Importing HOL into Isabelle/HOL

Steven Obua * and Sebastian Skalberg

Technische Universitat Miinchen
D-85748 Garching, Boltzmannstr. 3, Germany

Abstract. We developed an importer from both HOL 4 and HOL-light
into Isabelle/HOL. The importer works by replaying proofs within Is-
abelle/HOL that have been recorded in HOL 4 or HOL-light and is
therefore completely safe. Concepts in the source HOL system, that is
types and constants, can be mapped to concepts in Isabelle/HOL; this
facilitates a true integration of imported theorems and theorems that are
already available in Isabelle/HOL. The importer is part of the standard
Isabelle distribution.

1 Introduction

The idea of sharing theorems between different proof-assistants is not new; there
has been previous work on translating from HOL to NuPRL [1-3], from Isabelle
to NuPRL [4] and from HOL to COQ [5,6]. Ouly [1,3-5] provide implementa-
tions; of these implementations only [3,5] translate proofs instead of just theo-
rems. Both implementations can deal only with a subset of the HOL inference
rules and have not been used for large developments.

Our translator from HOL 4 [10] and HOL-light [11] to Isabelle/HOL [9] is
therefore the first one that fulfills both of the following two criteria:

— The translation process is safe relative to the correctness of the destina-
tion system, in this case Isabelle/HOL. This is achieved by replaying proofs
that have been recorded in the source system (HOL 4 or HOL-light) in the
destination system (Isabelle/HOL).

— Large developments have been translated with our translator, in fact almost
all of the entire HOL 4 distribution and all of base HOL-light.

In contrast to previous work is also that our translation is basically between
systems, not between logics. Although some complications result from the fact
that Isabelle/HOL is an object logic instance of the Isabelle framework, and
HOL 4 and HOL-light directly implement higher-order logic, all these systems
still share the same logic: classical simply-typed polymorphic higher-order logic
(HOL). The HOL community has always profited from the fact that while the
implementations of their systems has been relatively stable, a large database of
proven theorems has been developed in each of the systems. Now the time has
come to go a step further and to make theorems in one HOL system available in

* Supported by the Ph.D. program “Logik in der Informatik” of the “Deutsche
Forschungsgemeinschaft.”



the other systems, thus unifying these large databases. Other work sharing this
vision is that of McLaughlin who translates Isabelle/HOL to HOL-light [7].

Our translator consists of two components. First there is the proof-recording
component which resides in HOL 4 and HOL-light and which records the the-
orems together with their proofs so that they can be saved as a collection of
XML files. Second there is the importer component which takes this collection
as input and uses it to reprove the exported theorems in Isabelle/HOL. The im-
porter component can be configured to map imported concepts to concepts that
are already available in Isabelle/HOL. This makes it for example possible to map
the type of real numbers of HOL 4 or HOL-light to the type of real numbers of
Isabelle, because they represent the same abstract concept independent of their
specific construction. Another example of this versatility is that the importer
can also be configured to map HOL 4’s LET constant to Isabelle’s Let constant
although the constants differ in their names (different capitalization) and the
order in which they take their arguments.

The importer component is part of the standard Isabelle distribution since
2004; the proof-recording component for HOL-light is part of the HOL-light
distribution since release 2.0; the proof-recording component for HOL 4 can
currently only be obtained by contacting the authors of this paper. There is
also a simple importer implementation available which has been written in Java;
although this implementation misses some features it can be used to check all of
HOL-light; it can be downloaded from [12].

2 The Proof-Recording Component

Each HOL system is based on the central idea of an abstract datatype thm.
Instances of thm can be created and manipulated only according to the rules of
the logic. The part of the HOL system that implements this abstract datatype,
together with theory extension mechanisms like constant and type definition, is
called the kernel of the system. The rest of the system is built on top of it.

Thanks to the concept of a kernel, adding proof-recording to an HOL sys-
tem is relatively easy: first one adds a new component proof to the internal
representation of thm, then one modifies the functions that manipulate thm to
record these manipulations in the new component. Basically, each constructor
of the proof component corresponds to an inference rule of the kernel. In HOL
4, which is implemented in Standard ML, these changes were transparent to
the rest of the system; in HOL-light, whose implementation language is OCaml,
unexpected problems arose from the fact that the built-in equality on theorems
leaked through the abstractness of the datatype; this equality had changed, of
course, because now for two theorems to be equal they have to have the same
proof, too! Therefore all places in the HOL-light system had to be found and
modified that made use of equality on theorems.

A proof can be considered a tree consisting of other proofs, terms and types.
Saving this tree to disk naively is not feasible in practice; it is simply just to
big. This might come as a surprise: after all, the proof has to fit into the main



memory of the computer! The solution to this puzzle is that a proof in main
memory is not a tree, but a DAG; unfolding this DAG into a tree when saving
can lead to exponential blow-up. Therefore we go through the following steps
during saving a collection of proofs:

— Apply afn-normalization to all terms; therefore we need no proof construc-
tors for the § and n inference rules, which degenerate to reflexivity.

— Simplify proofs that involve reflexivity; the proof TRANS (REFL t) p for
example can be simplified to just p.

— Identify all proofs that are shared in main memory; each shared proof is
saved into a separate XML file. When saving a proof A that has a shared
proof B as its child, instead of B only a link to the XML file of B is saved
in the XML file of A.

— For each proof that is saved into a separate XML file, share all the terms
and types within that proof, using a DAG representation.

These simple measures yield manageable proof-on-disk sizes: The base HOL 4
distribution results in 80,000 files, taking up 350MB disk space (13MB when
gzipped). The base HOL-light system results in 130,000 files, taking up 229MB
disk space (21MB when gzipped).

One extreme case is the proof of the Jordan Curve theorem in HOL-light by
Thomas Hales. It produces about 1,000,000 files; unix commands like 1s broke
down when used naively. Therefore it would be better not to shift the proof
sharing to the file system, but design an own file format for this purpose. This
format could also deal with gzip-like compression issues.

Note that we use a first-order representation of proofs with sharing as our
compression technique; another approach can be found in [8] where proofs are
represented as higher-order terms. It is not clear which approach is superior, or
whether a combination of both approaches would be beneficial.

Adding proof-recording to the kernel of an HOL system does not change the
runtime of this HOL system significantly. Saving the recorded proofs to disk is a
time-consuming task, though: the base HOL 4 system needs 50 minutes, the base
HOL-light system about 30 minutes. Saving the Jordan Curve theorem took a
couple of hours.

The semantics of the proof constructors establishes sort of an abstract HOL
kernel ! which is the union of the HOL 4 and HOL-light kernel, but operates not
only modulo a-, but also modulo 8- and n-equivalence. One inefficiency of this
kernel is its current storage format, as mentioned before. Another improvement
of it would be to incorporate higher inference rules such as rewriting which would
certainly reduce the size of proofs considerably. Taking this one step further, a
“golden” kernel should also provide the possibility of coding higher rules and
storing this code along with the proof objects. Such a kernel could then serve as a
standard kernel for exchanging theorems between HOL systems, and find also its
applications in areas such as proof-carrying code, where the size of proof objects
is regarded an important factor.

! for a description of this kernel, see [12]



3 The Importer Component

The import of the recorded proofs is done in two phases:

1. A configuration Isabelle theory transforms a set of XML proof files into a set
of Isabelle/HOL theories.

2. The generated Isabelle/HOL theories can now be used just as other Isabelle
theories; because the statements in these theories are proven with the help
of the recorded proofs, the XML proof files must still be present when using
these generated theories.

The critical phase is the first one; here it is decided via the configuration file how
the imported concepts are mapped onto already existing ones. The importer does
not accept axioms; this means that all constants that are specified via axioms
in the source HOL system must be mapped onto existing Isabelle constants,
and statements must be proven in Isabelle about these existing constants that
correspond to the imported axioms. Further mappings are desirable for a better
integration of the imported theories with already existing theories, but these
additional mappings are not required.

There are mainly three mapping constructs: the command const-maps which
maps constants, the command type-maps which maps types, and the attribute
holdrew which can be attached to Isabelle theorems. Furthermore there is the
additional command ignore-thms which is currently also essential for the map-
ping process; its purpose is to ignore certain theorems and to not import them.
Unfortunately one currently has to make explicit use of ignore-thms when map-
ping constants or types: the defining theorems/proofs for these constants and
types have to be ignored. This is bound to confuse particularly the novice user,
and is still annoying also the experienced one.

The importing process can be described as follows:

— A list is fetched from the collection of XML proof files that describes all
named theorems in that collection; theorems that are not named occur also
among the proof files, they have been created because of proof sharing.

— All entries of the list are imported one after another. If the entry corre-
sponds to a theorem flagged by ignore-thms, it is skipped. Otherwise first
the statement S of the theorem is fetched from the file. Then the types
and constants of that statement are mapped according to const-maps and
type-maps, yielding a statement S’ = map (.9).

— After this, the shuffler is applied to S’ yielding a statement S” = shuffle (S”).
The shuffler makes a statement more “Isabelle-like”, converting for example
quantified variables into unquantified schematic variables. The shuffler also
applies all rewriting rules to the statement that have been defined via the
holdrew attribute.

— If 8” can be looked up in the Isabelle theorem database, then the import of
the theorem has been successful. For mapped constants, this is very often
the case. Otherwise the proof P is fetched from the XML proof file; mapping
yields P/ = map (P). Then P’ is replayed in Isabelle, mimicking the inference



rules of the abstract HOL kernel, yielding a theorem 7. The theorem T is
stored so that other proofs referencing this proof can access it. Furthermore
T’ = shuffle (T') is stored and dumped to the generated theories.

— Thus, all shared proofs are replayed at most once. While this is desirable for
obvious performance reasons, there is also a functional aspect to it. Certain
proofs do have side-effects, because definition of constants and types are also
encoded as proofs. The side-effect of replaying a constant definition is that
this constant is now defined in the generated Isabelle theory; the same holds
for type definitions. Replaying a proof at most once ensures that a side-effect
is executed at most once.

4 Conclusion

We have described an importer/translator from HOL 4 and HOL-light to Is-
abelle/HOL; other source systems can be supported given that they adhere to
the contract of the abstract kernel. The translator has been used to import
large developments like the real analysis libraries of HOL 4 and base HOL-light
and facilitates an integration of imported and already existing theories; thus it
sets new standards for safe interoperability between HOL systems, though its
user-friendliness could be improved.

Acknowledgment. Thanks to John Harrison for including the proof-recorder
in his HOL-light distribution and for putting time and effort into making that
inclusion as smooth as possible; also thanks to Virgile Prevosto for OCaml-
related help.

References

1. D. J. Howe. Importing Mathematics from HOL into Nuprl. TPHOLs’96, LNCS
1125, Springer 1996.
2. C. Schiirmann, M. Stehr. An Executable Formalization of the HOL/Nuprl Con-
nection in the Metalogical Framework Twelf. LPAR 2004, to appear.
3. P. Naumov, M. Stehr, J. Meseguer. The HOL/NuPRL Proof Translator: A Practi-
cal Approach to Formal Interoperability. TPHOLs’01, LNCS 2152, Springer 2001.
4. P. Naumov. Importing Isabelle Formal Mathematics into NuPRL. TPHOLs’99,
LNCS 1690, Springer 1999.
5. E. Denney. A Prototype Proof Translator from HOL to Coq. TPHOLs’00, LNCS
1869, Springer 2000.
6. F. Wiedijk. Encoding the HOL Light logic in Coq. Unpublished notes.
7. S. McLaughlin. An interpretation of Isabelle/HOL in HOL Light, submitted.
8. S. Berghofer, T. Nipkow. Proof terms for simply typed higher order
logic. TPHOLs’00, LNCS 1869, Springer 2000.
9. T. Nipkow, L. C. Paulson, M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, Springer 2002
10. The HOL System Description. http://hol.sourceforge.net
11. J. Harrison. The HOL Light manual.
http://wuw.cl.cam.ac.uk/users/jrh/hol-1light/manual-1.1.pdf
12. S. Obua. http://www4.in.tum.de/~obua/importer



