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There are several important reasons for predicting which way the

flow of control of a program is going to go tirst, in instmction-
Ievel parallel architectures, code motions can produce more data-

ready candidate instructions at once than there are resources to

execute them. Some of these are speculative (executed ahead of

a conditional branch that might otherwise have prevented their
execution), so one must sensibly pick among them, and one must

avoid issuing low probability speculative instructions when the

system overhead associated with canceling them most of the time
outweighs the gain of their infrequent succes~ second, important

classes of compiler optimization depend upon this information,

and finally, branch prediction can help optimize pipelined fetch
and execute, icache fill, etc. If substantial code motions are

desired, it is probably impractical to expect the hardware to

make them, and a compiler must instead. Thus, the compiler

must have access to branch predictions made before the program

runs. In this paper we consider the question of how predictable

branches are when previous runs of a program are used to feed

back information to the compiler. We propose new measures

which we believe more clearly capture the predictability of

branches in programs. We fmd that even code with a complex

flow of control, including systems utilities and language

processors written in C, are dominated by branches which go in
one way, and that this direction usually varies little when one
changes the data used as the predictor and target.

1 Introduction

Why Predict Conditional Branch Directions?

There are several important classes of reasons for attempting to
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predict which direction a conditioned branch will go in before it

is executed

Speculative execution to enhance instruction-level
pamllelism. lvfachines that do speculative execution start
the execute phase of instructions before it is certain that

they should be executed, possibly allowing their execution
to use otherwise idle machine resources. Predictions can

allow us to execute speculatively the instructions that are

most likely to be profitable.

Compiler optimization. Importantclasses of compiler

optimization rely on dynamic information to decide among
alternative code motions, transformations, etc.

Hardware reasons. CPU fetchlexecute pipelines can fetch

and start to decode an instruction before it is certain that a

conditional branch it follows will go in that direction. If a

branch goes in the expected direction, a pipeline bubble

can be avoided. In addition, elements in the memory

hierarchy, such as instruction caches, can be instructed to
prepare for the coming instruction stream, lowering the

irknq of memory instictions.

Here, we are primarily interested in instruction-level
parallelism (or ILP), the parallelism found by overlapping the

execute phase of several machine level instructions within a

single CPU. Experiments (see, for example, wall 9 la]) have
indicated that the following are true

To get a lot of instruction-level parallelism, many

instructions must be moved up past conditional branches

that they followed in the source.

If one blindly executes all instructions that are data-ready

at all times, an enormous amount of hardware will be
required, and most of it will be wasted doing instructions

that were not in the path of the flow of control that

eventually occurred.

Thus we must have some way of picking only the highest
probability instructions to execute in a given cycle, and thus we

must predict which way the branches in the program are likely to
go. In addition, there is a cost associated with tracking

SFUlative ins~ctions that caused faults, since one does not
know whether or not these faults should be serviced until the
flow of control is resolved. One must also deal with the

possibility of degraded performanti due to page and cache

misses caused by unnecessary speculative instructions. This is
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an active research area (see, for example, Rogers and Li 92] and
~ahlke et al. 92], both in this volume). We must therefore have
some method of gauging which speculative instructions are worth

the trouble, and which aren’t.

Are Branches Predictable?

In describing ILP code generation, the authors often say that

conditional branch directions are very predictable horn run to

run. Some people accept that as obvious, others give strongly

negative responses, saying it is true in vector-type codes, but

absolutely not in systems, commercial, etc. codes, or they say it’s

true for FORTRAN programs, but false for C, or it’s false for

pointer oriented codes. Since we believe that the practicality of
instruction-level parallelism in large quantities depends upon

this predictability, the fact that there is such a difference of

opinion is significant. These experiments were done to nail
down this question by running a wide variety of programs, each

over several different datasets, to fmd just how justifiable this

claim is.

Static vs. Dynamic Branch Prediction

If one predicts conditional branch directions while a program is

rnming, one is said to be doing dynamic branch prediction. If,
instead, one tries to predict branch directions before the program

runs, one is doing static branch prediction.

There has been a great deal of interest in dynamic branch

prediction for the hardware benefits listed above. Dynamic

methods usually involve attaching 1 or 2 bits to each branch and

setting or incrementing those bits, as the program runs, to reflect

the direction the branch most recently went in.

Static methods, by contrast, attach one direction to each

conditional branch at compile time. The branch is then always

predicted to go in that direction. This difference between static
and dynamic branch predictions is typical of the many

static/dynamic tradeoffs one fiids in system desigm static
methods usually require little or no hardware and allow time to

compute whatever quantities are required. But dynamic methods
can use the added information present while a program is

running, can adapt to changing conditions while the program

runs, require less work at compile-time, and allow a greater

degree of object code compatibility since changes are made after

the object code is presented to the hardware.

In this paper, our interest is in static branch prediction. In

particular, we are trying to fmd out whether one will get

acceptable results using the branch behavior of the program
during previous runs to predict branch directions for subsequent

runs.

Using Static Conditional Branch Predictions

to Increase Usable ILP

We believe that in both VLIWS and ambitious superscalars,
compilers can benefit tlom a good job of static branch prediction.

ZLZW systems. In a VLIW Fisher 83] [Colwell et al. 87], or in
any other machine in which compilers must arrange instructions

into data-independent groups, the compiler must look at a large
group of instructions in order to use the machine’s resources well,

(The ~oup of instructions the compiler considers at once while
scheduling is often called the candidate set. This is analogous
to the instruction window of superscalar systems. Since the

compiler is bundling several instructions into one long

instruction at compile time, practitioners often avoid eonfusion
by using the term operation for single RISC-level instructions,

and instruction for the long instruction produced tiom several
operations. In this paper, however, we refer to the smaller,

individual operations as instructions.) The candidate set usually
contains many potentially speculative instructions, so the

compiler must be able to use branch prediction to schedule high

probability and reject low probability speculative instructions.

Techniques like sotlware pipelining ~au and Glaeser 81] &an

88] concentrate on generating code for tight inner loops. In those

cases, the only required branch prediction is implicit in the

assumption that loops are repeated. For code other than tight
loops, code generation techniques like trace scheduling Fisher

81] @311is85], or others that deal with flow of control more
general than tight loops, must rely on branch predictions to select

candidate instructions. Obviously, since this work is being done
by the compiler, static branch prediction must be used.

Superscalar systems. A superscalar [Johnson 91] dces its

instruction scheduling at run time, and thus may use dynamic
branch prediction to pick which instructions to consider next.

But what will happen when a supersealar is built which attempts

to fmd the large quantity of ILP that VLIWS have attempted to

find? The single worst limiting factor in such a machine is likely

to be the fetch/decode/issue hardware (rather than the execute
hardware), and especially the hardware that must determine
whether instructions are data-independent it must do this as the

program is running. This hardware will grow approximately as

the square of the number of instructions it must consider, since it

must consider them pairwise. If instructions are considered in

their natural source order, as presented by an ordinary optimizing

compiler, only a small percentage will be data-independent of all

prior instructions. Thus the hardware must consider many

instructions to fmd enough that are data-independent, and is

likely to grow unacceptably large. The natural solution to this
problem is for the compiler to rearrange the code in such a way

that instructions which are data-independent are much nearer to
each other than they were in the original source. To carry out all
of these code motions, the compiler must, as in the case of
VLIWS, choose which instructions to move up past conditional

branches and which not to, and again must rely upon static

branch predictions.

Whether there exists enough ILP in ordinary systems and

commercial programs to make this a significant factor for

superscalars is a controversial question.

Three Methods of Static Branch Prediction

There are three ways we know of to predict which way branches
will go before the program runs:

1. The programmer inserts directives.

2. The compiler examines the source and uses heuristics
(which might have any degree of sophistication).

3. The program is run, statistics are gathered and fed
back into the source code, and the program is

recompiled using those statistics,

The trace scheduling compiler developed at Multiflow Computer

(and used in the experiments reported upon here) offers all of
these facilities:

1. The compiler understands directives, for example:
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C!MF! ~pRoB (32543, 2(3, ())

This particular directive would be attached to a

FORTRAN arithmetic if The compiler is being told

that when the program runs, a good guess is that it

will go to the fwst branch target 32543 times, and so

on.

2. The compiler by default uses very naive heuristics (the

only ones it has).

3. The compiler has a trml called the IFPROBBER,

which is central to the experiments reported on here

and is described in more detail below. The

IFPROBBER, invoked by a compiler switch,

instruments the code with instruction counters before
each conditional branch. Whenever the program runs,
a database of branch counts is augmented. Later, a

call to a utility feeds the branch counts back into the

source in the form of the above directives.

2 This Experiment

General Methodology

In this experiment, we collected several different programs, and

several different datasets for each, where practical. We then ran

each program with each of its datasets, collecting a record of

which way each branch went, and how otlen. We used these

counts as predictors, one per dataset, and measured how well

they performed predicting the other datasets. We then combined

the results of runs to form new predictors. Sometimes we used
the run we were trying to predict as its own predictor. This gave
us an upper bound on how well another predictor can do

predicting that &taset, since each branch is predicted to go in
what will turn out to be the majority direction.

Previous Experiments

Several other experiments have been done to measure the

effectiveness of branch prediction, especially dynamic branch

prediction, since the majority of work has been done by CPU

designers wanting to minimize pipeline flushing. In general,

these experiments measured the effectiveness of hardware

schemes, and found that simple sxhemes predicted correctly 80-

90’%0 of the branches in systems codes, and 95-1OOVO of the
branches in scientific FORTRAN [Smith 81] Lee and Smith 84]

[McFarling and Hennessy 86]. ponder and Shebanow 90]

consider how well one could possibly do dynamically from an
information-theoretic viewpoint.

Static branch prediction is sometimes mentioned in these

experiments. ~cFarling and Hennessy 86] reported that

profiling allowed them to get prediction performance on 4,000

lines of Pascal to a degree comparable to much more expensive
hardware schemes, and that when they changed datasets, 98’%0of

the advantage of prediction was preserved, but no ftier details
were given, Static prediction by heuristics has been tried
[Smith 81] reports poor results using a variety of opcode and

branch direction heuristics. ~andyopadhyay, et al. 87] reported

tantalizing results: they said that heuristics that took into
consideration data types and other source-level information were

as effective as hardware prediction methods on systems code, but

the detailed results were never published and are evidently

unavailable.

Instead of considering what percentage of the branch predictions

are correct, some experimenters (for example, wall 91b]) have
considered the effect of prediction on the quantities that

prediction is supposed to improve. [Conte and Hwu 92] [Chang,

Mahlke and Hwu 92] report that trace selection and other

optimizations are greatly improved by feedback methods.

Why Percent of Branches Correctly Predicted

Is the Wrong Measure

when starting out, it was our intention to measure the traditional
quantity that is reported is all of the above experiments: percent

conditional branches correctly predicted. We soon realized that
this was inappropriate. For example, two of the programs we

used in our collection were fpppp and li, both programs in the

SPEC suite. @ppp is a floating-point intensive chemistry

application, its inner loop is a giant expression with no flow of

control. li is a lisp interpreter, it is constantly looking at lisp

instructions and deciding what to do. It seems obvious that
fpppp has a more predictable flow of control for ILP puxposes,
but when we measured, we found that the branches in fpppp

went in their more likely direction 83’%0of the time, while for li

the same measure was 85?4.. This difference, which is small and
in the wrong direction, did not capture the essence of

predictability.

Obviously what is wrong is that this simple measure does not

take into consideration the density of branches. In this case, Ii

executes a conditional branch about every 10 instructions, fpppp
does one about every 170 instructions. This difference dwarfs

the small difference in per-branch predictability. Upon
reflection, it becomes clear that a more appropriate measure is
instructions per mispredicted branch, that is, how many

instructions, including correctly predicted branches, one passes

on average before encountering a mispredicted branch.

Instructions Per Mispredicted Branch

Instructions per mispredicted branch is a persuasive measure: it

is as if a correctly predicted branch “goes away,” that is, its

condition is computed, but instructions move past it without

break. The relevant question is the density of mispredicted

branches. Those can be a barrier to ILP, and are an intrinsic

property dependent only upon a program, predictor dataset, and
target dataset. Even when one is doing branch prediction for

hardware reasons, this seems like the right measure, though it

never seems to be used in that context.

Once one begins to think in terms of instructions per

mispredicted branch, it becomes evident that other forms of
breaks of control are also relevant. Thus the thrust of what is

being measured changes from the predictability of branches to a

more general question. Given a program and a target dataset, we

started out to ask if one uses a predictor dataset, what
percentage of the branches will be correctly predicted. Now we
ask

Using a predictor dataset to anticipate the behavior of a

program, how many instructions will we pass, on average,

before either a mispredicted branch, or some other break in
control, causes a barrier to instruction-level parallelism.

87



Other Breaks in Control

As described below, our sample base includes programs written
in C and FORTRAN. In those languages there are other

instructions, besides conditional branches, that can cause a
transfer of control. These can be classified as:

1. Indirect calls and returns

Assigned GOTOS

2. Direct calls and returns

Jumps

Switch statements

Computed GOTOS

Arithmetic IFs

Group 1 consists of instructions we will refer to as unavoidable
breaks in control. These will almost always cause a bre~,

there are few compiler or hardware tricks that could allow

instruction-level parallelism to advance past them. (Though with

a fair amount of work a compiler might identifi all of the

potential targets of an assigned GOTO and possibly produce a
very predictable set of conditional branches. The compiler we

used doesn’t do this, and, in any case, none of the FORTRAN

programs in our sample had assigned GOTOS.)

Group 2 are those we call avoidable breaks in control. These

can be ftier broken down as follows:

Calls and returns. A compiler that is going to fmd large amounts
of ILP must be able to inline the most commonly called
procedures. An executed call that is not inlined will cost two

breaks in control-a deadly effect when a short routine is called

in an inner loop. Below we show the instructions per break in
control with calls and returns left in and with them ignored. The

differences in our sample set are reasonably small.

Jumps. Compilers can eliminate many of these unconditional

breaks in control by rearranging the static position of the code,

and a compiler attempting to get substantial amounts of ILP
should do that. Some jumps, however, represent rejoins in the

code. Rejoins are an important topic for ILP compilers: a

compiler would be most effective if it could totally unwind all
rejoins and compile every possible path through the code. Given

that that is impossible, many techniques have been embodied

into code generation techniques to get as much of that benefit as
possible without having an arbitrary barrier for ILP. It is our

belief that a good ILP compiler will eliminate almost all of the

negative effect of jumps, and the results presented below make
that assumption.

Multiple destination branches. The other “avoidable” branches

are those with multiple destinations. In this experiment, our
compiler turns these into a set of linear or cascaded conditional
branches. We believe this captures the infomtion needed if

afler that conversion the branch usually goes in one very

predictable direction, then conditional branches are probably
what the compiler should generate anyway, once it gets this

feedback. If the branch is less predictable, then this will be
reflected as unpredictable breaks in control. In this case the set

of conditional branches that we generate may contribute more

lThe Multiflow compiler used some simple heuristics to do this

automatically when a compiler switch was set. Source control
systems must account for this inlining, in that a file can change
indirectly when an irdined routine changes.

than one break in control most of the time-and then the

numbers we are reporting overstate the number of breaks in

control (since a compiler could use whatever single hardware
mechanism closely resembles the source branch, probably

causing only one break in control). Optimizing compilers often
have a technique for deciding when to generate a “branch target

table,” and when to generate instead a series of conditional

branches. We believe that a compiler for ILP with access to good

branch predictions should be augmented to usc a technique that

mirrors the above argument.

Methods and Tools

Instruction counts. These experiments were done on a

Multiflow Trace 14/300, a CPU with 512-bit VLIW-instructions,

each composed of up to 14 independent RISC instructions (or
operations, in VLIW terminology). When we counted

instructions per mispredicted branch, these RISC instructions
were what we counted.

The Trace has typical RISC-like instructions: fixed 32-bit

length, tixed-format, three register operations with memory
accessed only through explicit loads and stores. Memory can

only lx accessed in 32- and 64-bit quantities, so 8- and 16-bit

memory accesses must extract and merge data using explicit

operations. To factor out the VLIW-ness of our results, we

prevented our instruction scheduler from executing operations
speculatively, and we subtracted counts for data motions between

the multiple register banks of the Trace. Our experience with
the Trace has led us to believe that measures of its RISC
instructions are generally comparable to RISC instructions for
more popular CPUS ~reudenberger and Ruttenbcrg 92], and we

found that our measures of correctly predicted branches were in

line with measures reported in the literature on similar programs.

The compiler used was the highly optimizing, trace scheduling
compiler shipped by Multiflow, modified to suit these and other

experiments. In doing these experiments, we allowed most of

the typical classical intraprocedural optimizations (common

subexpression elimination, copy propagation, strength reduction,

induction variable simplification, loopinvariant code motion,

promotion of scalar variables to registers, renaming of scalar

variables, etc. ) but suppressed some more advanced

optimization that would have changed the flow of control, such

as loop unrolling and if-conversion2.

IKPROBBER. Each program in our dataset was compiled twice,
resulting in one image that would collect branch prediction
information and one that would collect instruction counts. For

the frost compilation, we set a compiler switch which invoked a

tool called the IFPROBBER, causing the compiler to generate

code containing counters before each branch. After each run,

these counters contained a record of how many times the branch
was encountered and how often the associated condition was
tree. Upon the completion of each run, the generated code

collected the value of each counter and added that value to the

amount that had been accumulated in a database for that counter

during previous runs. Finally, an associated utility could read
the database of accumulated counter values and insert these

2 The Trace compiler fi’ont ends convert some simple if statements into a

special select instruction that evaluates both operands and selects one of them
depending on a tested condition. We didn’t turn this off, and so suprcssed a

few branches that would othemviac have been generated. ‘f& was a very

smaIl etT* since selects were typically less thaa 0.2”/0 (sometimes up to
0.3?4%and in one case 0.7%) of all instructions executed.
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values back into the source code in the form of compiler

directives. Although the actual workings are more oriented

towards the intermediate code, the user sees everything occurring

at the source level. Thus the IFPROBBER results are
independent of compiler optimizations, and reflect the

probabilities associated with the static source branches. This
tool and an earlier version were used in-house for competitive

benchmarking. The version used in this experiment was
intended for release to customers, but the release containing it

was in testing when Mnkiflow closed.

AM?Pixie. The second compilation invoked the Multiflow Pixie-
Iike Tool, an internal Multiflow development tool modeled atler
the MIPS Pixie utility. Being an internal tool it is somewhat

more flexible than the MIPS product (if you are willing and able
to vwite code that interacts with the compiler). It works by
inserting tlequency counters into the output of the compiler, but

now counting accurately how often each RISC-level instmction is
executed. It is capable of giving very detailed dynamic

information about instruction execution.

Somewhat unsatisfying was the fact that we had to tmn off the
compiler’s global dead code elimination in order to synchronize

the branch counts between the IFPROBBER and MFPixie runs.

The problem is that dead code elimination removes conditional

branches with constant outcome, hence changes the total number
and order of conditional branches in the program, Since these

dead branches always go in one direction, the branch count is

unaffected by our having lefl them in, but the presence of dead
code (including the branches) slightly inflates our results. We

approximated that effect by measuring the amount of dead code

that the compiler would have eliminated for each of the SPEC
benchmarks, with the result shown in table 1.

DE4D DEAD
PROGRAM CODE PROGRAM CODE

Ii o% eqntott 4%

fpppp l% tomcatv 14%

spice2g6 1‘%0 espresso 18%

gee 2’ZO nasa7 20’-XO

doduc 2’%0 matrix300 29%

Table 1. The amount of dead code (measured
dynamically) that would have been eliminated from each of
the SPEC benchmarks if the compiler had been permitted

to do SO.

Of the four programs with large enough factors to make a

significant difference, tomcatv, espresso, nasa7, and matn”x300,

all but espresso are so predictable that this difference seems

unimportant. Were one to eliminate dead code from espresso,

however, espresso, already one of the less predictable programs,

would be significantly more unpredictable.

Program Sample Base

We relied heavily on the SPEC benchmark suite for our
experiments, and used all of the programs found in SPEC VI. 1.

In addition to the datasets that come with SPEC, we added

several of our own, where practical. We also added several other

programs and datasets not in SPEC. Table 2 lists the programs

and a brief description of datasets.

Dataset Selection

There was no practical way for us to choose our datasets “at

random.” Instead, we took the datasets provided with the SPEC
suite and, where practical, augmented them with datasets that we

thought were both realistic uses of the program being tested, and

as different in spirit as possible tlom the datasets already there.

So, for example, to the search-oriented 9queens dataset in li, we

added a scientific calculation (the SPEC program tomcatv, which

we rewrote in xlisp), and a lisp program produced as the output
of a machine language simulator that works by generating lisp

from pseudo assembly code. The pseudo assembly code being

simulated computes primes using the sieve method. Similarly,
mfcom was given programs that compiled, in one case, typical

systems-oriented C programs, and in the other typical scientific

FORTRAN routines.

Nonetheless, bias enters into this selection process, and thus

these results. Since only two people were selecting, we might be

more prone to picking sets of similar data than different random

users. In addition, several of the datasets that came with the

SPEC suite were similar to each other.

On the other hand, a code developer might not be able to
anticipate every use a program will b put to, but should be able

to provide sample &ta that exercises all of the code in a natural

way. We couldn’t do that in providing our experimental sample

data. We believe that the sitnation presented here is probably

not a bad reflection of the real-life use of programs.

3 Results and Discussion

Results

We set out to examine two subjective claims: that branches go in

one direction most of the time, and that by using previous runs of

a program, one can predict that direction well. We believe that

our results show both statements to be true.

Figures la&b show the number of instructions between breaks

when branches are not predicted, lwth with and without

subroutine callheturn breaks. fpppp, with a huge basic block in

its inner loop, is very uncharacteristic in having 150-170

instructions per break. Otherwise, the FORTRAN programs in
our sample have between about 15-25 instructions per bra, the
C programs have between 5-17. (A compiler trying to extract

IL-P from blocks this size might have a difllcult time, especially
since basic blocks tend to have datadependent sequences of

instructions leading up to a test.)

Figures 2a&b, and Table 3 show the best possible prediction for
each dataset and how well we were able to predict that dataset

using the scaled sum of the other datasets. In each case, we are

meosuring instructions per mispredicted branch, with all indirect

jumps and calls (and their returns) considered mispredicted
branches. Table 3 lists the programs with only one meaningful

dataset. We believe that any reasonable method will predict
those programs’ branch directions ahnost perfectly.

In Figure 2a, spice2g6 is broken out. Although predicting
spice2gffs branch behavior is much less successful, the number

of instructions per break is always large, Indeed, Circuit2 is the
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FORTRANFLOATING POINT PROGRAMS MD THEIR DATASETS

PROGR4M DA TASET

DESCRIPTION N~ES

DA TASET

DESCRIPTIONS

PROGRAM

NAME

Electronic design simulator circuitl, circuit2,
circuit3, circuit4,
circuit5
add_bjL add_fet
greysmall
greybig

Examples horn Spice version 2G User’sGuide, appendix A013.spice2g6

4-hit all nsnd addersbasedon circuit4 (ttl and mosfd gates)
Greycode counter, smaller SPEC input
Greycode counter, larger SPEC input

Nuclear reactor modelirur I tirw.small. ref All similar datasctstlom SPEC

program doesnot read a drdaset

015.doduc

020.nasa7

030.matrix300

7 synthetic kernels I

Program doesnot read a dataaet

Dflerent settings of Parameter, both from SPEC

300x300 linear matrix solver I

Quantum chemistry

Mesh generation and solver

4atoma, 8atoma042.fpppp

047.tOmcatv

LFK

program doesnot read a dataset

Program doesnot read a datas@ only subr KERNEL measuredLivermore FORTRAN KemeIs I

CANTEGER PROGRAMS AND THEIR DATASETS

DA TASET DATASET

NAMES DESCRIPTIONS

PROGRAM

I

PROGRAM
NAME DESCRIPTION

ool.gccl.35 GNU C comuik.r 19 modules

bc~ CPS,ti, tial

19 compiler modules tlom SPEC. We ran all, report on only 6

SPEC refwence dateaets008.espresso

022.li

PLA optimizer

XLISP 1.6 public domain lisp interpreter 8queens,9queens
kittyv
sievel

SPEC inpuL placing 8 or 9 queenson a chessboard
SPEC tomcatv rewhten in XLISP
Prime number sieve, output of machine lang to lisp simulator

023.eqntott Converts boolean equations to truth
tables

add4, add5,
add6
intpri

Naive sum and carry equations for
4,5, and 6 bit adders, respectively
Priority circui~ from SPEC

compress UNIX file compressio~ SPEC 3.0 Cmprsse,emprsa C source, & MuMtlow compiled image for SPEC 3.0 compress
long The SPEC 3.0 refmence data
spicefi spice FORTRAN source and compiled image for spice

Cmpmsc,Cmprsa, Samedatasetsused for compress
loruz mrice.sDicef

uncompress compress,above, with switch
set for decompression instead

mfcom The Multitlow C & FORTRAN
compiler
with common optimizer and backend
(measured code common to both Ianzs)

c_metric
fOrtran_metric

5047 lines of source tiom cat epp, cliff, make, maze, whetstone
5855 lines of scientific subroutine source
(These datasetswere originally used to profile the compiler)

Pairs of files of floating point numbers, some differences
26/28 line dweetory listings with the last few lines dtierent

spiff IFile comparison tool included in SPEC Caacl, case2
caae3

Table 2, The programs tested and their datasets.
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hardest to predict, but still has 117 instructions between breaks
because its branches are so unidirectional to start with3. Figure
2b shows the C/Integer programs. There are isolated instances

where the prediction method doesn’t do very well, but in general

using the other datasets to predict a given dataset is almost
always effective at predicting branch directions in these

programs. Here instructions per break range tlom about 40 to
about 160.

I ZNSTYW

PROGRAM DATASET BRE4K

tomcatv 7461

matrix300 4853

nasa7 3400
1

doduc 1 tinY I 257 I

I small I 269 I

ref 275 I
Table 3. Instructions/break. (FORTRAN programs

with little variability in datasets.)

Figures 3a&b show how well or poorly we can do using one

single dataset to predict another. Considering the best possible

prediction (using a dataset to predict itself) to be 100%, we show
how close to that we come with the best other dataset, and how
close we come with the worst. In most of the programs

(espresso, li, compress, spt~ eqntott, spice2g6) the worst tended

to hover around 50-70’% of what was possible. The most
dramatically bad worst cases were in spice2g6 and compress. In

spice2g6, the worst cases came about when a dataset was used to

predict another that ran over 20,000 times as long. compress

was generally very predictable (note how well it does in Figure

2b), except that one dataset, cmprssc, was very different from the
others. This demonstrates that one has to pick datasets carefully

(for example, by picking several and accumulating them, as in
Figure 2)

ILP Compilers Will Get Larger Candidate

Sets Than This.

There are scverrd reasons that an ILP compiler will tend to get
larger candidate sets than the numbers of instructions k.tween

breaks shown here

Dominator parallelism. Code often contains hammocks, or
places where the code splits off and then quickly rejoins. The
splitting test may be very unpredictable, causing a break in

control, but if the compiler is sophisticated it might be able to
pull instructions up past the hammock despite the break in
control (see, for example, @3emstein and Rodeh 91]).

3(lrcuit2is also very short. It runs 1/10,000 as long as greybi~ for
example.

Considering instructions from both sides of a branch. AU

indirect su~routine call, for example, might represent an absolute

end of candidate selection for an ILP compiler. But an

unpredictable branch need not be. Several techniques of ILP

code generation allow instructions horn both sides of a branch to

be executed speculatively.

The distribution of runs of instructions between mispredicted

branches will not be constant. If one is trying to avoid flushing a
pipeline, then a mispredicted branch is a mispredicted branch. It
has its cost and the system pays it. But for ILP purposes, the

actual distribution of branches is significant. For example, far
more ILP will be available if one has 80 instructions followed by
two mispredicted branches than if one has 40 instructions, a

mispredicted branch, 40 more instructions, and another

mispredicted branch. Branches in real programs are not evenly
spaced.

The compiler turned some single breaks into multiple breaks.

For example, switch statements that might cause a single break
were turned into linear or cascaded zji with many breaks. In a

discussion above we suggest a compiler methodology for

handling these to cause only a single break, but allow the
candidate set to go beyond a very predictable multiple
destination branch.

Informal Observations

In the course of this experiment several things seemed clear
when we measured them but didn’t seem to merit inclusion in the

formal results, or were perceptions we had along the way, but
didn’t measure or carry out carefully.

“Coverage.” We felt that when a dataset predictor did poorly, it

was usually because it emphasized a different part of the

program than the target dataset, rather than that the branches
changed direction. We tried many schemes to capture this

concept in some measurable quantity we tried measuring the

percentage covered by screening out predictor branches that were
below some threshold, both absolute and relative to program

size, we tried measuring the overlap between predictors and

targets in various way$ and so on. Nothing we tried seemed to

correlate well with the results. Either the intuition we had is

vmong (the problem is that the branches were changing direction)

or we simply haven’t looked hard enough, perhaps because the

relationship is subtle. spice2g6 in particular was very difficult to

predict, which matches its reputation. We believe that this is a
result of different datasets using entirely different modules of the
simulator, but, again, were not able to meaningfully quantifi

this.

Mhough compress is really two distinct programs (compression

and uncompression) controlled by a command line switch, it is
one program as seen by our tools, so we were able to compare
runs of the two different modes. Unsurprisingly, there seemed to

be no correlation between them. Using the data tlom one to
predict the other is a very bad idea.

Scaled vs. unscaled summa~ predictors. We reported above on

the strategy of using the sum of all of the datasets except the one
being predicted as a predictor. We tried this three different
ways: we simply added the counts for each test for each dataset

(called unscaled), we divided each count by the total branches

executed by the predictor dataset to give each dataset equal total
weight (scaled), and we allowed each dataset to get one vote to

predict in which direction the branch would go, no matter how

large or small its execution count was (polling). Polling seemed,
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Figure 3a shows these ratios for the spice2g6 datasets, and Figure 3b shows it for the C/Integer

datasets.
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unsurprisingly, to petiorm poorly and it was discarded before it

was measured caretily. The other two appeared to perform as

well as each other. Sometimes one was significantly better than

the other, but on average they were indistinguishably close. We

chose scaled in our reports, but only because it was intuitively

more satis~ing, though it requires slightly more computation.

Simple opcade heuristics. The conventional wisdom is that
looking at the opcode and using simple heuristics to predict

branch directions does not work as well as feedback-based
methods, although we mentioned above one study that gives hope

that more elaborate heuristics might. We tried using very simple
heuristics, distinguishing between loops and nordoops, and our

results were, unsurprisingly, terrible. Except for some very
easily predictable vectorizable codes, this usually gave up about

a factor of two in instructions per break.

Branch percent taken as a cjwogram constant. ” We were

surprised at how constant the measure of percent taken was tiom

dataset to dataset within a given program, except for spice2g6.

.spice2g6 had one dataset, greysmall, that took its branches 210/0

of the time, and another, circuit5, at 76°/0. Remarkably,
greysmall was able to predict circuit5 fw better than was

circuit2, which took its branches 72°/0 of the time! Again, this
seems to show that the datasets are emphasizing different parts

of the program

Except for spice2g6, the maximum difference in branch percent

taken for the datasets of a single program was 9% (and most
were much closer), which seems remarkably constant.

4 Summary and Discussion

Branch prediction is an important capability for high
performance CPUs, especially for those that offer instruction-

level parallelism Static branch prediction offers advantages over
dynamic prediction, and for some uses is the only practical

alternative. The experiments reported upon here show that static

prediction can be done almost as well as is possible by taking
previous runs of a program, and using those runs to make

decisions about which way branches will go in future runs.

Although it is possible to pick previous runs that are not

effective, it appears that a variety of runs with their branch

direction counts added together make a good predictor. In this

fashion a compiler can consider large candidate sets without a
likely break in control. This result is not unexpected in
FORTRAN/Floating point codes, but holds for systems codes as
well. Inlining is an important capability for compilers seeking

instruction-level parallelism, though evidently the loss in not

inlining is small in terms of the candidate sets available.

An important issue not covered here is the user interface to a

system that provides this feedback. We know of no work

published in this area, nor do we know of any commercial
compilers that have offered branch direction prediction feedback
as an option. The effectiveness of any future system that offers

this capability rests not only on the predictability demonstrated

here, but on the existence of an interface that users find
palatable.
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