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Abstract -  Current and future SoC will  contain an increasing
number of heterogeneous multiprocessor subsystems combined
with a complex communication architecture to meet flexibility,
performance and cost constraints. The early validation of such
complex MP-SoC architectures is a key enabler to manage this
complexity and thus to enhance design productivity.
In  this  paper,  we  describe  an  abstract,  high  level  CPU
subsystem model that captures the specificities of such MP-SoC
architectures, along with a timed co-simulation environment to
perform early  exploration  of  the  entire  HW/SW design.  The
model  is  based  on  the  Hardware  Abstraction  Layer  (HAL)
concept allowing the validation of complex applications written
on top of real-life operating systems. Experimentation with a
MPEG4  application  proves  the  interest  of  the  proposed
methodology.

I. Introduction

Heterogeneous multiprocessor systems on-chip may be represented,
without  loss  of  generality,  as  a  set  of   processing  nodes  or
components which interact via a communication network (fig.  1).
Depending on the nature of the  components and the way interaction
between them is designed,  different  classes of  SoC architectures
may be obtained.

Figure 1 : a generic heterogeneous MP-SoC  architecture

Realizing  the  complete  potential  of  such  SoC  designs  depends
heavily  on  the  ability  to  perform early  validation  of  the  entire
design to explore different system-level trade-offs.
However, while a large body of research have focused on designing
environments for early HW/SW co-validation, it turned out that the
validation of the SW subsystems in the context of the overall design
is a major bottleneck against efficient design space exploration.     
The main problem behind this difficulty is the abstraction at witch a
SW subsystem is considered. In fact,  in most current approaches,
SW is viewed at the CPU instruction level, which assumes complete
knowledge of the CPU subsystem down to lowest details such as
local  peripherals  address  maps  and  interrupt  registers  bits
assignment.  This  implies that  the CPU subsystem architecture is
fully designed at least at the RT level and that low level SW is also
available to drive it. The validation of such subsystem relies on the
classical approach including instruction set simulator(s) (ISS) of the
target processor(s) and hardware models of peripherals (fig. 2-a).
In  this  paper  we  focus  on  a  higher  SW abstraction  level  :  the
Hardware Abstraction Layer (HAL) concept [1], where the entire
CPU subsystem is viewed as an homogeneous entity providing a set
of services to system programmers (HAL API) .       

The major contribution of this paper is to provide an abstract CPU
subsystem model based on the HAL concept. The proposed model
supports  irregular,  custom architectures  that  feature  (1)  massive,
sophisticated  data  transfer,  (2)  efficient  synchronization  schemes
and (3) complex computation.  
A  simulation  model  based on  the  SystemC environment  is  also
described allowing early, fast and time accurate cosimulation of the
global design.  Compared to a conventional ISS based simulation
model  (fig.  2-a),  the  proposed  abstract  CPU  subsystem  model
provides higher interface levels to both HW and SW sides (fig. 2-b).

Figure 2 : (a) conventional ISS based simulation model  (b) the
proposed HAL based simulation model

The rest  of  the  paper  is  organized as  follows  :  after  discussing
further related work in section 2, the CPU subsystem abstract model
is introduced in section 3, while section 4  details the underlying
simulation environment. A case study on design space exploration
of an  MPEG4 real-time encoder  is  presented in  section 5  while
section 6 concludes the paper.

II. Related Work

Several  works  have  addressed  the  modeling   of  processor
architectures.  Most  of  them used  a  language  based  approach  to
capture processor internal data-path and associated instruction set
architecture (ISA).  Such languages are referred to  as architecture
description languages (ADL). Examples include nML[2], LISA[3]
etc.  While  having  played  an  important  role  in  the  field  of
retargetable SW tool generation (compiler,   assembler, simulators
etc) and HW synthesis, such modeling languages are not intended to
capture  the  whole  CPU  subsystem  architecture.  Besides,  they
operate at the ISA level and thus come late in the design flow.
Recently, some research activities have focused on providing high
level codesign environments for early HW/SW co-exploration. 
SoCOS [4] is an example of such environment including abstract
OS model that can be simulated with timed HW models. In [5], a
method of  building  OS simulation model  is  also  presented.  All,
these  approaches  have  focused  on  providing  an  abstract  OS
execution  environment  that  captures  the  dynamic  behavior  of
software.  However  they  don't  allow  to  model  the  underlying
execution machine, that is the CPU subsystem architecture.
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III. Abstract CPU subsystem Model

A. Overview

Current approaches to model a CPU subsystem view it as a set of
HW components communicating via physical wires (buses, control
signals, interrupt lines etc.). This “HW view” of the CPU subsystem
is a natural one as long as software is considered at the ISA level.
However,  it  becomes  inconvenient  if  we  would  like  to  raise
software abstraction up to the HAL level. At this level, the entire
CPU subsystem should  be  considered as  a functional  entity  that
offers a set of services corresponding to  application needs.  
The proposed HAL level CPU subsystem abstraction is depicted in
fig. 3. It is important to note that the various elements of the figure
do not correspond to physical hardware components but rather to
software functionalities as seen by system programmers. Similarly,
the arrows in the figures are not wires but rather logical relationship
between the different functional elements. 
Seen  globally,  the  model  may  be  compared  to  a  classic  Von
Neumann machine with an execution unit and a data or storage unit.
However, unlike this basic computational model (which is used by
the compiler abstraction), our model includes other system related
aspects such as synchronization (which deals with interrupts) and
I/O transfer (modeled within the data unit). 

Figure 3 : HAL level abstraction of the CPU subsystem

Furthermore,  the model supports parallel  computations inside the
execution unit. The access unit plays an important role in modeling
the coordination of data transfer between entities requesting data
access and entities providing such data.          
To  allow  the  CPU subsystem model  to  be  used  in  a  codesign
environment,  the HW interface to the rest of the system  is also
included.  In  fact,  this HW interface represents the “trace” of  the
CPU subsystem model inside the overall  (hardware) system. The
interface itself is abstracted through two types of services: provided
services (slave ports) and required  services (master port). Special
provided services correspond to interrupt requests. 

B. Execution unit abstraction

The  execution  unit  (EU)  abstracts  computation  inside  the  CPU
subsystem. It is basically composed of one or more processing units
(PU). A processing unit is an independent parallel computation path
that has its own execution thread. This decomposition corresponds
to a task level parallelism and is explicitly visible to programmers.
Examples may range  from SMT and SMP architectures  to  more
heterogeneous forms, all known as chip multiprocessing (CMP).
The EU element should provide a boot abstraction that  ensures a
consistent  state  at  startup  time  (especially  in  a  multiprocessor
context). It is also responsible of providing an identification service
as well as services for synchronization (e.g. by means of spin-locks)

and  inter-PU interruption.  Atomic  operations  which  are  used  to
implement spin-locks are provided by the access unit.
The  PU  element  should  provide  services  to  manipulate  its
underlying execution thread (context operations). These services are
used by the operating system to implement SW multitasking. 

C. Data unit abstraction

The data unit is a placeholder for more basic data entities which are
device elements. A device element is an abstraction of any physical
device that may hold relevant information from a user perspective.
This excludes many other physical devices that don't directly fill a
functional role from a high level programmer point of view (e.g.
Bus bridges, interrupt controllers etc).  
A device element may be of two different types : passive and active.
A passive device corresponds to a collection of simple idempotent
memory  locations  (e.g.  RAMs,  ROMs etc).  An active  device  is
composed of  memory locations plus an  underlying behavior  that
may modify the content of these locations.
The services provided by the data unit should be considered as per
device  basis. Generally  passive  devices  just  provide  read/write
services from/to  specific  addresses.  However  active  devices  may
provide  higher  level  services  that  perform  more  complex
functionalities such as resetting a timer, initiating a DMA transfer
etc.  From  an  implementation  point  of  view,  this  eventually
corresponds to a sequence of read/write operations on   registers. In
our model, we assume that whenever a higher level functionality is
available for a device, the programmer is supposed to use it rather
than performing low level register accesses. This is coherent with
the “HAL concept” which relieves the programmer from low level
implementation details.        

D. Access unit abstraction

The access unit corresponds to the  abstraction of a key feature in
SoC design: communication and data  transfer.  It  is made of two
different entities: address space collection and access ports.   
The address space collection is a set of independent address spaces.
An address  space abstracts  a  physical  addressable  domain which
may be a bus or a hierarchy of related bus segments.
Each address space entity is associated to a set of device elements.
This  association  constitutes  the  address  map  of  the  considered
address space. A device element may  be mapped to more than one
address  space.  In  such  case,  the  device  may  be  accessed
independently from either space (case of a dual port memory). In
our model,  a device may also have a “virtual  map” where actual
values  of  the  address  range  are  nor  relevant  for  the  considered
abstraction level.
An access port is the only place where address space entities may be
accessed. Access ports are often associated to PU, but some device
elements  may also  have  associated  access ports  (case of   DMA
enabled devices for instance).
In terms of services, an address space element should provide basic
read/write operations. Other services such as conflict resolution by
means  of  sequential  operations  (like  barriers)  as  well  as  atomic
operations may also be needed.  
In  many  cases,  access  ports  are  transparent  to  programmers.
However,  they may hide complex behavior  such as caching and
dynamic address translation (MMU). In such cases, the associated
services must be provided (cache flushing / invalidating, translation
table operations etc). 

E. Synchronization unit abstraction

In our model, we consider that the interruption process has a global
visibility since it concerns different types of elements. Physically,
the  interrupt  management  process  is  often   distributed  among
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several hardware components starting from the processor itself and
including special devices such as interrupt controllers. In our model,
The whole (complex) interrupt management process is abstracted by
the synchronization unit. Interrupt requests are identified by unique
IDs  and  have  associated  priorities  that  determine  their  run-time
precedence. Interrupt requests are then processed and delivered on a
per PU basis.  
The  synchronization  unit  should  provide  services  to  attach
interrupts  to  special  SW  handlers  (ISR).  It  should  also  provide
appropriate  services  to  control  the  run-time  behavior  of  the
interruption mechanism such as enabling/disabling  interrupts, and
setting/modifying their priorities.

F. The  metamodel

The different elements of the above abstract CPU subsystem model
and  their  relationship  can  be  captured,  more  formally,  within  a
domain specific language (DSL) using the metamodel formalism.
The figure below depicts the proposed abstract syntax of the  CPU
subsystem model
The metamodel description is based on a UML-like notation where
different  elements  of  the  abstract  CPU  subsystem  model  are
captured within a class diagram. Each HAL service  related to an
element corresponds  to  a  member  function inside  the  associated
class.
In the figure, the gray area corresponds to what we call “core HAL”.
This  includes  the  basic  elements  that  are  common  to  all
architectures. Domain specific extensions may then be defined by
extending those basic elements.
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Figure 4: the metamodel view of the abstract CPU subsystem

IV.The simulation environment

The simulation model is used inside a cosimulation environment to
perform early design space exploration. As cosimulation platform,
we use SystemC that offers a natural context for describing software
in addition to many other attractive system level design facilities[6].
To achieve the required simulation speed, we rely on  the native
execution  of  SW  [7]  in  contrast  to  the  interpreted,  ISS  based
approach.  The  native  execution approach is  made possible  since
our SW is HW independent. It, therefore, can be compiled for the
host simulation machine and run against an appropriate HAL library
that  emulates  the  actual  target  dependent  HAL.  This  approach,
augmented by appropriate performance annotations of the original
SW code ensures an equivalent functional behavior while giving an
acceptable accuracy level.    
Fig. 5 gives an overview of the proposed simulation environment.

One one side, we have software code written at the HAL level (i.e
using  HAL  API).  On  the  other  side,  we  have  the  SystemC
(hardware)  model  of  the  entire  design  including  communication
network,  HW subsystems  and  CPU subsystems.  For  each  CPU
subsystem module,  corresponds  an  application SW. In  our  case,
different  applications  are  compiled  separately  as  shared  library
objects and linked to the SystemC executable.       

figure 5 : overview of the simulation environment

A  CPU  subsystem model  is  represented  by  a  unique  SystemC
module  that  provides  a  set  of  hardware  services  throughout  its
associated ports. The abstract CPU subsystem model elements are
represented by dashed lines. They are implemented as C++ objects
whose interfaces export the different HAL services. In the figure,
the unique SystemC objects within the CPU subsystem module are
processes (circles) and events (asterisks). 
For each PU, we associate a SystemC process (SC_THREAD) and a
dynamic  event.  The  process  is  responsible  of  running  the
application behavior. In the figure, the execution unit is composed
of two PU that run the same code in a homogeneous single program
multiple data (SPMD) fashion. A SystemC process is also needed to
model the run-time behavior of the synchronization unit. Similarly,
some device elements (typically  those that  have active behavior)
need to have associated processes.    
Modeling SW time
To enable time accurate simulation,  SW execution time has to be
modeled. This is achieved by performing static annotations within
the  original SW code.  This kind of code instrumentation is  well
covered  in  the  literature  [7].  Given  a  processor  type,  the  time
needed  by  a  SW basic  block  to  execute  is  estimated.  The  SW
application  code  is  then  instrumented  accordingly  by  annotating
each basic block using its corresponding delay. These annotations
will correspond to “wait” statements.     
However, the statically estimated delays do not take into account
the possible occurrence of hardware interrupts, nor do they take into
consideration the effect of stalls associated with concurrent accesses
to the same address space entity. To solve this problem, we use a
special  annotating  function  (consume)  which  implements  an
appropriate  algorithm  based  on  the  dynamic  sensitivity  of  the
SystemC wait(delay,event) function.
Fig.6 the run-time behavior of the  consume() function, where two
parallel elements, each having its own access port (a PU and a DMA
device  for  instance)  concurrently  access  the  same address  space
entity. 

Figure 6: example of “consume” run-time behavior
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V.  Case study : real-time DivX encoder

Fig.  7  shows the  specification  of  the  MPEG4 real-time encoder
application. The input module receives a stream of non-compressed
video data (QCIF). Each video frame is then split into 4 sub-frames
which are sent to 4 parallel encoding modules. The processed data is
then sent to a variable length encoding module (VLC) which also
reconstructs  the  entire  frame before  forwarding  it  to  the  output
module.  

Figure 7: Specification of the DivX application

Target architecture and simulation environment 
The target architecture is built around a DMA engine network. Each
encoder module consists in a ARM7 based CPU sub-system. The
VLC module is mapped on a ARM9 based CPU sub-system, while
input and output are mapped on dedicated HW IPs.
Fig. 8 shows the HAL level SystemC simulation model of the DivX
application. The DMA engine is modeled at TLM level. For each
CPU subsystem, we use a (proprietary)  RTOS that was slightly
adapted to  rely  on the same HAL API as that   provided by the
abstract CPU subsystem simulation model.
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Figure 8 : Simulation model of the DivX application 

CPU subsystem model
we experimented two variants of CPU subsystems. In the first one
(figure 9a), the input video buffer is made part of the local CPU on-
chip memory. Therefore, the network controller has to go through
system bus in order to perform a DMA transfer.  Access conflicts
are resolved using an arbiter implementing a simple FIFO based
scheduler.  In  the  second  configuration  (figure  9b),  a  dedicated
double  bank  video  buffer  is  used.  This  allows  computation  be
performed in parallel with external data transfer.
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Figure 9 : two CPU subsystems variants

We first run the simulation at HAL level with corresponding CPU
subsystem simulation models. Then, we performed a cycle accurate
simulation using instruction set  simulators (Armulator).  This step
corresponds to the refinement of the abstract CPU subsystems i.e
using  real  hardware  components  for  the  CPU  subsystem  and
associated real HAL software.
The  obtained  results  are  summarized in  table  1.  The  test-bench
consists  in  a  1  second  video  sequence.  The  different  ARM

processors are cadenced at 60 MHz
     

Execution time (s)

ISA HAL

Average
error

Simulation time

ISA HAL

Speed-up

Enc 1,337 1.378 3%

VLC 0.840 0.889 6%
8h 22s x1300

Enc 0.918 0.938 2%

VLC 0.622 0.653 5%
8h 16s x1800

Table 1 : experimental results 

The  upper and lower part of the table correspond to the first and
second CPU subsystem variants respectively. 
The first column shows the active time consumed by the different
CPU's in order to process the 1 second video sequence. This time is
measured in both ISA and HAL based simulations. 
The second column computes the average error of the HAL level
simulation compared to the ISA one (assuming a 100% accuracy for
the later). The obtained results show that :

� The first CPU subsystem variant failed to be real time 
� The error relative to the VLC module is more important because

of the ARM9 pipeline architecture.
� Errors are slightly more important in the case of the first CPU

subsystem architecture (without double bank memory) because
of  the  additional  inaccuracy  introduced  by  the  bus  arbiter
simulation model.

The last two columns are related to simulation speed. We clearly see
that, compared to ISA based simulation, the HAL level simulation
achieves a considerable speedup (more than 3 orders of magnitude).
The  speedup  is  slightly  degraded  in  the  first  architecture
configuration  because  of  the  overhead  introduced  by  the  bus
scheduling  process. 

VI. Conclusion

In  this  paper,  we  presented  an  abstract  CPU subsystem  model
targeting MP-SoC design. The proposed model captures most of the
inherent SoC specificities in  terms of computation,  data transfer,
and synchronization while offering a high level view of the CPU
subsystem.  A  simulation  environment  implementing  such  model
was  also  described  on  top  of  SystemC.  The  obtained  results
demonstrate  a  considerable  simulation  speedup  compared  to  a
classic ISS based simulation and a reasonable accuracy, which are
key enablers for early design space exploration.  
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