
Using Abstract CPU Subsystem Simulation Model for High Level HW/SW
Architecture Exploration

Aimen Bouchhima Iuliana Bacivarov Wassim Youssef Marius Bonaciu Ahmed A. Jerraya

System Level Synthesis Group, TIMA laboratory
46, Av. Felix Viallet, 38031 Grenoble, France

{Forename.Name@imag.fr}

Abstract - Current and future SoC will contain an increasing
number of heterogeneous multiprocessor subsystems combined
with a complex communication architecture to meet flexibility,
performance and cost constraints. The early validation of such
complex MP-SoC architectures is a key enabler to manage this
complexity and thus to enhance design productivity.
In this paper, we describe an abstract, high level CPU
subsystem model that captures the specificities of such MP-SoC
architectures, along with a timed co-simulation environment to
perform early exploration of the entire HW/SW design. The
model is based on the Hardware Abstraction Layer (HAL)
concept allowing the validation of complex applications written
on top of real-life operating systems. Experimentation with a
MPEG4 application proves the interest of the proposed
methodology.

I. Introduction

Heterogeneous multiprocessor systems on-chip may be represented,
without loss of generality, as a set of processing nodes or
components which interact via a communication network (fig. 1).
Depending on the nature of the components and the way interaction
between them is designed, different classes of SoC architectures
may be obtained.

Figure 1 : a generic heterogeneous MP-SoC architecture

Realizing the complete potential of such SoC designs depends
heavily on the ability to perform early validation of the entire
design to explore different system-level trade-offs.
However, while a large body of research have focused on designing
environments for early HW/SW co-validation, it turned out that the
validation of the SW subsystems in the context of the overall design
is a major bottleneck against efficient design space exploration.
The main problem behind this difficulty is the abstraction at witch a
SW subsystem is considered. In fact, in most current approaches,
SW is viewed at the CPU instruction level, which assumes complete
knowledge of the CPU subsystem down to lowest details such as
local peripherals address maps and interrupt registers bits
assignment. This implies that the CPU subsystem architecture is
fully designed at least at the RT level and that low level SW is also
available to drive it. The validation of such subsystem relies on the
classical approach including instruction set simulator(s) (ISS) of the
target processor(s) and hardware models of peripherals (fig. 2-a).
In this paper we focus on a higher SW abstraction level : the
Hardware Abstraction Layer (HAL) concept [1], where the entire
CPU subsystem is viewed as an homogeneous entity providing a set
of services to system programmers (HAL API) .

The major contribution of this paper is to provide an abstract CPU
subsystem model based on the HAL concept. The proposed model
supports irregular, custom architectures that feature (1) massive,
sophisticated data transfer, (2) efficient synchronization schemes
and (3) complex computation.
A simulation model based on the SystemC environment is also
described allowing early, fast and time accurate cosimulation of the
global design. Compared to a conventional ISS based simulation
model (fig. 2-a), the proposed abstract CPU subsystem model
provides higher interface levels to both HW and SW sides (fig. 2-b).

Figure 2 : (a) conventional ISS based simulation model (b) the
proposed HAL based simulation model

The rest of the paper is organized as follows : after discussing
further related work in section 2, the CPU subsystem abstract model
is introduced in section 3, while section 4 details the underlying
simulation environment. A case study on design space exploration
of an MPEG4 real-time encoder is presented in section 5 while
section 6 concludes the paper.

II. Related Work

Several works have addressed the modeling of processor
architectures. Most of them used a language based approach to
capture processor internal data-path and associated instruction set
architecture (ISA). Such languages are referred to as architecture
description languages (ADL). Examples include nML[2], LISA[3]
etc. While having played an important role in the field of
retargetable SW tool generation (compiler, assembler, simulators
etc) and HW synthesis, such modeling languages are not intended to
capture the whole CPU subsystem architecture. Besides, they
operate at the ISA level and thus come late in the design flow.
Recently, some research activities have focused on providing high
level codesign environments for early HW/SW co-exploration.
SoCOS [4] is an example of such environment including abstract
OS model that can be simulated with timed HW models. In [5], a
method of building OS simulation model is also presented. All,
these approaches have focused on providing an abstract OS
execution environment that captures the dynamic behavior of
software. However they don't allow to model the underlying
execution machine, that is the CPU subsystem architecture.

(a) (b)

CPUCPU

Communication network

NI NI NI

CPU
CPUCPUMem

BB

P P

A

NI HW
accel

SW
subsystem

SW
subsystem

HW
subsystem

DMA

BFM

Application SW

cross
compilation/assembly

Binary image
for target CPU ISS

Rest of system
model

Periph. models

Application SW

native
compilation

Rest of system
model

Native binary
(library)

Abstract CPU
subsystem

model

HAL API

HW services

HAL API

HAL API

interpretation
linking

HAL

CPU subsystem CPU subsystem

HAL API

signals High level interface

Draft version

III. Abstract CPU subsystem Model

A. Overview

Current approaches to model a CPU subsystem view it as a set of
HW components communicating via physical wires (buses, control
signals, interrupt lines etc.). This “HW view” of the CPU subsystem
is a natural one as long as software is considered at the ISA level.
However, it becomes inconvenient if we would like to raise
software abstraction up to the HAL level. At this level, the entire
CPU subsystem should be considered as a functional entity that
offers a set of services corresponding to application needs.
The proposed HAL level CPU subsystem abstraction is depicted in
fig. 3. It is important to note that the various elements of the figure
do not correspond to physical hardware components but rather to
software functionalities as seen by system programmers. Similarly,
the arrows in the figures are not wires but rather logical relationship
between the different functional elements.
Seen globally, the model may be compared to a classic Von
Neumann machine with an execution unit and a data or storage unit.
However, unlike this basic computational model (which is used by
the compiler abstraction), our model includes other system related
aspects such as synchronization (which deals with interrupts) and
I/O transfer (modeled within the data unit).

Figure 3 : HAL level abstraction of the CPU subsystem

Furthermore, the model supports parallel computations inside the
execution unit. The access unit plays an important role in modeling
the coordination of data transfer between entities requesting data
access and entities providing such data.
To allow the CPU subsystem model to be used in a codesign
environment, the HW interface to the rest of the system is also
included. In fact, this HW interface represents the “trace” of the
CPU subsystem model inside the overall (hardware) system. The
interface itself is abstracted through two types of services: provided
services (slave ports) and required services (master port). Special
provided services correspond to interrupt requests.

B. Execution unit abstraction

The execution unit (EU) abstracts computation inside the CPU
subsystem. It is basically composed of one or more processing units
(PU). A processing unit is an independent parallel computation path
that has its own execution thread. This decomposition corresponds
to a task level parallelism and is explicitly visible to programmers.
Examples may range from SMT and SMP architectures to more
heterogeneous forms, all known as chip multiprocessing (CMP).
The EU element should provide a boot abstraction that ensures a
consistent state at startup time (especially in a multiprocessor
context). It is also responsible of providing an identification service
as well as services for synchronization (e.g. by means of spin-locks)

and inter-PU interruption. Atomic operations which are used to
implement spin-locks are provided by the access unit.
The PU element should provide services to manipulate its
underlying execution thread (context operations). These services are
used by the operating system to implement SW multitasking.

C. Data unit abstraction

The data unit is a placeholder for more basic data entities which are
device elements. A device element is an abstraction of any physical
device that may hold relevant information from a user perspective.
This excludes many other physical devices that don't directly fill a
functional role from a high level programmer point of view (e.g.
Bus bridges, interrupt controllers etc).
A device element may be of two different types : passive and active.
A passive device corresponds to a collection of simple idempotent
memory locations (e.g. RAMs, ROMs etc). An active device is
composed of memory locations plus an underlying behavior that
may modify the content of these locations.
The services provided by the data unit should be considered as per
device basis. Generally passive devices just provide read/write
services from/to specific addresses. However active devices may
provide higher level services that perform more complex
functionalities such as resetting a timer, initiating a DMA transfer
etc. From an implementation point of view, this eventually
corresponds to a sequence of read/write operations on registers. In
our model, we assume that whenever a higher level functionality is
available for a device, the programmer is supposed to use it rather
than performing low level register accesses. This is coherent with
the “HAL concept” which relieves the programmer from low level
implementation details.

D. Access unit abstraction

The access unit corresponds to the abstraction of a key feature in
SoC design: communication and data transfer. It is made of two
different entities: address space collection and access ports.
The address space collection is a set of independent address spaces.
An address space abstracts a physical addressable domain which
may be a bus or a hierarchy of related bus segments.
Each address space entity is associated to a set of device elements.
This association constitutes the address map of the considered
address space. A device element may be mapped to more than one
address space. In such case, the device may be accessed
independently from either space (case of a dual port memory). In
our model, a device may also have a “virtual map” where actual
values of the address range are nor relevant for the considered
abstraction level.
An access port is the only place where address space entities may be
accessed. Access ports are often associated to PU, but some device
elements may also have associated access ports (case of DMA
enabled devices for instance).
In terms of services, an address space element should provide basic
read/write operations. Other services such as conflict resolution by
means of sequential operations (like barriers) as well as atomic
operations may also be needed.
In many cases, access ports are transparent to programmers.
However, they may hide complex behavior such as caching and
dynamic address translation (MMU). In such cases, the associated
services must be provided (cache flushing / invalidating, translation
table operations etc).

E. Synchronization unit abstraction

In our model, we consider that the interruption process has a global
visibility since it concerns different types of elements. Physically,
the interrupt management process is often distributed among

PU

PU

PU

Device (...)

device
(memory)

device
(NI)

Device (...)

Device
(...)

Synch. Unit

Interrupt port

Access UnitExecution Unit Data Unit

Master port
Slave port

Address space
Access port

Mapping

Draft version

several hardware components starting from the processor itself and
including special devices such as interrupt controllers. In our model,
The whole (complex) interrupt management process is abstracted by
the synchronization unit. Interrupt requests are identified by unique
IDs and have associated priorities that determine their run-time
precedence. Interrupt requests are then processed and delivered on a
per PU basis.
The synchronization unit should provide services to attach
interrupts to special SW handlers (ISR). It should also provide
appropriate services to control the run-time behavior of the
interruption mechanism such as enabling/disabling interrupts, and
setting/modifying their priorities.

F. The metamodel

The different elements of the above abstract CPU subsystem model
and their relationship can be captured, more formally, within a
domain specific language (DSL) using the metamodel formalism.
The figure below depicts the proposed abstract syntax of the CPU
subsystem model
The metamodel description is based on a UML-like notation where
different elements of the abstract CPU subsystem model are
captured within a class diagram. Each HAL service related to an
element corresponds to a member function inside the associated
class.
In the figure, the gray area corresponds to what we call “core HAL”.
This includes the basic elements that are common to all
architectures. Domain specific extensions may then be defined by
extending those basic elements.

Model

Execution
unit

Data unit

1

1

devicetrap

P.U

1

1

1

1

1

1..*

Timer

Network i/f

DMA

map *

Access port Access unit

1..*

Addr space
1 1

1..*

range

1..*

1

1

1

1..*

Core HAL

Access port

*

*

�

*

1

�

Sync. unit
1

1

ASIP1

ASIP2

...

*

1..*

1

1

1

Aggregation : a part of associationwhole part

Dependency association
dependent source

superclass
subclass

Specialization

Figure 4: the metamodel view of the abstract CPU subsystem

IV.The simulation environment

The simulation model is used inside a cosimulation environment to
perform early design space exploration. As cosimulation platform,
we use SystemC that offers a natural context for describing software
in addition to many other attractive system level design facilities[6].
To achieve the required simulation speed, we rely on the native
execution of SW [7] in contrast to the interpreted, ISS based
approach. The native execution approach is made possible since
our SW is HW independent. It, therefore, can be compiled for the
host simulation machine and run against an appropriate HAL library
that emulates the actual target dependent HAL. This approach,
augmented by appropriate performance annotations of the original
SW code ensures an equivalent functional behavior while giving an
acceptable accuracy level.
Fig. 5 gives an overview of the proposed simulation environment.

One one side, we have software code written at the HAL level (i.e
using HAL API). On the other side, we have the SystemC
(hardware) model of the entire design including communication
network, HW subsystems and CPU subsystems. For each CPU
subsystem module, corresponds an application SW. In our case,
different applications are compiled separately as shared library
objects and linked to the SystemC executable.

figure 5 : overview of the simulation environment

A CPU subsystem model is represented by a unique SystemC
module that provides a set of hardware services throughout its
associated ports. The abstract CPU subsystem model elements are
represented by dashed lines. They are implemented as C++ objects
whose interfaces export the different HAL services. In the figure,
the unique SystemC objects within the CPU subsystem module are
processes (circles) and events (asterisks).
For each PU, we associate a SystemC process (SC_THREAD) and a
dynamic event. The process is responsible of running the
application behavior. In the figure, the execution unit is composed
of two PU that run the same code in a homogeneous single program
multiple data (SPMD) fashion. A SystemC process is also needed to
model the run-time behavior of the synchronization unit. Similarly,
some device elements (typically those that have active behavior)
need to have associated processes.
Modeling SW time
To enable time accurate simulation, SW execution time has to be
modeled. This is achieved by performing static annotations within
the original SW code. This kind of code instrumentation is well
covered in the literature [7]. Given a processor type, the time
needed by a SW basic block to execute is estimated. The SW
application code is then instrumented accordingly by annotating
each basic block using its corresponding delay. These annotations
will correspond to “wait” statements.
However, the statically estimated delays do not take into account
the possible occurrence of hardware interrupts, nor do they take into
consideration the effect of stalls associated with concurrent accesses
to the same address space entity. To solve this problem, we use a
special annotating function (consume) which implements an
appropriate algorithm based on the dynamic sensitivity of the
SystemC wait(delay,event) function.
Fig.6 the run-time behavior of the consume() function, where two
parallel elements, each having its own access port (a PU and a DMA
device for instance) concurrently access the same address space
entity.

Figure 6: example of “consume” run-time behavior

not shared not shared

PU

DMA

postponed

time

activity

t1 t2

D1 D21

D
ISR

D22 D3

D
ISR

stall

t3 t4

D'1 D'2 D'3 D'4

void os_main()
{

 // HAL_CALL();

}

void user_task1()
{

 //HAL_CALL();

}

Communication network model

P P

PP

P

Software HW platform (SystemC)

CPU subsystem model

* *

Draft version

V. Case study : real-time DivX encoder

Fig. 7 shows the specification of the MPEG4 real-time encoder
application. The input module receives a stream of non-compressed
video data (QCIF). Each video frame is then split into 4 sub-frames
which are sent to 4 parallel encoding modules. The processed data is
then sent to a variable length encoding module (VLC) which also
reconstructs the entire frame before forwarding it to the output
module.

Figure 7: Specification of the DivX application

Target architecture and simulation environment
The target architecture is built around a DMA engine network. Each
encoder module consists in a ARM7 based CPU sub-system. The
VLC module is mapped on a ARM9 based CPU sub-system, while
input and output are mapped on dedicated HW IPs.
Fig. 8 shows the HAL level SystemC simulation model of the DivX
application. The DMA engine is modeled at TLM level. For each
CPU subsystem, we use a (proprietary) RTOS that was slightly
adapted to rely on the same HAL API as that provided by the
abstract CPU subsystem simulation model.

RTOS

Application
(encoder)

HAL API

RTOS

Application
(VLC)

HAL API

Abstract CPU
subsystem model

Abstract CPU
subsystem model

IN OUTDMA engine

input
stream

output
stream

Figure 8 : Simulation model of the DivX application

CPU subsystem model
we experimented two variants of CPU subsystems. In the first one
(figure 9a), the input video buffer is made part of the local CPU on-
chip memory. Therefore, the network controller has to go through
system bus in order to perform a DMA transfer. Access conflicts
are resolved using an arbiter implementing a simple FIFO based
scheduler. In the second configuration (figure 9b), a dedicated
double bank video buffer is used. This allows computation be
performed in parallel with external data transfer.

CPU SRAM

NI v-buffer

PIC

Timer
ctrl

CPU SRAM

NI

PIC

Timer

Arbiter

Figure 9 : two CPU subsystems variants

We first run the simulation at HAL level with corresponding CPU
subsystem simulation models. Then, we performed a cycle accurate
simulation using instruction set simulators (Armulator). This step
corresponds to the refinement of the abstract CPU subsystems i.e
using real hardware components for the CPU subsystem and
associated real HAL software.
The obtained results are summarized in table 1. The test-bench
consists in a 1 second video sequence. The different ARM

processors are cadenced at 60 MHz

Execution time (s)

ISA HAL

Average
error

Simulation time

ISA HAL

Speed-up

Enc 1,337 1.378 3%

VLC 0.840 0.889 6%
8h 22s x1300

Enc 0.918 0.938 2%

VLC 0.622 0.653 5%
8h 16s x1800

Table 1 : experimental results

The upper and lower part of the table correspond to the first and
second CPU subsystem variants respectively.
The first column shows the active time consumed by the different
CPU's in order to process the 1 second video sequence. This time is
measured in both ISA and HAL based simulations.
The second column computes the average error of the HAL level
simulation compared to the ISA one (assuming a 100% accuracy for
the later). The obtained results show that :

� The first CPU subsystem variant failed to be real time
� The error relative to the VLC module is more important because

of the ARM9 pipeline architecture.
� Errors are slightly more important in the case of the first CPU

subsystem architecture (without double bank memory) because
of the additional inaccuracy introduced by the bus arbiter
simulation model.

The last two columns are related to simulation speed. We clearly see
that, compared to ISA based simulation, the HAL level simulation
achieves a considerable speedup (more than 3 orders of magnitude).
The speedup is slightly degraded in the first architecture
configuration because of the overhead introduced by the bus
scheduling process.

VI. Conclusion

In this paper, we presented an abstract CPU subsystem model
targeting MP-SoC design. The proposed model captures most of the
inherent SoC specificities in terms of computation, data transfer,
and synchronization while offering a high level view of the CPU
subsystem. A simulation environment implementing such model
was also described on top of SystemC. The obtained results
demonstrate a considerable simulation speedup compared to a
classic ISS based simulation and a reasonable accuracy, which are
key enablers for early design space exploration.

References
[1] S. Yoo, A.A Jerraya “Introduction to Hardware Abstraction
Layers for SoC.” In Proc. of DATE, Mar. 2003.
[2] A. Fauth and J. Van Praet and M. Freericks. “Describing
Instruction Set Processors Using nML”. In Proc. of the European
Design and Test Conference, Mar. 1995.
[3] S.Pees, A.Hoffman. “LISA - Machine Description Language for
Cycle-Accurate Models of Programmable DSP Architectures”. In
Proc. Design Automation Conference, 1999.
[4] D. Desmet, D. Verkest and H. De man. “Operating system
based SW generation for system-on-chip”. In Proc. Design
Automation Conference, Jun. 2000.
[5] Andreas Gerstlauer, Haobo Yu, Daniel D. Gajski, “RTOS
Modeling for System-Level Design” Proc. of Design, Automation &
Test in Europe, Munich, Germany, March 2003.
[6] SystemC. Available : http://www.systemc.org/
[7] J. R. Bammi , W. Kruijtzer , L. Lavagno , E. Harcourt , M. T.
Lazarescu, “Software performance estimation strategies in a system-
level design tool”. In Proc. of the eighth international workshop on
Hardware/software codesign, p.82-86, May 2000

In

Enc1

Enc2

Enc3

Enc4

VLC Out

Draft version

