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1. Abstract  

Very Long Instruction Word (VLIW) architectures were prom- 
ised to deliver far more than the factor of two or three that 
current architectures achieve £rom overlapped execution. Using 
a new type of compiler which compacts ordinary sequential code 
into long instruction words, a VLIW machine was expected to 
provide from ten to thirty times the performance of a more con- 
ventional machine built of the same implementation technology. 

Multiflow Computer, Inc., has now built a VLIW called the 
TRACE'"  along with its companion Trace Scheduling" com- 
pacting compiler. This new machine has fulfilled the perfor- 
mance promises that were made. Using many fast functional 
units in parallel, this machine extends some of the basic 
Reduced-Instruction-Set precepts: the architecture is 
load/store, the microarchitecture is exposed to the compiler, 
there is no microcode, and there is almost no hardware devoted 
to synchronization, arbitration, or interlocking of any kind (the 
compiler has sole responsibility for runtime resource usage). 

This paper discusses the design of this machine and presents 
some initial performance results. 

2. Background for VLIWs 

The search for usable parallelism in code has been in progress 
for as long as there has been hardware to make use of it. But 
the common wisdom has always been that there is too little low- 
level fine-grained parallelism to worry about. In his study of the 
RISC-II processor, Katevenis reported Kate85 "...We found low- 
level parallelism, although usually in small amounts, mainly 
between address and data computations. The frequent 
occurrence of conditional-branch instructions greatly limits its 
exploitation." 

This result has been reported before Tjad70,Fost72 and judging 
from the lack of counterexamples, seems to have been inter- 
preted by all architects and system designers to date as a hint 
from Mother Nature to look elsewhere for substantial speedups 
from parallelism. 

Researchers at Yale, however, Fish83,Elli86 found that fine- 
grained parallelism could be exploited by a sufficiently clever 
compiler to greatly increase the execution throughput of a suit- 
ably constructed computer. The compiler exploited statistical 
information about program branching to allow searching beyond 
the obvious basic blocks in a program (e.g., past conditional 
branches) for operations that could be performed in parallel 
with other possibly-unrelated operations. Fish79 Logical incon- 
sistencies that were created by these motions were corrected by 
special compensation code inserted by the compiler. 

These researchers labelled their proposed architecture "Very- 
Long-Instruction-Word", and suggested that a single- 
instruction-stream machine, using many functional units in 
parallel (controlled by an appropriately large number of instruc- 
tion bits) would be optimal as an execution vehicle for the com- 
piler. It was proposed that the most suitable VLIW should exhi- 
bit four basic features. 

oOne central controller issues a single long instruction word 
per cycle. 

sEach long instruction simultaneously initiates many small 
independent operations. 

• Each operation requires a small, statically predictable number 
of cycles to execute. 

sEaeh operation can be pipelined. 

In the same spirit as RISC efforts such as MIPS Henn81 and the 
IBM 801 Radi82 the microarchitecture is exposed to the compiler 
so that the compiler can make better decisions about resource 
usage. However, unlike those efforts, a VLIW provides many 
more functional units that can be used in parallel; Multiflow's 
Trace Scheduling compiler finds parallelism across basic blocks 
to keep them busy. 

Multiflow Computer, Inc., has now demonstrated the fundamen- 
tal soundness of both the compiler and the architecture, 
announcing a product based on these concepts. This paper will 
discuss Multiflow's TRACE architecture. Some initial experi- 
ence with programming a VLIW (bringing up UNIX on the 
TRACE machine) will be recounted. 
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3. Introduction to VLIW Computer Architecture 

VLIW computers are a fundamentally new class of machine 
characterized by 

oA single stream of execution (one program counter, 
and one control unit). 

eA very long instruction format, providing enough 
control bits to directly and independently control 
the action of every functional unit in every cycle. 

*Large numbers of datapaths and functional units, 
the control of which is planned at compile time. 
There are no bus arbiters, queues, or other hardware 
synchronization mechanisms in the CPU. 

Unlike a vector processor, no high level regularity in the user's 
code is required to make effective use of the hardware. And 
unlike a multiprocessor, there is no penalty for synchronization 
or communication. All functional units run completely syn- 
chronized, directly controlled in each clock cycle by the com- 
pacting compiler. 

The true cost of every operation is exposed at the instruction set 
level, so that the compiler can optimize instruction scheduling. 
Pipelining allows new operations to begin on every functional 
unit in every instruction. This exposed concurrency' in the 
hardware allows the hardware to always proceed at full speed, 
since the functional units never have to wait for each other to 
complete. Pipelining also speeds up the system clock rate. 
Given that we can find and exploit scalar parallelism, there is 
less temptation to try to do "too much" in a single clock period 
in one part of the design, and hence slow the clock rate for the 
entire machine. Judiciously used small scale pipelining of 
operations like register-to-register moves and integer multiplies, 
as well as the more obvious floating point calculation and 
memory reference pipelines, helped substantially i n  achieving a 
fast clock rate. 

The absence of pipeline interlock or conflict management 
hardware makes the machine simple and fast. Hennessy HennS1 
has estimated that building the MIPS chip without interlocked 
pipeline stages allowed that machine to go 15% faster. In our 
VLIW, given our large number of pipelined functional units, 
pipeline interlocking and conflict resolution would have been 
almost unimplementable, and the performance degradation 
would have been far greater than 15%. 

VLIWs exploit the same low-level, scalar parallelism that high- 
end scalar machines have used for decades. Execute-unit 
schedulers which look ahead in a conventional instruction 
stream and attempt to dynamically overlap execution of multiple 
functional units were incorporated in systems beginning with the 
IBM 360/91T°ma82 and the Control Data 6600. Th°r70 These 
"scoreboards,  perform the same scheduling task at runtime that 
Multiilow's Trace Scheduling compacting compiler performs at 
compile time. Even with such ,'complex and costly hardware, ,  

Acos86 Acosta et al. report that only a factor of 2 or 3 speedup in 
performance is possible. This limitation, of course, is the same 
as previously discussed: the hardware cannot see past basic 
blocks in order to find usable concurrency. 

Over the last two decades, the cost of computer memory has 
dropped much faster than the cost of logic, making the con- 
struction of a VLIW, which replaces scheduling logic with 
instruction-word memory, practical and attractive. In conjunc- 
tion with the global optimization ability of our compiler, we find 

no remaining reasons to build run-time scheduling hardware. 
The scheduling problem is much better solved in software at 
compile-time. This "no control hardware" attitude permeates 
the design of the TRACE architecture. 

An  obvious potential disadvantage to the VLIW approach is that 
instruction code object size could grow unmanageably large, 
enough so that much of the performance advantage would be 
lost in extra memory costs and disk paging. We have addressed 
this problem in the design of the TRACE, and have a very satis- 
factory result to report in Section 9. 

4. Trace Scheduling Compacting Compilation 
Multiflow's Trace Scheduling compacting compiler automatically 
finds fine-grained parallelism throughout any appfication. It 
requires no programmer intervention, either in terms of restruc- 
turing the program so it fits the architecture or in adding direc- 
tives which explicitly identify opportunities for overlapped exe- 
cution. This is in sharp contrast to "coarse-grained" parallel 
architectures, including vector machines, shared-memory mul- 
tiprocessors, and more radical structures such as 
hypercubes selt85 or massively-parallel machines, wurst The pro- 
cess by which programs are converted into highly parallel wide- 
instruction-word code is transparent to the user. 

To detect fine-grained parallelism, the compiler performs a 
thorough analysis of the source program. One subroutine or 
module is considered at a time. After performing a complete 
set of "classical" optimizations, including loop-invariant motion, 
common subexpression elimination, and induction variable 
simplification, the compiler builds a flow graph of the program, 
with each operation independently represented. 

Using estimates of branch directions obtained automatically 
through heuristics or profiling, the compiler selects the most 
likely path, or "trace",  that the code will follow during execu- 
tion. This trace is then treated as if it were free of conditional 
branches, and handed to the code generator. The code genera- 
tor schedules operations into wide instruction words, taking into 
account data precedence, optimal scheduling of functional units, 
register usage, memory accesses, and system buses; it emits 
these instruction words as object code. This greedy scheduling 
causes code motions which could cause logical inconsistencies 
when branches off-trace are taken. The compiler inserts special 
"compensation code" into the program graph on the off-trace 
branch edges to undo these inconsistencies, thus restoring pro- 
gram correctness. 

This process allows the compiler to break the "conditional jump 
bottleneck" and find parallelism throughout long streams of 
code, achieving order-of-magnitude speedups due to compac- 
tion. 

The process then repeats; the next-most-likely execution path is 
chosen as a trace and handed to the code generator. This trace 
may include original operations and compensation code. It is 
compacted; new compensation code may be generated; and the 
process repeats until the entire program has been compiled. 

A number of conventional optimizations aid the trace selection 
process in finding parallelism. Automatic loop unrolling and 
automatic inline substitution of subroutines are both  incor- 
porated in Multiflow's compilers; the compiler heuristically 
determines the amount of unrolling and substitution, substan- 
tially increasing the parallelism that can be exploited. 

More information about the design of the compiler will be forth- 
coming; interested readers may also find previous reported 
research enilghtening. Fish79, Elli86, Fish81, Fish84, E11i84 

181 



Memory 
I Register File 

Figure 1. Block Diagram of an Ideal VLIW Execution Engine 

5. The Ideal VLIW 

The ideal execution vehicle for this compacting compiler would 
be a machine with many functional units connected to a large 
central register file. Each functional unit would ideally have two 
read ports and one write port to the register file, and the register 
file would have enough memory bandwidth (Very Large) to bal- 
ance the operand usage rate of the functional units. A block 
diagram of this ideal engine is shown in Fig. 1. A centralized 
register file would simplify code generation; when scheduling 
operations, the selection of functional unit would be unimpor- 
tant, and the code generator would only have to worry about 
when the operation was scheduled. The provision of a full set 
of separate read/write ports for each functional unit would 
guarantee the independence of each operation. As long as there 
were enough registers, no extraneous data movement would ever 
be needed. 

However, any reasonably large number of functional units 
requires an impossibly large number of ports to the register file. 
Chip real estate and chip pinout limit the number of indepen- 
dently controlled ports which can be provided on a single regis- 
ter set. The only reasonable implementation compromise is to 
partition the register files, in some way that minimizes the addi- 
tional workload on the compiler and also minimizes data traffic 
between the different register files. 

Another problem in this "ideal VLIW" is the memory system. 
All modem computers have to deal with a significant speed 
mismatch between the logic used to build the processor and the 
access time of the dynamic RAMs used to build the memory. 
The memory architecture of our VLIW is perhaps the area 
where the greatest advantage is gained over other approaches; it 
is discussed in Section 6.4. 

6. A Real VLIW 

These were the goals for the TRACE processor design: 

oA modular design, with an expandable number of functional 
units; 
oUse standard, high-volume, low-cost electronics; 
oUse standard DRAMs for main memory for high capacity at 
low cost; 
oDeliver the highest possible performance for 64-bit 
floating point intensive computations; 
ePerform well in a multi-user environment. 

The processor is built of five board types: integer boards (I), 
floating point boards (F), a "global controller" (GC), memory 

controllers (MC), and I/O Processors (IOP). Each board is an 
18 by 18 inch, 8 to 10 layer printed circuit, interconnected via a 
single 19-slot backplane. The backplane connectors provide 630 
pins usable for signals, plus power and ground connections. 
The core of the computational engine was built in 8000 gate 
CMOS gate arrays with 154 signal pins. Advanced Schottky 
TTL was used for "glue" logic and bus transceivers. 

Research at Yale in machine architecture accompanied research 
into compilation across basic blocks. The focus of efforts at 
Yale was to develop bulldable, scalable, technology-independent 
machine models which could be used to evaluate the success of 
such a compiler. At Multiflow, the design team spent the first 
year studying alternative partitionings, functional unit mixes, and 
opeode repertoires, with a specific product and implementation 
technology in mind. This allowed us to be much more aggres- 
sive in hardware support for effective compilation, and come 
much closer to an "ideal VLIW" structure than any machines 
we considered at Yale. Architectural alternatives were 
evaluated using a prototype easily-retargetable compiler and 
simulator. ElliS6 

Given the implementation constraints, we decided that a max- 
imum of eight 32-bit buses could traverse the edge connector. 
The number of buses we could support was one of the major 
constraints on CPU expandability, given the required balance 
between memory bandwidth and the rate of floating point opera- 
tions to support general computations. 

We partitioned the core processor into an Integer and a Floating 
unit (the " I "  and "F"  boards), and provided separate physical 
register files for the floating point functional units and the 
integer ALUs.  This makes intuitive sense, since there is little 
need for performing integer operations on floating point 
operands (and vice versa), while it is often the case that a chain 
of floating point operations can proceed while the integer units 
are performing the address computations in parallel. 

The unit of processor expansion is this Integer-Floating board 
pair. One, two, or four I-F pairs can be configured, 
corresponding to a 256-bit, 512-bit, or 1024-bit instruction word. 

Two 32-bit buses carry data traffic between the boards of a pair 
(through a dedicated front-edge path, rather than the back- 
plane). Each board carries its own register file/crossbar touch- 
ing twelve 32-bit datapaths, handling four writes, four reads, and 
four bus-to-bus forwards in each minor cycle, plus bypassing 
from every write port to every read port. Sixty-four 32-bit regis- 
ters are provided. This register file~crossbar is implemented in 
nine gate arrays; each is a 4-bit slice (byte parity is carried 
throughout the machine). 
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6.1. Integer Operations 
Figure 2. I and F Board Block Diagrams 

The integer instruction set comprises some 80-odd opcodes, 
including arithmetic, logical, and compare operations; high per- 
formance 16-bit primitives for 32-bit integer multiplication; an d  
shift, bit-reverse, extract, and merge operations for bit and byte 
field manipulations. The integer instruction set (excluding multi- 
plication) is implemented in a single gate array, four copies of 
which are included in a single I-F pair. 

Every operation specifies its destination register at the time of 
initiation. A modifier ("dest..bank") specifies which register file 
contains the target register: the local general register bank, the 
general register bank in the paired F unit, the store file in the 
paired F unit, a general register bank in another I unit, or a 
branch bank on an I or F board. Branch banks are small 1-bit 
register files used to control branching; see Section 6.5.2. 

Substantial support was provided for injecting immediate con- 
stants into the computation. Each ALU can get a &bit, 17-bit, 
or 32-bit immediate provided on one operand leg, under the 
control of the instruction word. A 32-bit immediate field is 
flexibly shared between ALU0, ALU1, and a 32-bit PC adder 
which generates branch target addresses. 

Included in the I board instruction set are pipelined load and 
store instructions for referencing memory. Memory addresses 
are 32-bit byte pointers. The memory system hardware operates 
only on 32-bit or 64-bit quantities; access to fields of other sizes 
is provided via extract/merge/shift operations which are 
arranged to accept the same 32-bit pointer, using the low bits to 
specify the field position. 

The I board also includes dynamic address translation hardware 
and supports demand-paged virtual addressing. A Translation 
Lookaside Buffer provides a cache of 4K virtual-to-physical 
address translations on 8KB page boundaries. Simple paging is 
used; no segmentation or other address translation is provided. 
Traps are taken on TLB misses; trap-handling software manages 
TLB refills. The TLB is process-tagged so that flushes are 
unnecessary at context switches. Its indexing scheme includes a 
process-ID hash to minimize conflicts between entries for multi- 
pie processes. 

Each instruction executes in two minor cycles, or "beats". 
Each beat is 65ns. The I board ALUs perform unique opera- 
tions, specified by new control words presented in both the early 
and late beats. 

Figure 3 shows the format of the instruction word for a single I- 
F pair. This instruction word is replicated four times in a fully 
configured processor. 

6.2, Floating Operations 

The F board (floating point) was optimized for 64-bit IEEE stan- 
dard floating point computation. It uses the same register file 
chips as the I board, providing sixt~four 32-bit registers (which 
are used in pairs for 64-bit quantities). The floating functional 
units each perform one new operation per instruction, or every 
other beat. The 32-bit datapaths carry 64-bit data to and from 
the floating point units in two beats. 

A pipelined floating adder/ALU shares resources and opcodes 
with an integer ALU; the integer ALU has one beat latency, 
while the floating adder has six beat latency in 64-bit mode. A 
floating multiplier/divider similarly shares resources with 
another integer ALU. The multiplier has seven beat latency 
doing 64-bit multiplication, and 25 beat latency doing 64-bit divi- 
sion. New operations may be started on each functional unit in 
each instruction (except on the multiplier while division is in 
progress). 

The integer instruction set, excluding memory references and 
integer multiply, is available on both ALUs on the F board. 
This was an implementation convenience. We found it desirable 
to provide "fast move" paths to allow data moves without the 
pipeline depth of the floating point units. We also included the 
integer SELECT operation, which provides the semantics of the 
C "?"  operator without branching. It was simpler to include 
copies of the already-designed integer ALU than to dedicate 
another gate array to these more limited functions. 
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Word 0: I 0 A L U 0 ,  Early beat. 

31. 25 24 19 18 1.6 15 13 i2 1.1 7 6 1. 0 

[ srcl [ src2 ~[m~ opcode I dest I destbank Ibranc testl 

Word 1: Immediate constant 0 (early). 

31 0 

immediate constant (early) ] 
J 

Word 2: I 0 ALU 1, Early beat. 

31. 25 24 1.9 18 1.6 1.5 1.3 12 11. 

ak [branch_test[ [ srcX opcode I dest I dest_bank I I 
7 6 1. 0 

I src  

Word 3: F 0 FA/ALUA control fields. 

31 25 24 23 22 17 16 1_5 11 10 5 4 3 1. 0 

[ opcode 164 I [ dest I I srcl [ src2 I [ d e s t - b a n k - ] - - I  

Word 4: I 0 ALU 0, Late beat. 

31. 25 24 19 1.8 16 15 1.3 1.2 1.1 7 6 1 0 

I °pc°de I dest I d°st-ban~l  I srcl [ s r c 2 - ~  

Word 5: Immediate constant 0 (late). 

31 

I immediate constant (late) 

0 

1 

15 13 12 11 7 6  1 0 

I srcl I src2 

Word 6: I 0 ALU 1, Late beat. 

31 25 24 19 18 16 

I opcode I dest I dest-bank [ 

Word 7: F 0 FM/ALUM control fields. 

31 25 24 23 22 17 

I °pc°de 1641 I dest I 
16 15 11 10 6 5 3 1 0 

I srcl [ sre2 [ [ [ dest-bank I ] 

Figure 3. Instruction Word Format for one I-F pair 

The floating point functional unit pipelines are "self-draining"; 
the destination register is specified when the operation is ini- 
tiated, and a hardware control pipeline carries the destination 
forward, writing ~he target register when the operation com- 
pletes. To allow interrupts to occur at any point in the pro- 
gram, by convention the target register of any pipelined opera- 
tion is "in use" from the beat in which the operation is initiated 
until the beat in which it is defined to be written. If a trap or 
interrupt occurs while the pipelined operation is in process, the 
register gets written early, relative to the execution of the 
instructions immediately following in the program text. 

The F board also carries the Store Register File. When an I 
board issues a Store opcode, i t  also issues a "Store Read 
Address" on a bus that all F boards monitor. Physical 
addresses are generated on the I boards, and data to be stored 
comes from the "Store Register File" on the F boards. The 
Store Register File, implemented using the same register chip 
used elsewhere, expands the number of register read ports and 
eliminates pipeline conflicts between memory stores and other 
operations. 

6.3. System configuration 
A fully configured TRACE processor incorporates four I-F 
pairs. With a 1024-bit instruction word that initiates 28 opera- 
tions per instruction, it has peak performance of 215 "VLIW 
MIPS" and 60 MFLOPS. Figure 4 shows the top level architec- 
ture and backplane interconnect for the system. The entire 
CPU and its interconnect is synchronized to a single master 
dock. 

The ILoad Buses, FLoad Buses, and Store Buses are each a set 
of 4 independently-managed synchronous 32-bit buses. The 
Load buses are multidirectional, and the Store buses are uni- 
directional. Each bus is independently scheduled by the com- 
piler for each execution beat. Each Load bus carries a 10-bit 
control field, or "tag", specifying the destination of the data car- 
ried on the bus in that beat; the tags are derived from instruc- 
tion words which specify data moves or memory references. 
Because the "arbitration" is handled by the compiler, the buses 
are fast, simple, and cheap. This is a major advantage versus 
the complicated interconnects of a multiproeessor, where arbi- 
tration, buffering, interlocking, and interrupts are required. Ptis85 
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Figure 4. The TRACE Major Datapaths 

Up to eight memory controllers comprise the memory system. 
Each controller carries up to 8 independent banks. Memory 
addresses are interleaved among controllers and banks. Each 
memory controller watehes all four physical address buses for 
valid requests, and touches one Store bus, one I bus, and o n e F  
bus. A fully populated memory system eompfises 512 MBytes 
of physical storage. 

6.4. The Memory Subsystem 

The speed of the CPU/memory interconnection in a computer 
system is a first order determinant of overall performance (the 
legendary "yon Neumann bottleneck"). The designers of every 
modem computer system, from the IBM PC to the Cray-2, have 
had to deal with a substantial mismatch in speed between the 
cycle time of the processor and the access time of the 
memories. This mismatch ranges from a factor of 2 to a factor 
of 59. Two major approaches have been taken by the designers 
of these systems to handle the mismatch: caching and interleav- 
ing. 
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Cache memories provide lower latency than main memory when 
there is reasonable locality of reference in the access pattern. 
They can be expensive to implement, and their cost grows 
rapidly in systems attempting to issue more than one memory 
reference per cycle. While instruction caches are universally 
effective, data caches work poorly in many scientific applica- 
tions, where very large arrays of data are repeatedly accessed; 
hit rates fall off rapidly, and system performance degrades to the 
performance of the backing store (main memory), snait82 

Interleaved memories exploit parallelism among memory refer- 
ences to address the speed mismatch in a different manner. 
Memory addresses are spread across multiple independent 
banks of RAMs. The memory system is pipelined; while one or 
more new references may be initiated in each cycle, it takes 
multiple cycles for a single reference to complete. During 
several of those cycles, a single RAM bank will be tied up and 
unable to accept new requests; achieving performance requires 
that addresses be spread across multiple banks. Correctness 
depends upon somehow managing the referencing pattern, and 
avoiding references to banks that are busy. 

When parallelism can be found in the memory referencing pat- 
tern, an interleaved memory system will provide much higher 
sustained performance for large scientific applications than any 
cached scheme of comparable cost. However, the management 
complexities and exposed parallelism of the interleaved 
approach have prevented all but supercomputer designers from 
building such memory architectures. 

One major problem in building an interleaved memory system is 
managing the status of several simultaneously outstanding refer- 
ences. In a traditional scalar or scalar/vector computer, a 
hardware bank scheduler, or "stunt box", is required to track 
the busy status of each bank, watch each memory reference 
address, and prevent conflicts (by temporarily suspending all or 
selected portions of execution). Details such as out-of-order 
data returns can complicate the picture further. The complexity 
of such a scheduler grows as the square of the number of pend- 
ing references to be managed. 

Our VLIW computer system provides enormous memory 
bandwidth using an interleaved memory system, without 
memory-reference scheduling hardware and without a data 
cache. This is a major advantage of the VLIW approach in 
building a scientific computer. 

6.4.1. Memory Implementation Details 
Software sees a seven beat memory reference pipeline in the 
TRACE. The pipeline stages look like this: 

0. The program says LD R1, R2, R3. R1 and R2 are added 
to form a virtual address. R2 may be replaced by a 6-, 17-, 
or 32-bit immediate constant. 

1. The virtual address is looked up in the TLB. 
2. The physical address is sent over the buses to the memory 

controller. 
3. The desired RAM bank starts cycling. 
4. RAM access continues. 
5. Data is grabbed from the RAMs on the memory controller. 
6: Data is sent over the buses to the CPU; simultaneously, 

ECCis  checked. 
7. Data is written into the register file, and the CFU can use 

the data in R3, 

Like the floating point pipelines, the memory pipelines are 
"self-draining"; loads specify the destination register when the 
operation is initiated, and a hardware control pipeline carries 
the destination forward, tagging a data bus with it in the cycle 
when the data is sent to the CPU. This simplifies interrupt han- 
dling and the generation of "compensation code" for off-trace 
branch cases, when compared with the "pusher/catcher" 
approach found in most horizontally microcoded attached pro- 
cessors. 

In a fully configured TRACE, four memory references may be 
started in each beat, to four independently generated addresses 
(one per I board). When each of these references is a 64-bit 
reference, this corresponds to a memory bandwidth of 492 
megabytes per second. 

However, a number of restrictions must be met: 

® At most one reference may be initiated on any individual 
controller. 
• No two references may be initiated which would require the 
use of the same bus to return their data. 
• No two references should be initiated to the same RAM bank 
within four beats of each other: 
• The total number of ILoad, FLoad, or Store buses used must 
not exceed the number available. 
® The available number of register file write ports must not 
be exceeded. 

In order to satisfy some of these requirements, the compiler 
must know quite a lot about the memory addresses being gen- 
erated by the program. For example, it must be able to guaran- 
tee that the addresses for two simultaneously-issued LOAD 
operations will never be equal modulo the number of memory 
controllers. 

6.4.2. The Disambiguator 

The disarnbiguator is the module of the compiler which passes 
judgment on the feasibility of simultaneous memory references. 
Memory reference disambiguation - distinguishing between 
references which can be to the same location and those which 
cannot - is required in order to find parallelism among array 
references. When a loop is unrolled, for example, the disambi- 
guator is called upon to answer whether a store into c ( I )  can 
be moved above a reCerence to C( I+J ) .  The disambiguator 
builds derivation trees for array index expressions and attempts 
to solve the diophantine equations in terms of the loop induc- 
tion variables. 

Relatively simple extensions to the disambiguator allow the code 
generator, as it schedules memory references, to ask for any two 
references, "can these conflict, modulo the number of memory 
banks"? The answer can be "no",  "yes", or "maybe". When 
the answer is "no",  references can be scheduled simultaneously, 
at very high bandwidth, without any memory-bank management 
hardware. When the answer is "yes", the operations will not be 
scheduled simultaneously. When the answer is "maybe',, as in 
the case of references to two arrays passed in as arguments to a 
subroutine (so that their base addresses are unknown), the com- 
piler has to treat this as a conflict for certain resources, but may 
overlap the utilization of other resources, because the hardware 
provides a "bank stall" mechanism (described below). 
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6.4.3. Virtual Memory 

Virtual memory posed a special challenge for a VLIW architec- 
ture issuing multiple memory references in every beat. Given 
that address translation is pipelined, TLB misses are not 
detected until several beats after the memory reference has been 
initiated. Since memory reference pipelining is exposed, this 
presents no problem; no computation could possibly depend 
upon the result, and we have several cycles in which to deter- 
mine the correctness of the reference. On a TLB miss, 
hardware aborts the reference, and signals the processor to 
switch to Trap Mode to handle the failed reference. However, 
trap handling code cannot just load the TLB with the appropri- 
ate translation and return to the instruction; several more 
instructions have executed since the original failing operation, 
and they cannot be correctly reexecuted. 

Each I board incorporates a "history queue" mechanism used 
by the trap handling code, which records uncompleted memory 
references and their virtual addresses (these memory accesses 
must then be handled by the trap code). These queues are read 
and the TLB contents are updated (or page faults are taken); 
the references are then replayed via special instructions which 
allow the queue contents to be reissued as new operations. As 
the queues are four entries deep, up to sixteen independent TLB 
misses can be pending on a single entry to the trap code. 

The trap handling code is standard machine code resident at a 
specific physical address. It is executed with instruction stream 
virtual addrressing disabled, but is otherwise normal; early ver- 
sions were written almost entirely in C. No "mierocode" is 
present anywhere in the processor; this is as close as we come 
to it. This provides great flexibility in the virtual architecture 
exposed to processes. (For instance, "copy-on-write" is a very 
simple change to the trap code, not a hardware change.) 

6.4.4. Memory Summary and Comparisons to Earlier Work 

Several major advances in the memory system beyond earlier 
research are incorporated in the Multiflow TRACE system: 

• Only relative disambiguation is necessary. Unlike earlier pro- 
posed VLIW architectures, the presence of a full crossbar 
between address generators and memory controllers means that 
the disambignator need only answer "is < e x p l >  ever equal 
<exp2> modulo N",  and not "what is the value of < e x p l >  
modulo N".  This greatly improves the likelihood of successful 
disambiguations, particularly in subprograms where array base 
addresses cannot be known. 

• The same datapaths are shared between intra-CPU and 
Memory-to-CPU traffic. This concentrates the bandwidth and 
better accommodates the bursty nature of computations, provid- 
ing higher sustained performance without additional costs. 

• A "bank-stall" mechanism was devised. When a given RAM 
bank is accessed, that bank goes busy for four beats. In eases 
when the disambiguator answers "maybe" to a bank conflict, the 
compiler has the option of moving references into potentially 
conflicting schedule positions. In this case the memory will 
"bank-stall" the CPU if an actual conflict occurs, until the bank 
busy time is satisfied. This "rolling the dice" can improve per- 
formanee. 

We believe that this software-managed parallel memory system 
is an important architectural breakthrough. It allows much 
higher memory performance than would otherwise be possible. 

Although a run-time memory reference scheduler has more per- 
feet information than a compile-time disambiguator (it sees no 
"potential" conflicts, only the real ones) it can do less in the 
way of scheduling its way around conflicts when they arise. 
Compile-time scheduling, with a larger perspective on the 
schedule, is more able to fill conflict times with useful work than 
hardware schedulers, which typically can only suspend execution 
until the conflict is resolved. Furthermore, it is dramatically 
simpler and less expensive to build a highly parallel memory sys- 
tem when no centralized control unit is required to verify the 
memory reference pattern. 

6.5. Instruction Fetch Considerations 

Fetching and managing the execution of 1024-bit instructions in 
a pipelined machine posed some interesting challenges. 

We implemented a physically distributed, full-width instruction 
cache. Bits of the instruction word are cached on the boards 
that they control; the processor's master sequencer (the "GC")  
contains the cache tag and control logic. The cache is built out 
of 35ns 64K static RAMs, and holds 8K instructions with a total 
bandwidth of 984 MB/second. In a fully configured machine, 
this is 1 megabyte of cache. It is virtually addressed and pro- 
cess tagged; flushing the cache is required only when we "run 
out" of hardware process tag values, not when we context 
switch. 

Instruction virtual addresses are translated to physical addresses 
during eaehe refill through a dedicated instruction-stream TLB. 
This TLB has 4K entries, and is process tagged, with an 
"Address Space ID" (ASID) hashing scheme (like data TLBs) 
to improve multiple process hit rates. 

Instruction fetch is fully overlapped with execution, and never 
stalls or restrains the processor, except on cache misses. We 
provided an extremely large cache to minimize the overall miss 
rate, and took extreme care to ensure that we could refill the 
cache at high speed on a miss. 

6.5.1. The Instruction Encoding Format 

Most programs contain sections which have lots of parallelism 
that our compacting compiler can find. In these parts of the 
code, many operations can be packed into each instruction. To 
maximize performance, for these parts of the program, we want 
a very wide instruction capable of independently expressing as 
many operations as possible. However, other "suburbs" pro- 
gram sections often have much less available parallelism, so that 
only a few operations will be inserted into each instruction 
word, and longer sequences of less filled instructions will be 
generated. If  we have optimized the computer for the highly 
parallel sections, then in these suburbs we will have many func- 
tional units idle for many instruction cycles. This means that 
large portions of the instruction word will contain only no-ops, 
and will substantially increase the memory size of the program 
without contributing to its performance. 

Machine designers have historically dealt with this dilemma by 
compromising: compressing their instruction encodings by 
preseleeting those combinations of operations that they expect 
will be most commonly used. This then required the compiler 
to find and use the "patterns" that the designers had provided, 
if the highest performance was to be obtained. We believe these 
encoding schemes work out poorly in conjunction with a com- 
piler; we pursued a quite different solution. 
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We place no restrictions in the instruction on what combinations 
of operations can be invoked simultaneously. Object code size 
is minimized in a different way: we use a variable-length main 
memory representation of the fixed-length machine instruction. 
That is, the instruction cache outputs a fixed-length 1024-bit 
instruction in each cloeLeycle; bits of the instruction word are 
directly wired to the functional units that they control. The 
architecture in this sense has a fixed-size instruction. However, 
we use a main memory instruction representation that eliminates 
the no-ops, affording a significant space savings. 

Implementation of this variable-size memory instruction format 
had to satisfy a number of serious constrMnts. One constraint 
was that the instruction format not penalize execution of in- 
cache instructions. When the instruction cache is loaded, the 
control information for the functional units must be in the "right 
places" so that the instruction fetch pipeline length remains 
minimal. 

A second constraint is that refilling the cache on a miss must 
proceed at the highest possible rate, without a huge amount of 
hardware dedicated solely for filling the cache. Since the 
TRACE system possesses massive main memory bandwidth 
through its use of an interleaved memory system and many 
buses, this means that it must be possible to control the cache 
refill without inspecting and interpreting each word as it comes 
from memory. 

The instruction set must facilitate an easy-to-implement 
correspondence between the Program Counter, cache locations, 
and main memory locations, so that variable-length instructions 
can be "unpacked" quickly into a fixed-width cache. 

Given that variable-length instructions are being fetched from a 
parallel, interleaved memory system, the "schedule" of what 
word will be on each bus in each cycle, and knowledge of which 
field of the instruction cache is to receive that value, must be 
produced by a control unit in real time as the data is returned 
from main memory. For a practical implementation, this 
requires that the schedule be precomputed by that control unit. 
The instruction representation must be such that this control 
unit is as simple and fast as possible. 

We store instructions in main memory in blocks of four. Each 
block is preceded by four 32-bit "mask" words, which specify 
which 32-bit fields of the instruction are present in the block; 
the others are filled in the cache with zeros (no-ops). 

The cache refill engine fetches and interprets the mask words. 
It never has to see or process actual instruction fields destined 
for the various functional units. This engine decides upon the 
schedule of buses to be used, initiates the instruction field 
fetches, and then tags the fields as they fly by on the ILoad 
buses so that they are steered to the proper functional units' 
cache words. The real-time overhead of this scheme is very 
low, since the actual cache refill proceeds at the maximum 
memory bandwidth and cpu bus bandwidths (the same buses are 
used in refill as are used for general computation). 

This cache refill engine is perhaps the most complex piece of 
hardware in the TRACE, starting up enormous numbers of 
pipelined loads from memory and then directing them to the 
various instruction cache memories distributed throughout the 
machine. For sequential code, the mask interpretation is over- 
lapped with the execution of the current block of instructions, 
so the operation of this cache refill engine represents a low over- 
head on the overall performance of the machine. 

6.5.2. Branching 

The architecture includes compare-predicate operations, rather 
than test operators and condition codes. We found it helpful to 
include compare instructions which could write the general 
registers, to allow evaluation of IF chains without branching. 
The architecture includes a special one-bit-wide 7-element regis- 
ter file, called the "branch bank", which can hold the result of 
compare (and other) operations, and which can be used to con- 
trol branching. This allows the compiler to perform register 
allocation on branch bank elements, and move compare opera- 
tions independently of the actual branches. A typical code 
sequence would look like: 

CEQ Ri, R2, BB(R3) 

BRANCH (R3) LABEL 

Write BB 3 with 1 if R1 == R2, 
else write BB 3 with 0 
The "branch_test" field selects R3 

The branch operation can be issued in the early beat of every 
instruction; part of the immediate field is used as the displace- 
ment for the branch. The branch is taken if the selected branch 
bank element is a 1. This branching structure resembles the 
"delayed branch" of other RISC machines, in that operations 
following the compare-and-branch areunconditionally executed 
while the branch target is fetched. 

Conditional branching becomes an interesting problem as we 
attempt to fill Wider instructions. Fish83 Conditional branches 
occur every five to eight operations in typical programs; if we try 
to compact many more than five operations together, some 
mechanism will be required to pack more than one jump into a 
single instruction. We provided a multiway jump in the TRACE 
processor with multiple independent targets, with a software- 
controlled priority scheme. 

Consider two jumps, with unique target addresses, which are ini- 
tially sequential in the source program. If we want to pack them 
into a single execution cycle, we must establish a priority rela- 
tionship between them, which defines which target address to 
branch to in the case that more than one of the simultaneous 
tests are true. The "highest priority" test whose condition is 
true provides the next address for execution. The priority rela- 
tionship is driven by the original ordering of tests in the sequen- 
tial program. The test that was originally first in the sequential 
program must be the highest priority; in the original sequential 
program, if the first test were true, then the second jump would 
never have been executed. Therefore, when we pack them 
together, we must arrange to ignore the results of the second 
lower-priority test if the first higher-priority test is true. 

Each I unit can perform one test per instruction. A 32-bit 
"branch target adder" on each I board adds the current program 
counter to an immediate field of the instruction word. This 
computation yields a potential branch address. The branch arbi- 
tration mechanism determines which of four tests being per- 
formed simultaneously (on different I units) is the highest prior- 
ity true test, and distributes the branch target associated with 
that test (defaulting to PC+I when none of the four tests is suc- 
cessful). 

Each I unit has nine bits of instruction word that control 
branching. Three bits ("branch._test") select an element from 
branch bank 0; another three select an element from branch 
bank 1. The values of the two selected bits are logically ORed 
to determine if "this board wants to branch". Three more bits 
(hidden in the immediate field) are defined by software to 
specify the relative priority of this test versus that of the tests 
being executed on the three other I units. These priority bits 
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show which other I boards it can preempt if its branch is true 
(which it does by sending "inhibit" signals to them directly). If 
no I board has a TRUE branch condition, then a central system 
controller board supplies a default PC value. Otherwise, the I 
board which has a TRUE branch condition and no inhibits is 
enabled to drive the new PC value onto the backplane. 

This scheme is elegantly simple. It is fast, requiring only two 
gate delays (and one backplane traversal) to effect the arbitra- 
tion. It is software-controlled, so that the compiler can adjust 
the relative priorities of the branches for each instruction. It 
allows the rapid selection of one of five potential next-addresses 
dur!ng every instruction; the fetching of the next instruction 
from that address is fully overlapped with the execution of the 
current instruction. 

7. Except ions  and Optimizations 

Some things you might take for granted, like traps and inter- 
rupts, have some subtle consequences when you try to rearrange 
execution order. We found we needed some unusual architec- 
tural features to enable more compiler code motion and optimi- 
zation than a traditional approach to exception handling would 
have allowed. 

Consider a FORTRAN loop that contains an array reference 
which is accessing across a row. If this loop is unrolled a 
number of times, and we allow the code generator to move the 
LOADs above the conditional branch that tests for the last 
iteration of the loop, several LOADs may be issued to 
addresses beyond the end of the program's current address 
space. The conditional jump will be all set to exit the loop, so 
that these references will be ignored (their data will never be 
used); but a conventional virtual memory system would ter- 
minate the program with a "Bus Error". 

The architecture includes a special set of LOAD opcodes used 
by the compiler in the ease when a LOAD moves above a con- 
ditional branch. When trap handling code sees one of  these 
opcodes on a TLB miss, if no valid translation can be esta- 
blished for the reference, execution continues; the target regis- 
ter is loaded with a "funny number"  to help catch bugs. These 
special opcodes are used only when necessary; we don't give up 
the helpful "Bus Error" traps when we don't have to, to assist 
in program fault isolation. This technique enables the compiler 
to be much more aggressive in code motions involving memory 
references. 

A similar problem exists in floating-point exception detection 
and handling. Consider the fragment: IF (A .NE. 0) C 

D/A. It 's  very much in the interests of performance to move 
divides up in the schedule; they take a long t ime,  But  i f  we 
want to detect division by zero, we must wait until the test has 
completed before initiating division. 

/ 

Here again, we provided some assistance in the architecture. 
The processor has several floating exception modesi  one of 
which is called "fast mode". In fast mode, floating exceptions 
cause traps only if the result is being written to the store file, 
being used in a compare, or being converted to integer form. 
Otherwise, a NaN ("Not-A-Number") or infinity will result from 
the offending computation, but no exception will be generated. 
As NaNs and infinities tend to propagate, any computation 
using the offending result will eventually cause a fault (by writing 
something to memory, for example). The trap will not occur at 
the most perspicuous point, but overall execution speed will be 
higher. (Note that floating underflows escape our notice in !~fast 
mode",  in that they are flushed to zero, We find this not to be a 
problem for many programs, and provide lower performance 
modes in which exceptions are detectable immediately.) 

8. UNIX on the TRACE 

A VLIW may appear to be an odd sort of CPU to make into a 
virtual memory timesharing system. Indeed, the original 
designers of the ELI-512 expected their machine to be useful 
only as a number-crunching back-end processor. Fish83 The prob- 
lems associated with making this heavily pipelined parallel 
machine capable of servicing interrupts seemed daunting 
enough, let alone all the rest: supporting virtual memory on a 
CPU without microcode, the incredible number of registers that 
would have to be context switched, extending the architecture 
and compiler to support systems code in addition to its numeri- 
cal chores, not to mention that long instruction words might 
make all the utility programs consume gigabytes of disk space. 

We've figured out ways around all of these problems, but it is 
natural to wonder why we built the TRACE to run 4.3BSD 
UNIX in the first place. The reason is simple: modern numeri- 
cal applications programs do much more than perform floating 
point calculations. They make the usual demands of a system 
for disk, graphic, and terminal I /O, but they can make these 
demands at rates far exceeding those of " I /O intensive" systems 
programs. And scientific applications programmers have the 
same desires for reasonable and friendly programming environ- 
ments that system programmers do. Fulfilling all these 
demands, particularly for performance, with a smoothly 
integrated front-end/back-end processor seemed difficult and 
unnecessary, so we built the operating system to run directly on 
the CPU. 

8.1. Support  for  a Multiple Process  Environment 

We have already described many of the architectural features 
needed to support an operating system: the instruction and data 
TLBs needed for virtual memory; mechanisms and constraints 
for dealing with exceptions; and the desire for interruptability 
that led to our pipeline handling philosophy. 

The TRACE supports its multiuser operating system in the 
usual way. Appropriate protection modes and privileged 
instructions are provided so that the user process environment is 
maintained. All accesses to mapping hardware, I /O stimulus 
instructions, and the PSW are carefully protected. A limited set 
of traps to system mode are provided for system calls and 
breakpoints. 

We were concerned about the effects of running multiple 
processes, and the overall impact that context switching would 
have on performance. Our goal was to support about as many 
users as would be comfortable on a large supermini but to sup- 
port order-of-magnitude larger computations than current super- 
minis could support. 

Context switching is often considered to be simply the cost of 
saving and restoring registers. But the actual cost of a context 
switch also includes the interrupt time, scheduling overhead, 
and any penalty for cache purging and cold-start. ¢1a~85 On 
many machines, the cost of purging the virtual address transla- 
tion and instruction caches dominates register saving, The 
TRACE provides very large instruction and translation Caches 
(see Sections 6.4 and 6.5), which are process tagged with an 8- 
bit "Address Space ID",  or ASID. /qo purging of the instruc- 
tion cache or translation buffers is necessary on a context 
switch; caches must be purged only every 255 address space 
mapping changes, when the set of ASIDs overflows. 
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Updating the ASID registers is cheap, so the high available 
memory bandwidth in the system permits a complete context 
switch in 15 microseconds. This figure holds in any machine 
configuration, because usable memory bandwidth increases as 
the number of registers. This performance is comparable to 
other machines that are trying to support our number of users. 

8.2. Interrupts 

Interrupt handfing is almost entirely conventional. There is a 
priority interrupt system, with maskable interrupts from each 
device. When an enabled interrupt request arrives, execution 
suspends, the processor changes state, and execution resumes at 
a " trap" address. Since the pipeLines are self-draining, after the 
maximum pipe depth time, all of the state of the processor is 
either in general registers or in main memory. A few hand- 
coded instructions begin saving registers while the pipelines 
drain; after several instruction times we enter C code to process 
the event. 

8.3. Input/Output 

Given an exposed architecture where the compiler knows about 
the machine resources being used throughout the system, it 's 
difficult to allow UO to "cycle steal" or otherwise share 
hardware resources on a fine-grained basis with program execu- 
tion. 

A memory-mapped I /O scheme would have required the CPU's 
memory interface to deal with devices with two distinct speeds: 
fast (to memory) and slow (to I /O  devices). We chose not to 
implement our I /O this way. Instead, the CPU interacts with its 
devices through a surrogate called the I /O Processor (IOP). 
The IOP is based on an MC68010 with a multiported high 
bandwidth buffer memory and a " D M A  engine" which can read 
and write blocks of main memory at half of peak memory 
bandwidth. The IOP interfaces to a VMEbus, a standard 32-bit 
asynchronous bus where the device controllers reside. 

When the DMA engine wants to read or write main memory, it 
signals the GC. The GC suspends processor execution and 
allows pipelines to drain. The D M A  engine then talks directly 
to memory at high speed; for example, I0 MB/s of I /O  con- 
sumes only 4% of the machine's cycles in the largest CPU 
eonfignration. Execution resumes as soon as a burst of data has 
been transferred. 

The I /O processor talks to the CPU using a bidirectional inter- 
rupt and a channel command protocol in main memory. Device 
drivers run on the I /O processor, a scheme which minimizes 
interrupts and CPU involvement in UO operations. The IOP is 
also responsible for bringing the system up. A small operating 
system on the IOP supports execution of diagnostic and 
bootstrap programs. 

We have devised a generic set of drivers on the T R A C E  side for 
each class of device on the IOP (disk, tape, ethernet, and termi- 
nal) which are very small, and which interface to device-specific 
drivers on the IOP. We have also implemented an I /O 
configuration syste m where all possible drivers are present (at a 
small cost in memory) and system device configuration is 
changed by editing a file on the diagnostic file system before 
booting UNIX. 

8.4. Systems Code on a VLIW 

The hundreds of thousands of lines of code which make up the 
UNIX kernel and utilities do not know they're running on a 
VLIW. One of our compilers is for the C language. Nearly all 
of the UNIX utilities, and a large chunk of the kernel, are writ- 
ten in portable C. (By actual count: 300 lines of assembly and 
64K lines of C in the kernel; 1100 lines of assembly and 700 
lines of C in the trap handlers.) The fact that our compiler 
performs exotic optimizations like inter-block compaction and 
transforms the code into a parallel form is irrelevant. We com- 
pile these programs and they do what they're supposed to do; 
grep doesn't  know it's stretching the frontiers of technology, it 
just greps along at a terrific rate. 

Trace Scheduling compacting compilation was originally con- 
ceived for numerical applications; we expected to run into prob- 
lems handling systems code. The systems code in UNIX differs 
in several respects from numerical code. Systems code makes 
pervasive use of pointers, which leads to more difficult compiler 
optimization problems. The code tends to have even smaller 
basic blocks than numerical code. And most important, sys- 
tems code has proportionately many more procedure calls than 
numerical code. 

Pointers and small basic blocks have not been a problem. In 
fact, procedure call overhead seems to be the only issue that has 
required special attention. Performance on systems code is 
quite good (the C and Fortran compilers share a common back 
end). 

The TRACE provides no special architectural support for pro- 
eedure calls (other than the large memory bandwidth already 
built in). During the design, we considered several hardware 
mechanisms intended to minimize procedure call/return over- 
head, but none of them was both a clear performance win and 
clearly feasible. We decided to rely on the compiler to be 
clever with its use of registers and procedure inlining, and to 
develop a global register allocating linker, which builds a global 
call graph and minimizes register saves (currently in the 
works), wans6 We expect this work to be complete by the time of 
the conference presentation, and will report on it there. 

When we initially debugged UNIX on the TRACE,  we restricted 
traces to basic blocks, and disabled loop unrolling; compiler 
heuristics for how much unrolling to perform had not yet been 
installed, and code grew unmanageably. Those heuristics are 
now in place, and their performance is remarkably good. The 
full compacting compiler optimizations work well for a wide 
variety of systems code, including the kernel itself, without 
undue code growth. 

This result surprised us somewhat; we hadn ' t  anticipated as 
much improvement on systems code as we got. Good perfor- 
mance on systems code is very desirable, as it restrains the pro- 
portionate growth of operating system overhead that is usually 
encountered on a parallel machine. Unlike "coarse-grained" 
architectures where systems code runs on a single scalar unit 
(and can become a substantial bottleneck), we retain the same 
OS-to-user balance found on more traditional systems. 

9. Code Size: Initial Results 

The"no-op" fields of an instruction are not represented in main 
memory, so the object code size of  a program is directly propor- 
tional to the number  of operations in the compiled program. 
There are thus three components to consider when comparing 
VLIW code density to that of other architectures: 
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o the number of bits required within the instruction set to 
express a given operation; 

• the succinctness, or lack thereof, with which common high- 
level operations (like procedure call) can be expressed in the 
instruction set; and 

o the number of new operations introduced through compiler 
optimizations and loop unrolling. 

The VI.IW encoding of each operation is roughly on par with 
other RISC machines. It is a three address architecture, all 
loads and stores are explicit, and there is minimal instruction 
encoding. The code expansion per operation is probably around 
30 - 50% when compared to a tightly encoded machine like the 
VAX or Motorola 68000. The variable-length main memory 
instruction encoding has an associated overhead of a few bits 
per operation, which coupled with main memory alignment con- 
straints adds roughly an additional 5 - 10%. 

Operations that cannot be initiated in a single instruction cycle 
are broken down into constituent sub-operations. These consti- 
tuents are usually substituted inline, although certain operations 
such as the block register save and restore associated with pro- 
cedure call are implemented via special subroutines. The 
overall code expansion due to this, as compared to a machine 
like the VAX that has an extensive library of microcoded "sub- 
routines", is difficult to quantify, but is probably in the neigh- 
borhood of 10 - 20%. 

The compiler performs an enormous number of optimizations, 
most of which reduce the number of operations in the program, 
but some of which increase the number of operations with the 
goal of increasing parallel execution. The three most notorious 
code-expanders are inter-block trace selection (which can pro- 
duce compensation code), loop unrolling, and inline procedure 
substitution. All three of these are currently automatic and 
have been tuned to avoid undue code growth. These optimiza- 
tions can increase the size of some small fragments of code by a 
large factor, but their overall effect seems to be to increase code 
size by a factor of around 30 - 60%, although the user can 
increase or decrease these factors arbitrarily through the use of 
compiler switches. 

Several large (100K - 300K lines) FORTRAN programs have 
been built on the TRACE. After unrolling and trace selection, 
the code size is approximately 3 times larger than VAX object 
code (compiled with the VAX/VMS FORTRAN compiler). 

The concern about code size led us to implement a shared- 
libraries facility very early in our UNIX development. This has 
substantially reduced the size of the UNIX utilities images. The 
UNIX utilities consume approximately 20MB of disk space on a 
VAX, and approximately 60MB on our VLIW using shared 
libraries. 

UNIX has been running on the TRACE and supporting its own 
development for some time. The principal advantage of 
Multiflow's parallel processing technology is that it is tran- 
sparent to its clients. Thus, most of the ehailenging problems in 
developing an operating system and programming environment 
for the TRACE come not from its VLIW nature but from our 
intention to make the system into a first rate environment for 
high performance engineering and scientific computation. A 
thorough discussion of our approach is beyond the scope of this 
paper. 

10. Summary and Future Work 

This paper has introduced the Multiflow TRACE Very-Long- 
Instruction-Word architecture. Before this machine was built, 
some designers and researchers predicted that the negative side- 
effects of the VLIW/compacting compiler approach (object 
code size, compensation code, context swap time, and pro- 
cedure call/return overhead) would likely swamp the machine's 
performance gains. These predictions were wrong: we slew 
some of these dragons with cleverness, tamed a few, and 
couldn't even find the rest. 

It is too early to be able to separate out all the different contri- 
butions to performance in the TRACE. Our future work will 
concentrate on quantifying the speedups due to trace scheduling 
vs. those achieved by more universal compiler optimizations. 
We will also be examining the efficacy of memory-bank disambi- 
guation, speed/size tradeoffs of the fixed and variable instruction 
encoding schemes, and instruction cache usage statistics. 

Our conclusion should be unsurprising: given an implementa- 
tion technology, the best way to use it is to build a VLIW. If 
you build a standard scalar machine instead, you pass up 
significantly higher performance at only slightly higher cost; the 
extra functional units are cheap compared to the overhead of 
building the computer in the first place (memory, control, etc.). 
If you build a vector machine instead, the parallel hardware you 
build "turns on" only occasionally, 'and the speed of some vec- 
tor code is all that will be improved. And if you build a mul- 
tiprocessor instead, you pay the full overhead of instruction exe- 
cution and run-time synchronization per functional unit, without 
getting the fine-grained speedups a VLIW can offer. 
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