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Key words. General adversaries, mixed model, multi-party computa-tion, unconditional security.1 Introduction1.1 Secure Multi-Party ComputationConsider a set of n players who do not trust each other. Nevertheless they wantto compute an agreed function of their inputs in a secure way. Security meansachieving correctness of the result of the computation while keeping the players'inputs private, even if some of the players are corrupted by an adversary. Thisis the well-known secure multi-party computation problem, as �rst stated byYao [Yao82].As the �rst general solution to this problem, Goldreich, Micali, and Wigder-son [GMW87] presented a protocol that allows n players to securely computean arbitrary function even if an adversary actively corrupts any t < n=2 ofthe players and makes them misbehave maliciously. However, this protocol as-sumes that the adversary is computationally bounded. In a model with secureand authenticated channels between each pair of players (the secure-channelsmodel), Ben-Or, Goldwasser, and Wigderson [BGW88], and Chaum, Cr�epeau,and Damg�ard [CCD88] proved that unconditional security is possible if at mostt < n=2 of the players are passively corrupted, or alternatively, if at most t < n=3of the players are actively corrupted. The bound t < n=3 for the active model wasimproved by Rabin and Ben-Or [RB89], Beaver [Bea91], and Cramer, Damg�ard,Dziembowski, Hirt, and Rabin [CDD+99] to t < n=2 by assuming the existenceof a broadcast channel.Secure multi-party computation can alternatively, and more generally, beseen as the problem of performing a task among a set of players. The task isspeci�ed by involving a trusted party, and the goal of the protocol is to replacethe need for the trusted party. In other words, the functionality of the trustedparty is shared among the players. Secure function evaluation described abovecan be seen as a special case of this more general setting. Most protocols de-scribed in the literature in the context of secure function evaluation also applyin the general context. This also holds for the protocols described in this paper.1.2 General AdversariesIto, Saito, and Nishizeki [ISN87] and Benaloh and Leichter [BL88] introducedthe notion of general (non-threshold) access structures for secret sharing. Fora set P of players, an access structure � is the set of all subsets of P thatare quali�ed to reconstruct the secret. Hirt and Maurer [HM97] transferred andadjusted this notion to the �eld of general multi-party computation: for a set Pof players, an adversary structure Z is a set of all subsets of P that are toleratedto jointly cheat without violating the security of the computation. A multi-partycomputation protocol is called Z-secure if its security is not a�ected even if anadversary corrupts the players in one particular set in Z.2



1.3 ContributionsThe main results of [HM97] state that in the passive model, every function canbe computed unconditionally Z-securely if and only if no two sets in Z coverthe full set P of players. In the active model, every function can be computedZ-securely if and only if no three sets in Z cover P . Assuming the existence ofbroadcast channels and allowing some negligible error probability, every functioncan be computed Z-securely if and only if no two sets in Z cover P .We unify these models and introduce a new model in which the adversarymay actively corrupt some players, and, at the same time, passively corrupt someadditional players. The adversary is characterized by a generalized adversarystructure, a set of classes (D;E) of subsets of the player set P (i.e. D;E � P ),where the players of one speci�c class (D;E) in the adversary structure maybe corrupted | actively for the players in D (disruption) and passively for theplayers in E (eavesdropping).For example, the adversary structure Z = �(fp1g; fp2; p3g); (fp2g; fp4g)	describes an adversary that may either simultaneously corrupt player p1 activelyand the players p2 and p3 passively, or simultaneously corrupt player p2 activelyand player p4 passively. Note that it is not known in advance which class ofthe structure will be corrupted by the adversary (and this is typically even notknown at the end of the protocol).For this uni�ed model, the necessary and su�cient conditions for securemulti-party computation to be achievable for all functions are derived. In orderto characterize these conditions, we introduce three predicates: Let P be a setof players and let Z be an adversary structure for P . Then Q(2,2)(P;Z) is thepredicate that is satis�ed if and only if the players of no two classes in Z coverthe full set P of players, Q(3,2)(P;Z) is the predicate that is satis�ed if and onlyif the players of no two classes in Z together with the players in the active setof any other class in Z cover P , and �nally, Q(3,0)(P;Z) is the predicate that issatis�ed if and only if the players in the active sets of any three classes in Z donot cover P . Formally,Q(2,2)(P;Z) () 8(D1; E1); (D2; E2) 2 Z : D1 [ E1 [D2 [E2 6= P ;Q(3,2)(P;Z) () 8(D1; E1); (D2; E2); (D3; E3) 2 Z : D1 [E1 [D2 [E2 [D3 6= P ;Q(3,0)(P;Z) () 8(D1; E2); (D2; E2); (D3; E3) 2 Z : D1 [D2 [D3 6= P :We characterize the necessary and su�cient conditions on the existence of un-conditionally secure multi-party protocols according to three di�erent cases:{ With or without broadcast channels, perfectly secure (without any probabil-ity of error) multi-party computation is achievable if and only if Q(3,2)(P;Z)is satis�ed.{ Given a broadcast channel, unconditionally secure (with negligible probabil-ity of error) multi-party computation is achievable if and only if Q(2,2)(P;Z)is satis�ed. 3



{ Without a broadcast channel, unconditionally secure multi-party computa-tion is achievable if and only if both predicates Q(2,2)(P;Z) and Q(3,0)(P;Z)are satis�ed.Moreover, for all models we propose constructions that yield protocols withcomputation and communication complexity polynomial in the size of the ad-versary structure and linear in the size of the circuit computing the function, asopposed to the protocols of [HM97] that have super-polynomial complexity inthose cases with error probability. Furthermore we show that this construction isoptimal in the sense that there are adversary structures which require protocolswith complexity at least polynomial in the size of the adversary structure (andhence potentially super-polynomial in the number of players).1.4 Related WorkActive and passive corruptions within the same model was �rst considered byGalil, Haber, and Yung [GHY87] for threshold multi-party computation. Chaum[Cha89] proposed protocols that provide security with respect to an adver-sary that either passively or actively corrupts players up to given thresholds.Dolev, Dwork, Waarts, and Yung [DDWY93] proposed protocols and provedtight bounds for message transmission unconditionally secure in simultaneouspresence of active and passive corruptions.Fitzi, Hirt, and Maurer [FHM98] proposed multi-party protocols secureagainst mixed threshold adversaries. Based on the constructions of classicalmulti-party protocols [BGW88,RB89], they constructed new protocols for anadversary that simultaneously actively, passively, and fail-corrupts players upto given thresholds. However, as pointed out by Damg�ard [Dam99], their pro-tocols for the perfect model (without error probability) do not achieve securityfor all thresholds within the claimed bounds.1 In contrast to their work thatmodi�ed existing protocols in order to achieve the required properties, in thispaper we use the technique of player simulation [HM97] with classical protocols[BGW88,RB89] as a basis.Cramer, Damg�ard, and Maurer [CDM99] proved that for every adversarystructure for which multi-party computation is feasible and for which there isan e�cient linear secret-sharing scheme, e�cient multi-party protocols exist.Smith and Stiglic [SS98] consider also uniquely active adversaries and proposeprotocols for the active model with broadcast. The e�ciency of their protocols ispolynomial in the size of a span program that computes the adversary structure,however in Section 4 we prove that for some adversary structures, every protocolrequires complexity exponential in the number of players. This proof also appliesto models with only passive or only active corruptions.1 Indeed, the tightness proofs for the perfect models in this paper contradict the resultsof [FHM98]. See [Dam99] for more details.4



1.5 OutlineIn Sect. 2 we formally de�ne the models. The main results of the paper, thecharacterization of the exact conditions for secure multi-party protocols as well asthe protocol constructions, are given in Sect. 3. In Sect. 4 we prove the existenceof adversary structures for which no protocols with complexity polynomial inthe number of players exist. Finally, some conclusions and open problems arementioned in Sect. 5.2 De�nitions and ModelThis section gives a formal de�nition of the model used in this paper.2.1 ProtocolsA processor can perform operations in a �xed �nite �eld (F ;+; �), can selectelements from this �eld at random, and can communicate with other proces-sors over perfectly authenticated and con�dential synchronous channels (securechannels model).2A protocol � among a set P of processors is a sequence of statements. Thereare input and output statements, transmit statements, and computation state-ments. The latter include addition, multiplication, and random selection of �eldelements.A multi-party computation speci�cation (or simply called speci�cation) for-mally describes the cooperation to be performed. Intuitively, a speci�cation spec-i�es the cooperation in an ideal environment involving a trusted party. Formally,a speci�cation is a pair (�0; � ) consisting of a protocol �0 among a set P0 of pro-cessors, and the name of a trusted processor � 2 P0.A general approach to multi-party computation is to construct protocols forarbitrary speci�cations, or, more generally, to �nd a function (called multi-partyprotocol generator) that takes a speci�cation as an input and outputs a protocolthat securely computes the speci�cation.2.2 Adversaries and Adversary StructuresAn adversary A is a program that actively corrupts a certain subset of theprocessors and, at the same time, passively corrupts another subset of the pro-cessors. To passively corrupt a processor means to be able to permanently readall variables of that processor. To actively corrupt a processor means to be ableto take full control over the processor, in particular to read and write all its2 In contrast to the players mentioned in the introduction, a processor is consideredto only perform the computation, where inputs and outputs are given from/to someother entity (e.g. a person). This distinction avoids misunderstandings when proces-sors are simulated by multi-party protocols.5



variables. The complexity of an adversary is not assumed to be polynomial andmay be unlimited.An adversary is characterized by an adversary class C = (D;E), a pair ofdisjoint subsets of the processor set, i.e. D;E � P and D\E = ;. An adversaryof class (D;E) may actively corrupt the processors in D (disruption) and maypassively corrupt the processors in E (eavesdropping). The set D is called theactive set and the set E is called the passive set of the class. A processor iscontained in an adversary class if it is a member in either set, i.e. p 2 (D;E),p 2 (D [E). An adversary class C 0 is contained in an adversary class C ifthe active set of C 0 is a subset of the active set of C, and if every processorcontained in C 0 is also contained in C, i.e. (D0; E0) � (D;E), (D0 � D)^(E0 �(D [E)).3 An adversary class C 0 is strictly contained in an adversary class C ifit is contained but not equal, i.e. C 0 � C , (C 0 � C ^C 0 6= C). An adversarystructure Z for the set P of processors is a monotone set of adversary classes,i.e. for every class C 2 Z, all classes contained in C are also in Z. For a structureZ, Z denotes the basis of the structure, i.e. the set of the maximal classes in Z:Z = fC 2 Z :6 9C 0 2 Z : C � C 0g.To restrict a class C = (D;E) to the set P 0 of processors, denoted (D;E) P 0 ,means to intersect both sets of the class with P 0, i.e. (D;E) P 0 = (D\P 0; E\P 0).To restrict a structure Z to the set P 0 of processors means to restrict all classesin the structure.2.3 SecurityFor an adversary A, a protocol A-securely computes a speci�cation if, whateverA does in the protocol, the same e�ect could be achieved by A (with a modi�edstrategy, but with similar costs) in the speci�cation [Can98,Bea91,MR98]. Foran adversary structure Z and a speci�cation (�0; � ), a protocol � Z-securelycomputes the speci�cation (�0; � ) if for every adversary A of class C 2 Z, theprotocol � A-securely computes the speci�cation (�0; � ). Whenever the speci�ca-tion is clear from the context, we also say that a protocol tolerates an adversaryA (a structure Z) instead of saying that the protocol A-securely (Z-securely)computes the speci�cation.3 Complete Characterization of Tolerable AdversariesThe basic technique for constructing a protocol that tolerates a given adver-sary structure is to begin with a threshold protocol (e.g. one of the protocolsof [BGW88,CCD88,RB89]) among a small number of processors and to simu-late some of these processors by subprotocols among appropriate sets of otherprocessors [HM97]. The idea behind this is that everything a processor has toperform during the protocol execution (such as communication with other pro-cessors and local computations) can be simulated by a multi-party computation3 This de�nition implies that every adversary of a given class C 0 can also be consideredas an adversary of every class C with C 0 � C.6



protocol among a set of processors. If the adversary is tolerated by this simula-tion protocol then the simulated processor can be considered to be uncorrupted.This procedure of processor simulation can be applied recursively, i.e., the pro-cessors that participate in the simulation of a processor can again be simulatedby an appropriate set of other processors, and so on.The proofs given in this section are only sketched. Formal proofs based onsimulator techniques can be given according to [Can98,Bea91,MR98]. Also, theproofs in this section are given with respect to a static adversary (i.e. an adver-sary that at the beginning of the protocol selects the processors to be corrupted),but they can be easily modi�ed to apply to a model with an adaptive adversary(i.e. an adversary that consecutively corrupts processors during the computation,depending on the information gained so far, where the processors corrupted atany time must form an admissible class in the adversary structure).3.1 Perfectly Secure Multi-Party ComputationThe main result of this section, the tight bounds as well as the protocol con-struction, are stated in Theorem 1. This general result is based on a solution forall adversary structures Z with jZj � 3, which is given in the following lemma.Lemma 1. A set P of processors can compute every function/speci�cation per-fectly Z-securely if Q(3,2)(P;Z) and jZj � 3. The computation and communica-tion complexities are linear in the size of the speci�cation.Proof. Consider an arbitrary adversary structure Z with jZj � 3 that satis�esQ(3,2)(P;Z), and a speci�cation (�0; � ). We show that for every such structureZ there exists a subset of the processors that can compute the speci�cation in asecure way.4 If jZj < 3, then the condition Q(3,2)(P;Z) immediately implies thatthere is a processor p 2 P that is not contained in any class of Z (i.e. Z fpg =f(;; ;)g). Hence this processor cannot be corrupted by any admissible adversary,and one can simply replace the occurrence of the trusted party � in the protocol�0 of the speci�cation by the name of this processor. Thus assume that jZj =3 and Z = f(D1; E1); (D2; E2); (D3; E3)g. Condition Q(3,2)(P;Z) implies thatthere exists a processor p3 2 P with p3 =2 D1[E1[D2[E2[D3 (but potentiallyp3 2 E3). Hence this processor remains uncorrupted by an adversary of the �rstor the second class, and is (at most) passively corrupted by an adversary of thethird class. By symmetry reasons, there exist processors p1 and p2 which can becorrupted at most passively and only by an adversary of the �rst or the secondclass, respectively. This means that every admissible adversary may corrupt noneof the processors p1, p2, or p3 actively and only at most one of them passively.Hence, these three processors can simulate the trusted party of the speci�cationby using the protocol of [BGW88] (passive model) for three processors. The otherprocessors (if any) are not involved in the simulation of the trusted party. ut4 Although only a subset of the processors is involved in the multi-party computation,all the processors that have input must provide (i.e. secret-share) this input amongthe involved processors. 7



Theorem 1. A set P of processors can compute every function/speci�ca-tion perfectly Z-securely if Q(3,2)(P;Z) is satis�ed. This bound is tight: ifQ(3,2)(P;Z) is not satis�ed, then there exist functions that cannot be computedperfectly Z-securely, even if a broadcast channel is available.5 The communica-tion and computation complexities are polynomial in the size jZj of the basis ofthe adversary structure and linear in the length of the speci�cation.Proof. Consider a set P of processors and a structure Z for this set P such thatQ(3,2)(P;Z) is satis�ed, and an arbitrary speci�cation (�0; � ). We recursivelyconstruct a Z-secure protocol �:The case ��Z�� � 3 was treated in Lemma 1 (induction basis). Thus assumethat jZj � 4, and that for all adversary structures with basis size strictly lessthan k there exists a secure protocol (induction hypothesis). We select somefour-partition of Z where the size of each set of the partition is at least bjZj=4c.Let Z1, Z2, Z3, and Z4 be the four unions of three distinct sets of the partition,each of them completed such that it is monotone. Since jZj � 4, the size jZij ofthe basis of each such structure is strictly smaller than the size jZj of the currentstructure basis, i.e. jZij < jZj (1 � i � 4), and one can recursively constructprotocols �1, �2, �3, and �4, each among the set P of processors, tolerating Z1,Z2, Z3, and Z4, respectively (hypothesis). The protocol � that tolerates Z canbe constructed as follows:First, one constructs a protocol among four \virtual" processors that com-putes the speci�cation (�0; � ), tolerating an adversary that actively corrupts asingle processor [BGW88] (active model). Then one simulates the four virtualprocessors by the recursively constructed protocols �1, : : : , �4, respectively.Since every adversary class is tolerated by at least three of the protocols �1, �2,�3, and �4 (thus only one of the virtual processors in the main protocol is mis-behaving), the resulting protocol tolerates all adversary classes in the adversarystructure and, as claimed, the constructed protocol � is Z-secure.In order to analyze the e�ciency of the protocols, we need the help of thefollowingobservation: The protocols of [BGW88] for the passive model with threeprocessors and those for the active model with four processors have a constant\blow-up factor" bp and ba, respectively, i.e. for any speci�cation of length l, thelength of the protocol computing this speci�cation is bounded by bp � l in thepassive model and by ba � l in the active model.In the construction given above, on each recursion level all involved proces-sors are simulated by using protocols of [BGW88] (active case), except for thelowest level, where [BGW88] (passive case) is used. The simulations on eachlevel can be performed independently, and every statement in the current pro-tocol is a�ected by at most two such simulations (as at most two processorsoccur in one statement). Hence, the total blow-up of all simulations on a givenlevel is bounded by b2a (b2p on the lowest level), and as the recursion depth of theconstruction is logarithmic in the number jZj of maximal sets in the adversarystructure, the total blow-up is polynomial in jZj.5 Indeed, almost every non-trivial function cannot be computed perfectly Z-securely.8



In order to prove the tightness of the theorem, assume an adversarystructure Z for which every function can be computed perfectly Z-securelyand suppose Q(3,2)(P;Z) is not satis�ed. Then there exist three classes(D1; E1); (D2; E2); (D3; E3) 2 Z with D1 [ E1 [D2 [ E2 [D3 = P , and (dueto the monotonicity of Z) with the sets D1, E1, D2, E2 and D3 being pairwisedisjoint.One can construct a protocol for three processors p̂1, p̂2, and p̂3, where p̂1plays for all the processors in D1 [ E1, p̂2 plays for those in D2 [ E2, and p̂3plays for those in D3. This new protocol is secure with respect to an adversarythat passively corrupts either p̂1 or p̂2, or actively corrupts p̂3.Assume that the speci�cation requires to compute the logical AND of twobits x1 and x2 held by p̂1 and p̂2, respectively, and assume for the sake ofcontradiction that a protocol for this speci�cation is given. Let T denote thetranscript of the broadcast channel of a run of that protocol (if no broadcastchannel is available, let T = ;), and let Tij (1 � i < j � 3) denote the transcriptof the channels between p̂i and p̂j. Due to the requirement of perfect privacy,p̂1 will not send any information about his bit x1 over T12 or over T before heknows x2 (if P1 knows that x2 = 1 he can reveal x1). Similarly, p̂2 will not sendany information about x2 over T12 or over T before he knows x1. Hence the onlyescape from this deadlock would be to use p̂3. However, as T12 and T jointlygive no information about x2, a random misbehavior of an actively corrupted p̂3(ignore all received messages and send random bits whenever a message mustbe sent) would with some (possibly negligible) probability make p̂1 receive thewrong output, contradicting the perfect security of the protocol. ut3.2 Unconditionally Secure Multi-Party ComputationWe prove the necessity of Q(2,2) for unconditionally secure multi-party compu-tation in Lemma 2, and prove its su�ciency for the case that broadcast chan-nels are available in Theorem 2. We then consider a model without broadcastand suggest a simple but surprising protocol among three processors for thismodel (Theorem 3). Finally, in Theorem 4, the tight bounds on the existence ofunconditionally secure multi-party protocols in a model without broadcast aregiven. Note that all proposed protocols are e�cient (polynomial in the numberof maximal sets in the adversary structure), as opposed to the protocols for theunconditional model in [HM97].Lemma 2. For every adversary structure Z for a processor set P not satis-fying Q(2,2)(P;Z), there exist functions/speci�cations that cannot be computedunconditionally Z-securely. Even a broadcast channel does not help.Proof. For the sake of contradiction, assume that for an adversary structure Zfor which Q(2,2)(P;Z) is not satis�ed, there exists an unconditional Z-secureprotocol for every function. There exist two classes (D1; E1); (D2; E2) 2 Z withD1[E1[D2[E2 = P . Without loss of generality, assume that the four sets D1,E1, D2, and E2 are pairwise disjoint. Then we can transform such a Z-secure9



protocol into a protocol among two processors p̂1 and p̂2, where each processorplays for the processors in D1 [ E1, and D2 [ E2, respectively. The broadcastchannel is not needed anymore (there are only two processors). This protocolis secure against passive corruption of one of the two processors, contradictingTheorem 2 of [BGW88]. utTheorem 2. If a broadcast channel is available, a set P of processors can com-pute every function/speci�cation unconditionally Z-securely if Q(2,2)(P;Z) issatis�ed. This bound is tight: if Q(2,2)(P;Z) is not satis�ed, then there existfunctions that cannot be computed unconditionally Z-securely. The communica-tion and computation complexities of the protocol are polynomial in the size jZjof the basis of the adversary structure and linear in the length of the speci�cation.Proof. Consider a set P of processors and a structure Z for this set P suchthat Q(2,2)(P;Z) is satis�ed, and an arbitrary speci�cation (�0; � ). We have toconstruct a Z-secure protocol � for the set P of processors.The case ��Z�� � 3 is simple. Since we have Q(2,2)(P;Z), we have three pro-cessors p1, p2, and p3, where pi occurs in the i-th class of Z, but does notoccur in the other classes. The protocol of [RB89] for three processors requiresa broadcast channel and provides unconditional security (with some negligibleerror probability) with respect to an adversary that actively corrupts a singleprocessor (trivially, this processor may also be corrupted only passively). Thisprotocol among the three processors p1, p2, and p3 is Z-secure.The case of a basis with at least four classes is treated along the lines of theconstruction in the proof of Theorem 1: First we select some four-partition of Zand, by recursion, a protocol is constructed for each of the four unions of threesubsets of the partition. Then, these four protocols are composed to a four-partyprotocol of [BGW88, active model].The e�ciency of this protocol can be analysed along the lines of the analysisgiven in the proof of Theorem 1. However, as the protocols of [RB89] that areused in the lowest level of the substitution tree provide some negligible errorprobability, special care is required in the analysis (cf. [HM97]). It follows im-mediately from the analysis in the proof of Theorem 1 that the protocol whichresults after applying all substitutions except for those on the lowest level, haspolynomial complexity. But every statement of this protocol is expanded at mosttwice by all the remaining substitutions (once per involved processor), and eachblow-up is polynomial, and hence the �nal protocol is also polynomial in thenumber jZj of maximal sets in the adversary structure. This is in contrast to theprotocols of [HM97] (for the unconditional model with error probability), whereprotocols of [RB89] are used in each level of the simulation tree and hence theirprotocols have superpolynomial complexity.The tightness of the theorem is given in Lemma 2. utProposition 1. Let Z be an adversary structure for the set P of processors,where one processor p 2 P does not occur in the active set of any class C 2 Z(i.e. 8(D;E) 2 Z : p =2 D). If there exists a Z-secure protocol � in a model with10



broadcast, then one can construct a Z-secure protocol �0 for a model withoutbroadcast. The complexity of �0 is the same as the complexity of �.Proof. Since there exists a processor p 2 P that cannot be actively corrupted byany admissible adversary, it is guaranteed that it follows the protocol. Hence, pcan be used to simulate a broadcast channel. Instead of broadcasting a message,the message is sent to p which then sends this message to all processors in P . utTheorem 3. A set P = fp1; p2; p3g of three processors can compute everyfunction/speci�cation unconditionally securely with respect to an adversary thateither passively corrupts p1 or actively corrupts either p2 or p3, i.e. Z-securelyfor Z = �(;; fp1g), (fp2g; ;), (fp3g; ;)	.Proof. In order to compute an arbitrary speci�cation, the protocol of [RB89]is applied. This protocol for three processors provides unconditional security(with negligible error probability) with respect to an adversary that may activelycorrupt one arbitrary processor, but it assumes the existence of a broadcastchannel. However, the processor p1 does not occur in the active set of any classin Z, so, by Proposition 1, we can transform the protocol with a broadcastchannel to a protocol that does not assume a broadcast channel. utTheorem 4. A set P of processors can compute every function/speci�cationunconditionally Z-securely if Q(2,2)(P;Z) and Q(3,0)(P;Z) are satis�ed. Thisbound is tight: if Q(2,2)(P;Z) or Q(3,0)(P;Z) is not satis�ed, then there existfunctions that cannot be computed unconditionally Z-securely. The communica-tion and computation complexities of the protocol are polynomial in the size jZjof the basis of the adversary structure and linear in the length of the speci�cation.Proof. Consider a set P of processors and a structure Z for this set P suchthat Q(2,2)(P;Z) and Q(3,0)(P;Z) are satis�ed. The condition Q(3,0) impliesthe existence of an e�cient secure protocol for broadcast [FM98], and hence theconstruction of the proof of Theorem 2 yields a Z-secure protocol.The necessity of Q(2,2)(P;Z) was proven in Lemma 2. Thus assume thatQ(2,2)(P;Z) is satis�ed but not Q(3,0)(P;Z), i.e. there exist three classes(D1; E1); (D2; E2); (D3; E3) 2 Z with D1 [ D2 [ D3 = P (and D1, D2, andD3 pairwise disjoint). For the sake of contradiction, assume that for every func-tion a Z-secure multi-party protocol exists, hence in particular for the broadcastfunction. One can hence construct a broadcast protocol for the three processorsp̂1, p̂2, and p̂3 (where each processor p̂1, p̂2, and p̂3 \plays" for the processors inone of the sets D1, D2, and D3, respectively), where the adversary is allowed toactively corrupt one of them, contradicting the result that broadcast for threeprocessors is not possible if the adversary may actively corrupt one of the pro-cessors, even if a negligible error probability is tolerated [LSP82,KY]. utCorollary 1. Using the help of a trusted party � , a set P of n processors cancompute every function/speci�cation unconditionally securely with respect to anadversary that may actively corrupt any subset S � P of size jSj � t (for a given11



t > n=2). The trusted party � obtains no information about the private inputsand outputs as long as less than n� t processors are actively corrupted.Proof. We need to show that there are Z-secure protocols for the set P [f�g ofprocessors, where Z = f(D;E) : jD [Ej � tg[f(D;E [ f�g) : jD [Ej < n� tg.According to Theorem 4 it su�ces to show thatQ(2,2)(P[f�g;Z) andQ(3,0)(P[f�g;Z) are satis�ed. Obviously, Q(3,0)(P [ f�g;Z) holds since � may not beactively corrupted.In order to prove that Q(2,2)(P [ f�g;Z) is satis�ed, consider two arbitraryclasses (D1; E1); (D2; E2) 2 Z. At least one of the classes must contain � (elsethe classes cannot cover P [ f�g), and this class has cardinality at most n � t.The other class has cardinality at most n � t (if it contains � ) or t (if it doesnot contain � ), and the condition t > n=2 implies that in either case the sumcardinality of both classes is at most n. There are n + 1 processors in P [ f�g,hence at least one processor does not occur in either class and Q(2,2)(P [f�g;Z)is satis�ed. ut4 Adversary Structures Without E�cient ProtocolsThe goal of this section is, informally, to prove that there exists a family ofadversary structures for which the length of every resilient protocol grows expo-nentially in the number of processors.For a speci�cation (�0; � ), a set P of processors, and an adversary structureZ, let '�(�0; � ); P;Z� denote the length of the shortest protocol � for P thatZ-securely computes (�0; � ). Furthermore, let (��; � ) denote the speci�cationfor the processors p1 and p2 that reads one input of both processors, computesthe product and hands it to p1. Finally, let Pn denote the set fp1; : : : ; png ofprocessors.The following theorem shows that there exists a family Z2;Z3; : : : of ad-versary structures for the sets P2; P3; : : : of processors, respectively, such that'�(��; � ); Pn;Zn� grows exponentially in n.Theorem 5. For all considered models there is a family Z2;Z3; : : : of admissi-ble adversary structures for the sets P2; P3; : : : of processors such that the length'�(��; � ); Pn;Zn� of the shortest Zn-secure protocol for (��; � ) grows exponen-tially in n.In order to prove the theorem we need an additional de�nition: An admissibleadversary structure Z for the set P of processors is maximal if Q(3,2)(P;Z) issatis�ed, but any adversary structure Z 0 with Z ( Z 0 violates Q(3,2)(P;Z 0).Proof. The proof proceeds in three steps: First we prove that the number of max-imal admissible adversary structures grows doubly-exponentially in the numbern of processors. In the second step, we show that for the given speci�cation12



(��; � ), for every maximal admissible adversary structure a di�erent protocol isrequired. Finally, we conclude that for some adversary structures the length ofevery secure protocol is exponential in the number of processors.1. We exclusively consider adversary structures Z that only contain classeswith an empty active set, i.e. 8(D;E) 2 Z : D = ;. Hence, the necessaryand su�cient conditions for the existence of multi-party protocols is that thepassive sets of no two classes in Z cover the full set P of processors. As ashorthand we write E 2 Z instead of (D;E) 2 Z. Without loss of generality,assume that n = jP j is odd, and let m = (n+ 1)=2. Fix a processor p 2 P ,and consider the set B that contains all subsets of P nfpg with exactly mprocessors, i.e. B = fE � (P nfpg) : jEj = mg. For each subset B0 � B, wede�ne ZB0 to be the adversary structure that contains all sets in B0, plus allsets E � P with jEj < m and (P nE) =2 B. One can easily verify that ZB0 isadmissible and maximal, and that for two di�erent subsets B0; B00 � B, thestructures ZB0 and ZB00 are di�erent. The size of B is jBj = �n�1m �, hencethere are 2(n�1m ) di�erent subsets B0 of B, and thus doubly-exponentiallymany di�erent maximal admissible adversary structures.2. Let Z be a maximal admissible adversary structure, and let � be a protocolthat Z-securely computes (��; � ). For the sake of contradiction, assume thatfor some other maximal admissible adversary structure Z 0 (where Z 0 6= Z),the same protocol � Z 0-securely computes (��; � ). Then � would (Z [ Z 0)-securely compute (��; � ). However, since both Z and Z 0 are maximal admis-sible, (Z [ Z 0) is not admissible, and hence no such protocol exists. Hence,for each maximal admissible adversary structure Z a di�erent protocol � isrequired for securely computing (��; � ).3. There are doubly-exponentially many maximal admissible adversary struc-tures, and for each of them, a di�erent protocol is required, hence there aredoubly-exponentially many di�erent protocols. This concludes that some ofthese protocols have exponential length. ut5 Conclusions and Open ProblemsWe have given a complete characterization of adversaries tolerable in un-conditional multi-party computation in a generalized model where the ad-versary may actively corrupt some players and simultaneously passively cor-rupt some additional players. The characterization of the adversary is givenby a set of pairs of subsets of the player set (rather than thresholds as in[Cha89,DDWY93,FHM98] or an adversary structure for either passive or ac-tive corruption [HM97,CDM99,SS98]). Moreover we have proposed construc-tions that, for any admissible adversary, yield secure protocols with communi-cation and computation complexities polynomial in the size of the adversarystructure. This improves on those protocols in [HM97] that have complexitiessuper-polynomial in the size of the adversary structure.For many scenarios, the protocols proposed in this paper tolerate strictlymore powerful adversaries than are tolerated by any previous protocol. As a13
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