

5. Key Challenges

In the service-based model of software, two key issues
must be considered: (i) the nature of the service supply

chain and (ii) the anatomy and structuring of services.
Each highlights a range of research problems covering
both technical issues, such as how system functionality is
delivered, standardisation of interfaces and performance,
as well as non-technical issues, such as contractual
relationships, the role of markets, industry and economic
models and perception (brand, quality etc.).

5.1 Nature of the Service Supply Chain

Services are supplied through a service supply chain.. At
the top of the chain are consumers with needs that are
satisfied through the provision of software services.
These services are provided through a hierarchy of
service providers, initially through a consumer-supplier
(retail) market and subsequently by sub-contracting to
other suppliers through supplier-supplier (wholesale)
markets. At the bottom are primitive services which
provide basic system functionality, with higher level
providers adding increasing value to these primitives.

In a totally flexible world, consumers would be free to
renegotiate service provision every time they required a
service, giving ultra-late binding between the business
problem and solution. However if this approach were
followed literally, performance with current technology
would be unacceptable. A more pragmatic approach is to
use market forces in which service providers would form
alliances jointly to provide popular services. Speculative
partnerships would form to promote certain new services
and brokerages would form to identify such partnerships.
There would be market pressures to attain continuing
service improvement. In these cases, there would also be
an aggregation of existing services, plus the introduction
and creation of new ones. Management of such partner
relations would become central, involving negotiation,
trust and co-operation; financial arrangements and legal
responsibilities would need to be unambiguous.

To the consumer, issues like branding, quality, cost and
delivery will take on the same role as in other service
industries. For a service provider, the service
functionality must be described, its quality attributes
made clear, and the interface well-defined. The
functionality is a business interface, not just a technical
interface. To summarise, the solution addresses how to
configure, assemble, compose and bind, on demand, a
hierarchy of services which, together, meet the customer
requirement for some top-level service. This process
covers technical and non-technical service elements.
There may also be a need, for long-lived service
partnerships to evolve aspects of the service agreement
while the service is operational. Similarly, each service
may offer a range of configuration and personalisation

options which may be specified by the customer when
requesting an instance of the service.

The anatomy of a service provider comprises a range of
human skills and technology. A service delivery layer
interacts with customers or other service providers for the
delivery of required services. A service personalisation
layer then defines the architecture by which services will
be configured. A critical success factor is the need for a
negotiated and agreed architecture by which services can
be configured, provided and used by the consumer with
the minimum change to either the service provision or
recipient’s system. Success will depend upon the
management of both and non-technical issues.

Service providers will conduct service acquisition to use
sub-services from other providers, as well as adding value
through service development. These will typically be
software based, but need not be. Finally, orthogonal to the
key service provider skills, will be the need to manage
and control the service provision process, both at a
technical level (“are we supplying services correctly?”)
and a business level (“are we supplying the correct
services?”).

Existing work on service definition, enterprise modelling,
software components and agent technologies play a key
role, along with interfacing and negotiation protocols.
However these are not sufficient to deliver software as a
service as they do not address the non-technical issues
which will arise. Much of the existing enterprise
modelling work and brokerage mechanisms assume
simple anonymous market models in which consumers
and suppliers come together and match requirements with
supply. Real markets within a supply chain are more
complex than this, with the consumer-supplier
relationship being two-way: consumers influence the type
and method of supply and the supplier influences a
consumer’s business processes in order to adapt to their
product. Issues such as ability to deliver, responsibility,
redress and recovery are critical to a long-term, lasting
relationship between consumers and suppliers, and
require formalisation within the overall service provision
context.

5.2 The Anatomy and Structuring of Services

In order to achieve the flexibility required of a service-
based environment, the nature and structure of the
underlying software itself must change, to become finer-
grained (K4) and operate transparently (K5) in order to
allow seamless evolution. This is necessary in order to
permit a software architecture in which non-technical,
service-level issues can be assigned to precisely the
element of the software to which they relate, as opposed

to the current situation where service-levels (payment
terms, conditions of use etc.) relate to a configured and
bound software artefact. Thus in Figure 1, whilst
differing non-technical issues may relate to specific parts
of a software product, the fact that an entire product is
bound together means that, at most, non-technical
service-level issues apply to the entire software product.

Thus a service can be defined as a highly cohesive
software component, which requires minimum coupling
[6] wrapped by a service-level agreement which defines
all the terms and conditions of its use.

The existing low-level structure of software, which
simplistically separates data from process, supported by a
user interface and early binding must also be enhanced.
The software kernel of a service must be described in
terms of higher-level constructs if consumers are to be
able to switch easily between service providers: data must
be modelled as information - a higher level concept which
hides issues of representation and focuses on content. A
clearer distinction must also be made between business
rules, the policy by which a service will operate and
process, the means by which a business rules are
achieved. The personalisation of a service, to meet the
specific needs of consumers must also be achievable.
One approach to be considered is the employment of
domain-specific languages to allow users to personalise a
service, although this must be constrained within the
business rules of the service in order to ensure that the
service retains integrity. Finally, the issue of ultra-late
binding must be addressed and will require identifying
pragmatic means of addressing functional equivalence
between services in order to allow them to be substituted.

In terms of the service-level agreement which protects the
software kernel, issues concerned with service marketing
and promotion, service negotiation, service delivery
standards and mechanisms and post-service management
(such as billing and accounting) need to be addressed.

6. User Benefits- An Example

The key user benefits of the service-based approach to
software can most easily be seen through an example.
Consider a simple payroll system which is required to
register hours worked per month by each employee,
calculate monthly pay, calculate tax and social costs,
initiate bank transfer payment to each employer and tax
collection service, issue payslips and charge salary costs
to the appropriate cost centres in a company’s ledger.

Traditionally, such payroll software will be built as a
standard product, employing a range of configuration
options to tailor specific processes to each user

organisation. Each element of even a simple payroll
system, requires a range of expertise (in pay calculation,
taxation laws, electronic funds transfer etc.) and whilst it
may be possible to select ‘best-in-class’ suppliers for each
element, typically a user is presented with a specific
combination of function, likely to have been written by
the same organisation and hence not guaranteed to be
using best-in-class. The ‘bound’ software product with
its internal interfaces and non-technical service-level
issues linked to the entire product, also makes it difficult
to substitute alternative component parts. It is like the
experience of buying consumer goods in which users are
warned ‘opening the box invalidates the warranty’ - to try
and replace a single, internal software component
invalidates the implied (or explicit) service-level
agreement which surrounds the software.

In a service-based approach to software, service-levels
agreements are bound to individual software services,
which can be procured, linked, executed and subsequently
replaced on an individual basis, but without needing to
renegotiate an entire service-level agreement bound to a
single, assembled system.

Thus if such an architecture were to be employed for
providing the payroll system, individual software services
could be changed as necessary. Tax calculation services
could be replaced as different methods of taxation or
calculation are enforced or where employees of
subsidiaries or branches come under a different tax
regime. Methods of electronic funds transfer could be
changed to take advantage of new payment techniques
offered by different financial organisations. Similarly,
the printing of payslips could be replaced by electronic
notification of salary. In the extreme, the payment for
each employee might utilise a different set of services,
while maintaining the integrity of the whole.

7. Current and Future Status

The work outlined in previous sections outline a radical
and ambitious interdisciplinary research programme
which proposes a general architecture for a service-based
approach to software.

It is recognised that a basic proof of concept for the
technical core of this approach is essential to give an
experimental framework in which the detailed concepts
and ideas can be tested. Currently, research is in progress
to develop this, using industry standard tools.
Implementation of a simulation model for exploring the
potential speed up of time to market using a service-
approach is also under development.

Although it is possible to develop models of service
supply chains and to define the anatomy of a service
provider, it is important to recognise that there is no grand
design, methods or set of tools that will achieve highly
flexible, service-oriented software. Whilst there will be
such artefacts, they need to reside in a broader social,
economic and legal framework, which makes this
approach interdisciplinary as a fundamental pre-requisite.
As the proof of concept demonstrator evolves, further
work can be conducted on these interdisciplinary issues.

Two specific areas are under development. Firstly, a
range of management specialists are contributing to the
development of a service-based model of software, whilst
other disciplines are assisting in the development of the
non-technical models necessary to deliver service-based
software.

Secondly, specific application domains are being used to
demonstrate and evaluate the research outputs. This
bottom-up approach will help identify common problems
and issues across domains, from which new styles of
software delivery processes can be built. Each domain
has a clearly identified user community whose role it is to
articulate problem characteristics of their domain and
help in assessing the relevance of the service-based model
of software to meeting their software needs.

In spite of the work-in-progress, a large number of other
research issues remain and part of the purpose of this
paper is to help define a longer-term research agenda for
the software engineering community. Key issues include:

• How do consumers know what services are available

and how do they evaluate them?
• How do consumers express their requirements?
• How are services composed?
• How are services tested?
• What is the appropriate, high integrity, service

delivery infrastructure?
• How must consumers’ data be held to enable

portability between different service suppliers?
• What standards can be used or must be defined to

enable portability of service?
• What will be the impact of branded services and

marketing activities (high quality v low price)?
• How can organisations benefit from rapidly changing

services and how will they manage the interface with
business processes?

• How will individuals perceive and manage rapidly
changing systems? What is the limit to the speed of
change?

• What payment and reward structures will be
necessary to encourage SME service suppliers?

• What will be the new industry models and supply
chain arrangements?

• How can we evaluate the research outcomes?

8. Conclusion

This paper presents a collaborative research method
which, over a period of three years has given rise to a
radical and innovative vision for future software. From
1995 to 1998, attention was focused on creating this
vision and validating it within a multi-disciplinary
workshop. Five hypotheses were formulated which were
then used to frame key questions, the answers to which
have led to a vision of service-based software.

Since 1998, work has addressed the implementation of
this vision. A preliminary architecture has been defined
and is being used as the basis of a proof of concept
demonstrator.

It is pertinent to ask how relevant does the vision remain,
now that five years of the original 10 year timescale has
passed. When starting in 1995, the internet was at a very
early stage. The explosive growth of the internet has
been in a narrow form, mainly restricted to data
interchange (for example, in XML, business to business
e-commerce etc.). The proposed vision foresees the
internet being used along a ‘second dimension’, to
support an open demand-led marketplace for software
based on ultra-late, as-needed binding. Thus the internet
has not overtaken the vision; in contrast, it has increased
the urgency for its implementation.

Expressed in a different way: our ability to change
software to meet new business needs (i.e. software
evolution) improves by only a few percentage points each
year. Even very radical projections of current
technologies, tools and processes (for example, COTS,
reuse etc) seems unlikely to accelerate this rate very
significantly. Yet businesses developing in internet time
need orders of magnitude improvement in change rates to
bring ideas to market far faster than is currently possible.

The basic thesis put forward here is that, unlike most
work in the field, software engineers cannot look to
technology alone to produce such magnitudes of
improvement. To realise a vision of highly flexible
service-based software, a holistic and interdisciplinary

approach to software engineering is essential, bringing
together disciplines such as law, business and economics
with software engineering.

This is a huge challenge for the software engineering
community, which needs to readily and wholeheartedly
embraced. For if user needs cannot be met, software
engineering will be deemed to have failed, and many of
the significant benefits claimed by the internet will be
lost.

Acknowledgements

The authors would like to acknowledge the support and
input from BT plc, especially David Griffiths and Charles
Stannett. The authors also wish to acknowledge the
contribution of Peter Henderson and Pieter Hartel,
University of Southampton, UK. K.H.Bennett would like
to thank the Leverhulme Trust and EPSRC for support
during this research.

References

[1] P.Brereton, D.Budgen, K.Bennett, M.Munro,

P.Layzell, L.Macaulay, D.Griffiths and C.Stannett,
“The Future of Software: Defining the Research
Agenda”, Comm. ACM, Vol.42, No.12, December
1999

[2] D. Truex, R.Baskeville and H.Klein, “Growing
Systems in Emergent Organizations”, Comm.ACM,
Vol.42, No.8, August 1999

[3] M. Cusumano & D. Yoffe, “Competing on Internet
Time – Lessons from Netscape and its Battle with
Microsoft”, Free Press (Simon & Schuster) 1998

[4] C.Lovelock, S.Vandermerwe, B.Lewis, Services
Marketing, Prentice Hall Europe, 1996

[5] “Software Rentals to Increase”, News Digest Report,
Financial Times, 13 April 2000, p8 (UK edition)

[6] E.Yourdon and L.Constantine, Structured Design,
Yourdon Press, 1978.

[7] S. Shapiro, “Splitting the Difference: The Historical
Necessity of Synthesis in Software Engineering”,
IEEE Annals of the History of Computing, Vol. 19,
No. 1, January 1997, pp20-54.

[8] C. Szyperski, Component Software – Beyond object-
oriented programming, Addison-Wesley, 1998.

[9] O.P. Brereton and D. Budgen, “Component Based
Systems: A Classification of Issues”, accepted for
publication in IEEE Computer.

	Service-Based Software: The Future for Flexible Software
	Abstract
	Introduction
	Developing a Future Vision
	There will be a shift in control of service development from software centres to customer and user sites.
	There will be a change in working practices within development and within customer sites involving greater globalisation of development teams and greater user involvement in system delivery.
	There will be a change from one view of quality to many different views, each having a different approach to evaluation.
	There will be a change in attitude towards software development and towards business practice which will improve acceptance and take-up of new technology.
	There will be a change from the inability to predict service behaviour to managing complexity.
	An Interdisciplinary View of Software
	The Service-Based Vision
	Supporting Emergent Organisations
	A Service-Based Approach
	Current Approaches
	Bind Once-Execute Once

	Key Challenges
	Nature of the Service Supply Chain
	The Anatomy and Structuring of Services

	User Benefits- An Example
	Current and Future Status
	Conclusion

