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Abstract

There are several important reasons for predicting which way the
flow of control of a program is going to go: first, in instruction-
level parallel architectures, code motions can produce more data-
ready candidate instructions at once than there are resources to
execute them. Some of these are speculative (executed ahead of
a conditional branch that might otherwise have prevented their
execution), so one must sensibly pick among them, and one must
avoid issuing low probability speculative instructions when the
system overhead associated with canceling them most of the time
outweighs the gain of their infrequent success; second, important
classes of compiler optimizations depend upon this information;
and finally, branch prediction can help optimize pipelined fetch
and execute, icache fill, etc. If substantial code motions are
desired, it is probably impractical to expect the hardware to
make them, and a compiler must instead. Thus, the compiler
must have access to branch predictions made before the program
runs. In this paper we consider the question of how predictable
branches are when previous runs of a program are used to feed
back information to the compiler. We propose new measures
which we believe more clearly capture the predictability of
branches in programs. We find that even code with a complex
flow of control, including systems utilities and language
processors written in C, are dominated by branches which go in
one way, and that this direction usually varies little when one
changes the data used as the predictor and target.

1 Introduction

Why Predict Conditional Branch Directions?

There are several important classes of reasons for attempting to
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predict which direction a conditional branch will go in before it
is executed:

Speculative execution to enhance instruction-level
parallelism. Machines that do speculative execution start
the execute phase of instructions before it is certain that
they should be executed, possibly allowing their execution
to use otherwise idle machine resources. Predictions can
allow us to execute speculatively the instructions that are
most likely to be profitable.

Compiler optimizations. Tmportant classes of compiler
optimizations rely on dynamic information to decide among
alternative code motions, transformations, etc.

Hardware reasons. CPU fetch/execute pipelines can fetch
and start to decode an instruction before it is certain that a
conditional branch it follows will go in that direction. If a
branch goes in the expected direction, a pipeline bubble
can be avoided. In addition, elements in the memory
hierarchy, such as instruction caches, can be instructed to
prepare for the coming instruction stream, lowering the
latency of memory instructions.

Here, we are primarily interested in instruction-level
parallelism (or ILP), the parallelism found by overlapping the
execute phase of several machine level instructions within a
single CPU. Experiments (see, for example, [Wall 91a]) have
indicated that the following are true:

To get a lot of instruction-level parallelism, many
instructions must be moved up past conditional branches
that they followed in the source.

If one blindly executes all instructions that are data-ready
at all times, an enormous amount of hardware will be
required, and most of it will be wasted doing instructions
that were not in the path of the flow of control that
eventually occurred.

Thus we must have some way of picking only the highest
probability instructions to execute in a given cycle, and thus we
must predict which way the branches in the program are likely to
go. In addition, there is a cost associated with tracking
speculative instructions that caused faults, since one does not
know whether or not these faults should be serviced until the
flow of control is resolved. One must also deal with the
possibility of degraded performance due to page and cache
misses caused by unnecessary speculative instructions. This is



an active research area (see, for example, [Rogers and Li 92] and
[Mahlke et al. 92], both in this volume). We must therefore have
some method of gauging which speculative instructions are worth
the trouble, and which aren't.

Are Branches Predictable?

In describing ILP code generation, the authors often say that
conditional branch directions are very predictable from run to
run. Some people accept that as obvious, others give strongly
negative responses, saying it is true in vector-type codes, but
absolutely not in systems, commercial, etc. codes; or they say it's
true for FORTRAN programs, but false for C; or it's false for
pointer oriented codes. Since we believe that the practicality of
instruction-level parallelism in large quantities depends upon
this predictability, the fact that there is such a difference of
opinion is significant. These experiments were done to nail
down this question by running a wide variety of programs, each
over several different datasets, to find just how justifiable this
claim is.

Static vs. Dynamic Branch Prediction

If one predicts conditional branch directions while a program is
running, one is said to be doing dynamic branch prediction. If,
instead, one tries to predict branch directions before the program
runs, one is doing static branch prediction.

There has been a great deal of interest in dynamic branch
prediction for the hardware benefits listed above. Dynamic
methods usually involve attaching 1 or 2 bits to each branch and
setting or incrementing those bits, as the program runs, to reflect
the direction the branch most recently went in.

Static methods, by contrast, attach one direction to each
conditional branch at compile time. The branch is then always
predicted to go in that direction. This difference between static
and dynamic branch predictions is typical of the many
static/dynamic tradeoffs one finds in system design: static
methods usually require little or no hardware and allow time to
compute whatever quantities are required. But dynamic methods
can use the added information present while a program is
running, can adapt to changing conditions while the program
runs, require less work at compile-time, and allow a greater
degree of object code compatibility since changes are made after
the object code is presented to the hardware.

In this paper, our interest is in static branch prediction. In
particular, we are trying to find out whether one will get
acceptable results using the branch behavior of the program
during previous runs to predict branch directions for subsequent
runs.

Using Static Conditional Branch Predictions
to Increase Usable ILP

We believe that in both VLIWs and ambitious superscalars,
compilers can benefit from a good job of static branch prediction.

VLIW systems. In a VLIW [Fisher 83] [Colwell et al. 87], or in
any other machine in which compilers must arrange instructions
into data-independent groups, the compiler must look at a large
group of instructions in order to use the machine's resources well,
(The group of instructions the compiler considers at once while
scheduling is often called the candidate set. This is analogous
to the instruction window of superscalar systems. Since the
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compiler is bundling several instructions into one long
instruction at compile time, practitioners often avoid confusion
by using the term operation for single RISC-level instructions,
and instruction for the long instruction produced from several
operations. In this paper, however, we refer to the smaller,
individual operations as instructions.) The candidate set usually
contains many potentially speculative instructions, so the
compiler must be able to use branch prediction to schedule high
probability and reject low probability speculative instructions.
Techniques like software pipelining [Rau and Glaeser 81] [Lam
88] concentrate on generating code for tight inner loops. In those
cases, the only required branch prediction is implicit in the
assumption that loops are repeated. For code other than tight
loops, code generation techniques like trace scheduling [Fisher
81] [Ellis 85], or others that deal with flow of control more
general than tight loops, must rely on branch predictions to select
candidate instructions. Obviously, since this work is being done
by the compiler, static branch prediction must be used.

Superscalar systems. A superscalar [Johnson 91] does its
instruction scheduling at run time, and thus may use dynamic
branch prediction to pick which instructions to consider next.
But what will happen when a superscalar is built which attempts
to find the large quantity of ILP that VLIWs have attempted to
find? The single worst limiting factor in such a machine is likely
to be the fetch/decode/issue hardware (rather than the execute
hardware), and especially the hardware that must determine
whether instructions are data-independent; it must do this as the
program is running. This hardware will grow approximately as
the square of the number of instructions it must consider, since it
must consider them pairwise. If instructions are considered in
their natural source order, as presented by an ordinary optimizing
compiler, only a small percentage will be data-independent of all
prior instructions. Thus the hardware must consider many
instructions to find enough that are data-independent, and is
likely to grow unacceptably large. The natural solution to this
problem is for the compiler to rearrange the code in such a way
that instructions which are data-independent are much nearer to
each other than they were in the original source. To carry out all
of these code motions, the compiler must, as in the case of
VLIWs, choose which instructions to move up past conditional
branches and which not to, and again must rely upon static
branch predictions.

Whether there exists enough ILP in ordinary systems and
commercial programs to make this a significant factor for
superscalars is a controversial question.

Three Methods of Static Branch Prediction

There are three ways we know of to predict which way branches
will go before the program runs:

1. The programmer inserts directives.

2. The compiler examines the source and uses heuristics
(which might have any degree of sophistication).

3. The program is run, statistics are gathered and fed
back into the source code, and the program is
recompiled using those statistics.

The trace scheduling compiler developed at Multiflow Computer
(and used in the experiments reported upon here) offers all of
these facilities:

1. The compiler understands directives, for example:



CIMF! IFPROB (32543, 20, 0)

This particular directive would be attached to a
FORTRAN arithmetic if. The compiler is being told
that when the program runs, a good guess is that it
will go to the first branch target 32543 times, and so
on.

2. The compiler by default uses very naive heuristics (the
only ones it has).

3. The compiler has a tool called the IFPROBBER,
which is central to the experiments reported on here
and is described in more detail below. The
IFPROBBER, invoked by a compiler switch,
instruments the code with instruction counters before
each conditional branch. Whenever the program runs,
a database of branch counts is augmented. Later, a
call to a utility feeds the branch counts back into the
source in the form of the above directives.

2 This Experiment

General Methodology

In this experiment, we collected several different programs, and
several different datasets for each, where practical. We then ran
each program with each of its datasets, collecting a record of
which way each branch went, and how often. We used these
counts as predictors, one per dataset, and measured how well
they performed predicting the other datasets. We then combined
the results of runs to form new predictors. Sometimes we used
the run we were trying to predict as its own predictor. This gave
us an upper bound on how well another predictor can do
predicting that dataset, since each branch is predicted to go in
what will turn out to be the majority direction.

Previous Experiments

Several other experiments have been done to measure the
effectiveness of branch prediction, especially dynamic branch
prediction, since the majority of work has been done by CPU
designers wanting to minimize pipeline flushing. In general,
these experiments measured the effectiveness of hardware
schemes, and found that simple schemes predicted correctly 80-
90% of the branches in systems codes, and 95-100% of the
branches in scientific FORTRAN [Smith 81] [Lee and Smith 84]
[McFarling and Hennessy 86]. [Ponder and Shebanow 90]
consider how well one could possibly do dynamically from an
information-theoretic viewpoint.

Static branch prediction is sometimes mentioned in these
experiments. [McFarling and Hennessy 86] reported that
profiling allowed them to get prediction performance on 4,000
lines of Pascal to a degree comparable to much more expensive
hardware schemes, and that when they changed datasets, 98% of
the advantage of prediction was preserved, but no further details
were given. Static prediction by heuristics has been tried:
[Smith 81] reports poor results using a variety of opcode and
branch direction heuristics. [Bandyopadhyay, et al. 87] reported
tantalizing results: they said that heuristics that took into
consideration data types and other source-level information were
as effective as hardware prediction methods on systems code, but
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the detailed results were never published and are evidently
unavailable.

Instead of considering what percentage of the branch predictions
are correct, some experimenters (for example, [Wall 91b]) have
considered the effect of prediction on the quantities that
prediction is supposed to improve. [Conte and Hwu 92] [Chang,
Mahlke and Hwu 92] report that trace selection and other
optimizations are greatly improved by feedback methods.

Why Percent of Branches Correctly Predicted
Is the Wrong Measure

When starting out, it was our intention to measure the traditional
quantity that is reported is all of the above experiments: percent
conditional branches correctly predicted. We soon realized that
this was inappropriate. For example, two of the programs we
used in our collection were fpppp and li, both programs in the
SPEC suite. fpppp is a floating-point intensive chemistry
application, its inner loop is a giant expression with no flow of
control. /i is a lisp interpreter, it is constantly looking at lisp
instructions and deciding what to do. It seems obvious that
Jpppp has a more predictable flow of control for ILP purposes,
but when we measured, we found that the branches in fpppp
went in their more likely direction 83% of the time, while for /i
the same measure was 85%. This difference, which is small and
in the wrong direction, did not capture the essence of
predictability.

Obviously what is wrong is that this simple measure does not
take into consideration the density of branches. In this case, /i
executes a conditional branch about every 10 instructions, fpppp
does one about every 170 instructions. This difference dwarfs
the small difference in per-branch predictability.  Upon
reflection, it becomes clear that a more appropriate measure is
instructions per mispredicted branch, that is, how many
instructions, including correctly predicted branches, one passes
on average before encountering a mispredicted branch.

Instructions Per Mispredicted Branch

Instructions per mispredicted branch is a persuasive measure: it
is as if a correctly predicted branch “goes away,” that is, its
condition is computed, but instructions move past it without
break. The relevant question is the density of mispredicted
branches. Those can be a barrier to ILP, and are an intrinsic
property dependent only upon a program, predictor dataset, and
target dataset. Even when one is doing branch prediction for
hardware reasons, this seems like the right measure, though it
never seems to be used in that context.

Once one begins to think in terms of instructions per
mispredicted branch, it becomes evident that other forms of
breaks of control are also relevant. Thus the thrust of what is
being measured changes from the predictability of branches to a
more general question. Given a program and a target dataset, we
started out to ask: if one uses a predictor dataset, what
percentage of the branches will be correctly predicted. Now we
ask:

Using a predictor dataset to anticipate the behavior of a
program, how many instructions will we pass, on average,
before either a mispredicted branch, or some other break in
control, causes a barrier to instruction-level parallelism.



Other Breaks in Control

As described below, our sample base includes programs written
in C and FORTRAN. In those languages there are other
instructions, besides conditional branches, that can cause a
transfer of control. These can be classified as:

1. Indirect calls and returns
Assigned GOTOs

2. Direct calls and returns
Jumps
Switch statements
Computed GOTOs
Arithmetic IFs

Group 1 consists of instructions we will refer to as unavoidable
breaks in control. These will almost always cause a break;
there are few compiler or hardware tricks that could allow
mstruction-level parallelism to advance past them. (Though with
a fair amount of work a compiler might identify all of the
potential targets of an assigned GOTO and possibly produce a
very predictable set of conditional branches. The compiler we
used doesn't do this, and, in any case, none of the FORTRAN
programs in our sample had assigned GOTOs.)

Group 2 are those we call avoidable breaks in control. These
can be further broken down as follows:

Calls and returns. A compiler that is going to find large amounts
of ILP must be able to inline the most commonly called
procedures!. An executed call that is not inlined will cost two
breaks in control—a deadly effect when a short routine is called
in an inner loop. Below we show the instructions per break in
control with calls and returns left in and with them ignored. The
differences in our sample set are reasonably small.

Jumps. Compilers can eliminate many of these unconditional
breaks in contro] by rearranging the static position of the code,
and a compiler attempting to get substantial amounts of ILP
should do that. Some jumps, however, represent rejoins in the
code. Rejoins are an important topic for ILP compilers: a
compiler would be most effective if it could totally unwind all
rejoins and compile every possible path through the code. Given
that that is impossible, many techniques have been embodied
into code generation techniques to get as much of that benefit as
possible without having an arbitrary barrier for ILP. It is our
belief that a good ILP compiler will eliminate almost all of the
negative effect of jumps, and the results presented below make
that assumption.

Multiple destination branches. The other “avoidable” branches
are those with multiple destinations. In this experiment, our
compiler turns these into a set of linear or cascaded conditional
branches. We believe this captures the information needed: if
after that conversion the branch usually goes in one very
predictable direction, then conditional branches are probably
what the compiler should generate anyway, once it gets this
feedback. If the branch is less predictable, then this will be
reflected as unpredictable breaks in control. In this case the set
of conditional branches that we generate may contribute more

1The Multiflow compiler used some simple heuristics to do this
automatically when a compiler switch was set. Source control
systems must account for this inlining, in that a file can change
indirectly when an inlined routine changes.
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than one break in control most of the time—and then the
numbers we are reporting overstate the number of breaks in
control (since a compiler could use whatever single hardware
mechanism closely resembles the source branch, probably
causing only one break in control). Optimizing compilers often
have a technique for deciding when to generate a “branch target
table,” and when to generate instead a series of conditional
branches. We believe that a compiler for ILP with access to good
branch predictions should be augmented to use a technique that
mirrors the above argument.

Methods and Tools

Instruction counts. These experiments were done on a
Multiflow Trace 14/300, a CPU with 512-bit VLIW-instructions,
each composed of up to 14 independent RISC instructions (or
operations, in VLIW terminology). When we counted
instructions per mispredicted branch, these RISC instructions
were what we counted.

The Trace has typical RISC-like instructions: fixed 32-bit
length, fixed-format, three register operations with memory
accessed only through explicit loads and stores. Memory can
only be accessed in 32- and 64-bit quantities, so 8- and 16-bit
memory accesses must extract and merge data using explicit
operations. To factor out the VLIW-ness of our results, we
prevented our instruction scheduler from executing operations
speculatively, and we subtracted counts for data motions between
the multiple register banks of the Trace. Our experience with
the Trace has led us to believe that measures of its RISC
instructions are generally comparable to RISC instructions for
more popular CPUs [Freudenberger and Ruttenberg 92], and we
found that our measures of correctly predicted branches were in
line with measures reported in the literature on similar programs.

The compiler used was the highly optimizing, trace scheduling
compiler shipped by Multiflow, modified to suit these and other
experiments. In doing these experiments, we allowed most of
the typical classical intraprocedural optimizations (common
subexpression elimination, copy propagation, strength reduction,
induction variable simplification, loop-invariant code motion,
promotion of scalar variables to registers, renaming of scalar
variables, etc.) but suppressed some more advanced
optimizations that would have changed the flow of control, such
as loop unrolling and if-conversionZ.

IFPROBBER. Each program in our dataset was compiled twice,
resulting in one image that would collect branch prediction
information and one that would collect instruction counts. For
the first compilation, we set a compiler switch which invoked a
tool called the IFPROBBER, causing the compiler to generate
code containing counters before each branch. After each run,
these counters contained a record of how many times the branch
was encountered and how often the associated condition was
true. Upon the completion of each run, the generated code
collected the value of each counter and added that value to the
amount that had been accumulated in a database for that counter
during previous runs. Finally, an associated utility could read
the database of accumulated counter values and insert these

2 The Trace compiler front ends convert some simple if statements into a
special select instruction that evaluates both operands and selects one of them
depending on a tested condition. We didn't turn this off, and so supressed a
few branches that would otherwise have been generated. This was a very
small effect, since selects were typically less than 0.2% (sometimes up to
0.3%, and in one case 0.7%) of all instructions executed.



values back into the source code in the form of compiler
directives. Although the actual workings are more oriented
towards the intermediate code, the user sees everything occurring
at the source level. Thus the IFPROBBER results are
independent of compiler optimizations, and reflect the
probabilities associated with the static source branches. This
tool and an earlier version were used in-house for competitive
benchmarking. The version used in this experiment was
intended for release to customers, but the release containing it
was in testing when Multiflow closed.

MFPixie. The second compilation invoked the Multiflow Pixie-
like Tool, an internal Multiflow development tool modeled after
the MIPS Pixie utility. Being an internal tool it is somewhat
more flexible than the MIPS product (if you are willing and able
to write code that interacts with the compiler). It works by
inserting frequency counters into the output of the compiler, but
now counting accurately how often each RISC-level instruction is
executed. It is capable of giving very detailed dynamic
information about instruction execution.

Somewhat unsatisfying was the fact that we had to turn off the’

compiler's global dead code elimination in order to synchronize
the branch counts between the IFPROBBER and MFPixie runs.
The problem is that dead code elimination removes conditional
branches with constant outcome, hence changes the total number
and order of conditional branches in the program. Since these
dead branches always go in one direction, the branch count is
unaffected by our having left them in, but the presence of dead
code (including the branches) slightly inflates our results. We
approximated that effect by measuring the amount of dead code
that the compiler would have eliminated for each of the SPEC
benchmarks, with the result shown in table 1.

DEAD DEAD

PROGRAM CODE PROGRAM CODE
li 0% eqntott 4%
fpppp 1% tomcatv 14%
spice2g6 1% espresso 18%
gee 2% nasa7 20%
doduc 2% matrix300 29%

Table 1. The amount of dead code (measured

dynamically) that would have been eliminated from each of
the SPEC benchmarks if the compiler had been permitted
to do so.

Of the four programs with large enough factors to make a
significant difference, tomcatv, espresso, nasa7, and matrix300,
all but espresso are so predictable that this difference seems
unimportant. Were one to eliminate dead code from espresso,
however, espresso, already one of the less predictable programs,
would be significantly more unpredictable.

Program Sample Base

We relied heavily on the SPEC benchmark suite for our
experiments, and used all of the programs found in SPEC v1.1.
In addition to the datasets that come with SPEC, we added
several of our own, where practical. We also added several other
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programs and datasets not in SPEC. Table 2 lists the programs
and a brief description of datasets.

Dataset Selection

There was no practical way for us to choose our datasets “at
random.” Instead, we took the datasets provided with the SPEC
suite and, where practical, augmented them with datasets that we
thought were both realistic uses of the program being tested, and
as different in spirit as possible from the datasets already there.
So, for example, to the search-oriented 9queens dataset in /i, we
added a scientific calculation (the SPEC program tomcatv, which
we rewrote in xlisp), and a lisp program produced as the output
of a machine language simulator that works by generating lisp
from pseudo assembly code. The pseudo assembly code being
simulated computes primes using the sieve method. Similarly,
mfcom was given programs that compiled, in one case, typical
systems-oriented C programs, and in the other typical scientific
FORTRAN routines.

Nonetheless, bias enters into this selection process, and thus
these results. Since only two people were selecting, we might be
more prone to picking sets of similar data than different random
users. In addition, several of the datasets that came with the
SPEC suite were similar to each other.

On the other hand, a code developer might not be able to
anticipate every use a program will be put to, but should be able
to provide sample data that exercises all of the code in a natural
way. We couldn't do that in providing our experimental sample
data, We believe that the sitnation presented here is probably
not a bad reflection of the real-life use of programs.

3 Results and Discussion

Results

We set out to examine two subjective claims: that branches go in
one direction most of the time, and that by using previous runs of
a program, one can predict that direction well. We believe that
our results show both statements to be true.

Figures la&b show the number of instructions between breaks
when branches are not predicted, both with and without
subroutine call/return breaks. fpppp, with a huge basic block in
its inner loop, is very uncharacteristic in having 150-170
instructions per break. Otherwise, the FORTRAN programs in
our sample have between about 15-25 instructions per break; the
C programs have between 5-17. (A compiler trying to extract
ILP from blocks this size might have a difficult time, especially
since basic blocks tend to have data-dependent sequences of
instructions leading up to a test.)

Figures 2aéb, and Table 3 show the best possible prediction for
each dataset and how well we were able to predict that dataset
using the scaled sum of the other datasets. In each case, we are
measuring instructions per mispredicted branch, with all indirect
jumps and calls (and their returns) considered mispredicted
branches. Table 3 lists the programs with only one meaningful
dataset. We believe that any reasonable method will predict
those programs' branch directions almost perfectly.

In Figure 2a, spice2g6 is broken out. Although predicting
spice2g6's branch behavior is much less successful, the number
of instructions per break is always large. Indeed, Circuit2 is the



FORTRAN/FLOATING POINT PROGRAMS AND THEIR DATASETS

PROGRAM PROGRAM DATASET DATASET
NAME DESCRIPTION NAMES DESCRIPTIONS
013.spice2g6 Electronic design simulator circuitl, circuit2, Examples from Spice version 2G User's Guide, appendix A
circuit3, circuit4,
circuit5
add_bijt, add_fet 4-bit all nand adders based on circuitd4 (1tl and mosfet gates)
greysmall Greycode counter, smaller SPEC input
greybig Greycode counter, larger SPEC input
015.doduc Nuclear reactor modeling tiny, small, ref All similar datasets from SPEC
020.nasa7 7 synthetic kemels Program does not read a dataset
030.matrix300 300x300 linear matrix solver Program does not read a dataset
042.fpppp Quantum chemistry 4atoms, 8atoms Different settings of parameter, both from SPEC
047.tomcatv Mesh generation and solver Program does not read a dataset
LFK Livermore FORTRAN Kernels Program does not read a dataset, only subr KERNEL measured
C/INTEGER PROGRAMS AND THEIR DATASETS
PROGRAM PROGRAM DATASET DATASET
NAME DESCRIPTION NAMES DESCRIPTIONS
001.gcc1.35 GNU C compiler 19 modules 19 compiler modules from SPEC. We ran all, report on only 6
008.espresso PLA optimizer bea, ops, ti, tial SPEC reference datasets

022.1i XLISP 1.6 public domain lisp interpreter | 8queens, 9queens SPEC input, placing 8 or 9 queens on a chessboard
kittyv SPEC tomcatv rewritten in XLISP
sievel Prime number sieve, output of machine lang to lisp simulator
023.eqntott Converts boolean equations to truth add4, add5, Naive sum and carry equations for
tables addé 4, 5, and 6 bit adders, respectively
intpri Priority circuit, from SPEC
compress UNIX file compression, SPEC 3.0 CINPISSC, CMPISS C source, & Multiflow compiled image for SPEC 3.0 compress
long The SPEC 3.0 reference data
spicef, spice FORTRAN source and compiled image for spice
uncompress compress, above, with switch CIMPrSsc, CIprss, Same datasets used for compress
set for decompression instead long, spice, spicef
mfcom The Multiflow C & FORTRAN ¢_metric 5047 lines of source from cat, cpp, diff, make, maze, whetstone
compiler fortran_metric 5855 lines of scientific subroutine source
with common optimizer and backend (These datasets were originally used to profile the compiler)
(measured code common to both langs)
spiff File comparison too! included in SPEC casel, case2 Pairs of files of floating point numbers, some differences
case3 26/28 line directory listings with the last few lines different

Table 2. The programs tested and their datasets.
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hardest to predict, but still has 117 instructions between breaks
because its branches are so unidirectional to start with3. Figure
2b shows the C/Integer programs. There are isolated instances
where the prediction method doesn't do very well, but in general
using the other datasets to predict a given dataset is almost
always effective at predicting branch directions in these
programs. Here instructions per break range from about 40 to
about 160.

INSTRS/
PROGRAM DATASET BREAK
tomcatv 7461
matrix300 4853
nasa7 3400
fpppP 4atoms 951
8atoms 1028
LFK 399
doduc tiny 257
small 269
ref 275

Table 3. Instructions/break. (FORTRAN programs
with little variability in datasets.)

Figures 3a&b show how well or poorly we can do using one
single dataset to predict another. Considering the best possible
prediction (using a dataset to predict itself) to be 100%, we show
how close to that we come with the best other dataset, and how
close we come with the worst. In most of the programs
(espresso, li, compress, spiff, eqniott, spicelg6) the worst tended
to hover around 50-70% of what was possible. The most
dramatically bad worst cases were in spice2g6 and compress. In
spice2g6, the worst cases came about when a dataset was used to
predict another that ran over 20,000 times as long. compress
was generally very predictable (note how well it does in Figure
2b), except that one dataset, cmprsse, was very different from the
others. This demonstrates that one has to pick datasets carefully
(for example, by picking several and accumulating them, as in
Figure 2)

ILP Compilers Will Get Larger Candidate
Sets Than This.

There are several reasons that an ILP compiler will tend to get
larger candidate sets than the numbers of instructions between
breaks shown here:

Dominator parallelism. Code often contains hammocks, or
places where the code splits off and then quickly rejoins. The
splitting test may be very unpredictable, causing a break in
control, but if the compiler is sophisticated it might be able to
pull instructions up past the hammock despite the break in
control (see, for example, [Bernstein and Rodeh 91]).

3Circuit2 is also very short. It runs 1/10,000 as long as greybig, for
example.
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Considering instructions from both sides of a branch. An
indirect subroutine call, for example, might represent an absolute
end of candidate selection for an ILP compiler. But an
unpredictable branch need not be. Several techniques of ILP
code generation allow instructions from both sides of a branch to
be executed speculatively.

The distribution of runs af instructions between mispredicted
branches will not be constant. If one is trying to avoid flushing a
pipeline, then a mispredicted branch is a mispredicted branch. It
has its cost and the system pays it. But for ILP purposes, the
actual distribution of branches is significant. For example, far
more ILP will be available if one has 80 instructions followed by
two mispredicted branches than if one has 40 instructions, a
mispredicted branch, 40 more instructions, and another
mispredicted branch. Branches in real programs are not evenly
spaced.

The compiler turned some single breaks into multiple breaks.
For example, switch statements that might cause a single break
were turned into linear or cascaded ifs with many breaks. In a
discussion above we suggest a compiler methodology for
handling these to cause only a single break, but allow the
candidate set to go beyond a very predictable multiple
destination branch.

Informal Observations

In the course of this experiment several things seemed clear
when we measured them but didn't seem to merit inclusion in the
formal results, or were perceptions we had along the way, but
didn't measure or carry out carefully.

“Coverage.” We felt that when a dataset predictor did poorly, it
was usually because it emphasized a different part of the
program than the target dataset, rather than that the branches
changed direction. We tried many schemes to capture this
concept in some measurable quantity: we tried measuring the
percentage covered by screening out predictor branches that were
below some threshold, both absolute and relative to program
size; we tried measuring the overlap between predictors and
targets in various ways, and so on. Nothing we tried seemed to
correlate well with the results. Either the intuition we had is
wrong (the problem is that the branches were changing direction)
or we simply haven't looked hard enough, perhaps because the
relationship is subtle. spice2g6 in particular was very difficult to
predict, which matches its reputation. We believe that this is a
result of different datasets using entirely different modules of the
simulator, but, again, were not able to meaningfully quantify
this.

Although compress is really two distinct programs (compression
and uncompression) controlled by a command line switch, it is
one program as seen by our tools, so we were able to compare
runs of the two different modes. Unsurprisingly, there seemed to
be no correlation between them. Using the data from one to
predict the other is a very bad idea.

Scaled vs. unscaled summary predictors. We reported above on
the strategy of using the sum of all of the datasets except the one
being predicted as a predictor. We tried this three different
ways: we simply added the counts for each test for each dataset
(called unscaled), we divided each count by the total branches
executed by the predictor dataset to give each dataset equal total
weight (scaled), and we allowed each dataset to get one vote to
predict in which direction the branch would go, no matter how
large or small its execution count was (polling). Polling seemed,
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datasets.
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unsurprisingly, to perform poorly and it was discarded before it
was measured carefully. The other two appeared to perform as
well as each other. Sometimes one was significantly better than
the other, but on average they were indistinguishably close. We
chose scaled in our reports, but only because it was intuitively
more satisfying, though it requires slightly more computation.

Simple opcode heuristics. The conventional wisdom is that
looking at the opcode and using simple heuristics to predict
branch directions does not work as well as feedback-based
methods, although we mentioned above one study that gives hope
that more elaborate heuristics might. We tried using very simple
heuristics, distinguishing between loops and nonloops, and our
results were, unsurprisingly, terrible. Except for some very
easily predictable vectorizable codes, this usually gave up about
a factor of two in instructions per break.

Branch percent taken as a “program constant.” We were
surprised at how constant the measure of percent taken was from
dataset to dataset within a given program, except for spice2g6.
spice2g6 had one dataset, greysmall, that took its branches 21%
of the time, and another, circuit5, at 76%. Remarkably,
greysmall was able to predict circuit5 far better than was
circuit?, which took its branches 72% of the time! Again, this
seerms to show that the datasets are emphasizing different parts
of the program.

Except for spice2g6, the maximum difference in branch percent
taken for the datasets of a single program was 9% (and most
were much closer), which seems remarkably constant.

4 Summary and Discussion

Branch prediction is an important capability for high
performance CPUs, especially for those that offer instruction-
level parallelism. Static branch prediction offers advantages over
dynamic prediction, and for some uses is the only practical
alternative. The experiments reported upon here show that static
prediction can be done almost as well as is possible by taking
previous runs of a program, and using those runs to make
decisions about which way branches will go in future runs.
Although it is possible to pick previous runs that are not
effective, it appears that a variety of runs with their branch
direction counts added together make a good predictor. In this
fashion a compiler can consider large candidate sets without a
likely break in control. This result is not unexpected in
FORTRAN/Floating point codes, but holds for systems codes as
well. Inlining is an important capability for compilers seeking
instruction-level parallelism, though evidently the loss in not
inlining is small in terms of the candidate sets available.

An important issue not covered here is the user interface to a
system that provides this feedback. We know of no work
published in this area, nor do we know of any commercial
compilers that have offered branch direction prediction feedback
as an option. The effectiveness of any future system that offers
this capability rests not only on the predictability demonstrated
here, but on the existence of an interface that users find
palatable.
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