A Composable Cryptographic Library with Nested
Operations
(Extended Abstract)

Michael Backes
IBM Research Division
Ruschlikon, Switzerland

mbc@zurich.ibm.com

ABSTRACT

We present the first idealized cryptographic library thatlsa used
like the Dolev-Yao model for automated proofs of cryptodriap
protocols that use nested cryptographic operations, vaoieing

with a cryptographic implementation that is provably secumder
active attacks.
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E.3 [Data]: Data Encryption; F.1.2Theory of Computation]:
Computation by Abstract Devices, Modes of Computation

General Terms
Security, Theory, Verification
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1. INTRODUCTION

Many practically relevant cryptographic protocols likel$8_S,
S/MIME, IPSec, or SET use cryptographic primitives likersig
ture schemes or encryption in a black-box way, while addiagyn
non-cryptographic features. Vulnerabilities have accanigd the
design of such protocols ever since early authenticatiotopols
like Needham-Schroeder [43, 25], over carefully desigredadto
standards like SSL and PKCS [52, 16], up to current widely de-
ployed products like Microsoft Passport [29]. However, ying
the security of such protocols has been a very unsatisfatask
for a long time.

One possibility was to take the cryptographic approach.s Thi
means reduction proofs between the security of the oversiém
and the security of the cryptographic primitives, i.e., shews that
if one could break the overall system, one could also breakadn
the underlying cryptographic primitives with respect teitlcryp-
tographic definitions, e.g., adaptive chosen-messageigetor
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signature schemes. For authentication protocols, thicaph was
first used in [15]. In principle, proofs in this approach aseigor-
ous as typical proofs in mathematics. In practice, howdwaman
beings are extremely fallible with this type of proofs. Thisot
due to the cryptography, but to the distributed-systemseaspof
the protocols. It is well-known from non-cryptographictdisuted
systems that many wrong protocols have been published even f
very small problems. Hand-made proofs are highly errorproe-
cause following all the different cases how actions of défe ma-
chines interleave is extremely tedious. Humans tend touakeag
shortcuts and do not want to proof-read such details in grogf
others. If the protocol contains cryptography, this oldsté&ceven
much worse: Already a rigorous definition of the goals getsemo
complicated, and often not only trace properties (intgyfiave to
be proven but also secrecy. Further, in principle the corifgte
theoretic reduction has to be carried out across all thesescand
it is not at all trivial to do this rigorously. In consequendbere
is almost no real cryptographic proof of a larger protocol aev-
eral times supposedly proven, relatively small systemseater
broken, e.qg., [47, 26].

The other possibility was to use formal methods. There one
leaves the tedious parts of proofs to machines, i.e., mdusdle
ers or automatic theorem provers. This means to code the cryp
tographic protocols into the language of such tools, whicy m
need more or less start-up work depending on whether theatool
ready supports distributed systems or whether interactiodels
have to be encoded first. None of these tools, however, isailyr
able to deal with reduction proofs. Nobody even thought &bou
this for a long time, because one felt that protocol proofdd¢de
based on simpler, idealized abstractions from cryptogcaptim-
itives. Almost all these abstractions are variants of théeelb&ao
model [27], which represents all cryptographic primitieessopera-
tors of a term algebra with cancellation rules. For instapoélic-
key encryption is represented by operatbror encryption and
for decryption with one cancellation rul®(E(m)) = m for all
m. Encrypting a message twice in this model does not yield an-
other message from the basic message space but th& (egm.)).
Further, the model assumes that two terms whose equalityotan
be derived with the cancellation rules are not equal, andyeeem
that cannot be derived is completely secret. However, rmaiby
there was no foundation at all for such assumptions aboltnga
tographic primitives, and thus no guarantee that protopaised
with these tools were still secure when implemented withaego-
tography. Although no previously proved protocol has beekdn
when implemented with standard provably secure cryptesyst
this was clearly an unsatisfactory situation, and artifdanterex-
amples can be constructed.



Three years ago, efforts started to get the best of both wiorld
Essentially, [46, 48] started to define general cryptod@apiod-
els that support idealization that is secure in arbitragrenments
and under arbitrary active attacks, while [2] started tdifyaghe
Dolev-Yao model as far as one could without such a model. Both
directions were significantly extended in subsequent gapepar-
ticular [1, 49, 19, 5].

Nevertheless, this paper is the first that offers a provadtye
variant of the Dolev-Yao model for proofs that people tyfiica
make with the Dolev-Yao model, because for the first time weco
both active attacks and nested cryptographic operatiohts riew
property combination is essential: First, most cryptobrajproto-
cols are broken by active attacks, e.g., man-in-the-miatéeks or
attacks where an adversary reuses a message from one pebéqpco
in a different protocol step where it suddenly gets a differse-
mantics. Such attacks are not covered by [2, 1]. Seconaiyntiin
use of the Dolev-Yao model is to represent nested protocst me
sages liKeE e, (sign ., (m, N1), N2), wherem denotes an arbi-
trary message an®y;, N> two nonces. No previous idealization
proved in the reactive cryptographic models contains abstmns
from cryptographic primitives (here mainly encryption asigna-
tures, but also the nonces and the list operation) that casdxin
such nested terms. Existing abstractions are either tdelbigl,
e.g., the secure channels in [49, 5] combine encryption Emhs
tures in a fixed way. Or they need immediate interaction with t
adversary [19, 18], i.e., the adversary learns the stracifievery
term any honest party ever builds, and even every signedagess
This abstraction is not usable for a term as above becausmaye
want to show thatn is secret because of the outer encryption, but
the abstraction gives: to the adversary. (A similar immediate ap-
plication of the model of [49] to such primitives would avdfds
problem, but instead keep all signatures and ciphertextseisys-
tem, so that nesting is also not possible.) Finally, theistesome
semi-abstractions which still depend on cryptographi@itkef39,
49]. Thus they are not suitable for abstract protocol repregions
and proof tools, but we use such a semi-abstraction of plblyc
encryption as a submodule below.

The first decision in the design of an ideal library that sufgpo
both nesting and general active attacks was how we can egyires
an idealized cryptographic term and the corresponding mess-
sage in thesameway to a higher protocol. This is necessary for
using the reactive cryptographic models and their comjposihe-
orems. We do this by handles. In the ideal system, these émndl
essentially point to Dolev-Yao-like terms, while in the regstem
they point to real cryptographic messages. Our model foingio
the terms belonging to the handles is stateful and in thd &ea
tem comprises the knowledge of who knows which terms. Thus
our overall ideal cryptographic library corresponds maré'the
CSP Dolev-Yao model” or “the Strand-space Dolev-Yao model”
than the pure algebraic Dolev-Yao model. Once one has tleofde
handles, one has to consider whether one can put the exast-Dol
Yao terms under them or how one has to or wants to deviate from
them in order to allow a provably secure cryptographic redion,
based on a more or less general class of underlying primiti#e
overview of these deviations is given in Section 1.2, andiSed.3
surveys how the cryptographic primitives are augmentedvi® @
secure implementation of the ideal library.

The vast majority of the work was to make a credible proof
that the real cryptographic library securely implements itheal
one. This is a hand-made proof based on cryptographic primi-
tives and with many distributed-systems aspects, and tlithsail
the problems mentioned above for cryptographic proofs fela
protocols. Indeed we needed a novel proof technique camgist

of a probabilistic, imperfect bisimulation with an embeddgatic
information-flow analysis, followed by cryptographic retions
proofs for so-called error sets of traces where the bisitiaulalid
not work. As this proof needs to be made only once, and is in-
tended to be the justification for later basing many prot@robfs
on the ideal cryptographic library and proving them withHeg
assurance using automatic tools, we carefully worked duhael
tedious details, and we encourage some readers to doutti-ch
the 68-page full version of this paper [10]. Based on our Bxpe
ence with making this proof and the errors we found by making i
we strongly discourage the reader against accepting meiins
of cryptographic primitives where a similar security pragesim-
ulatability, is claimed but only the first step of the prodfetdefini-
tion of a simulator, is made.

1.1 Further Related Literature

Both the cryptographic and the idealizing approach at pigvi
cryptographic systems started in the early 80s. Early elesmyf
cryptographic definitions and reduction proofs are [33,. 34p-
plied to protocols, these techniques are at their best fatively
small protocols where there is still a certain interacti@ween
cryptographic primitives, e.g., [14, 51]. The early methad au-
tomating proofs based on the Dolev-Yao model are summarized
in [37]. More recently, such work concentrated on using téxis
general-purpose model checkers [40, 42, 24] and theorewezo
[28, 45], and on treating larger protocols, e.qg., [12].

Work intended to bridge the gap between the cryptographic ap
proach and the use of automated tools started independeittly
[46, 48] and [2]. In [2], Dolev-Yao terms, i.e., with nestepleva-
tions, are considered specifically for symmetric encryptiblow-
ever, the adversary is restricted to passive eavesdrop@ngse-
quently, it was not necessary to define a reactive model ofa sy
tem, its honest users, and an adversary, and the securis/\gege
all formulated as indistinguishability of terms. This wagemnded
in [1] from terms to more general programs, but the restictd
passive adversaries remains, which is not realistic in rpcestti-
cal applications. Further, there are no theorems about osimp
tion or property preservation from the abstract to the rgsiesn.
Several papers extended this work for specific models orifgpec
properties. For instance, [35] specifically considersrgtrspaces
and information-theoretically secure authenticatioryoit [38] a
deduction system for information flow is based on the samesspe
tions as in [2], still under passive attacks only.

The approach in [46, 48] was from the other end: It starts with
general reactive system model, a general definition of ogaiph-
ically secure implementation by simulatability, and a cosipon
theorem for this notion of secure implementation. This wizrk
based on definitions of secufenction evaluation, i.e., the com-
putation of one set of outputs from one set of inputs [32, 41, 1
17]; earlier extensions towards reactive systems wereraittihout
real abstraction [39] or for quite special cases [36]. Theragch
was extended from synchronous to asynchronous system$,n [4
19]. All the reactive works come with more or less worked-out
examples of abstractions of cryptographic systems, anictdiot
supported proofs were made based on such an abstractioh [5, 4
using the theorem prover PVS [44]. However, even with a com-
position theorem this does not automatically give a crygphic
library in the Dolev-Yao sense, i.e., with the possibilibyrtest ab-
stract operations, as explained above. Our cryptograjivary
overcomes these problems. It supports nested operatighs in-
tuitive sense; operations that are performed locally atevisible
to the adversary. It is secure against arbitrary activeckstaand
works in the context of arbitrary surrounding interactivetpcols.



This holds independently of the goals that one wants to pabeeit
the surrounding protocols; in particular, property preagon the-
orems for the simulatability definition we use have been gddor
integrity, liveness, and non-interference [4, 9, 6, 8].

We have already exemplified the usefulness of the cryptbggap
library by conducting the first cryptographically sound gty
proof of the well-known Needham-Schroeder-Lowe protodd! [
Since the proof relies on idealizations of cryptographyas hll the
advantages explained in the text; in particular, the prostited for
formal proof tools. Simultaneously and independently tework,
another cryptographically sound security proof of thigpeol was
invented in [53]. This proof is done from scratch in the cospt
graphic setting and is hence vulnerable to the problemsiored
before. However, it is fair to mention that this proof esisiés
the security property of matching conversations whereapmof
currently only strives for a weaker authentication requieat.

1.2 Overview of the Ideal Cryptographic Li-
brary

The ideal cryptographic library offers its users abstragpto-
graphic operations, such as commands to encrypt or decrgpsa
sage, to make or test a signature, and to generate a nonce.
these commands have a simple, deterministic semanticsielca
tive scenario, this semantics is based on state, e.g., ofalvbady
knows which terms. We store state in a “database”. Each entry
has a type, e.g., “signature”, and pointers to its argumengs, a
key and a message. This corresponds to the top level of a Dolev
Yao term; an entire term can be found by following the poisiter
Further, each entry contains handles for those particspahb al-
ready know it. Thus the database index and these handles agrv
an infinite, but efficiently constructible supply of globaldalocal
names for cryptographic objects. However, most librareagetex-
port operations and leave message transport to their Useker-
based”). An actual implementation of the simulatable lipraight
internally also be structured like this, but higher protsare only
automatically secure if they do not use this export functzoept
via the special send operations.

The ideal cryptographic library does not allow cheatingt iRe
stance, if it receives a command to encrypt a messagéth a cer-
tain key, it simply makes an abstract entry in a databasénocit
phertext. Each entry further contains handles for thoseciazants
who already know it. Another user can only ask for decryptbn
this ciphertext if he has handles to both the ciphertext aedse-
cret key. Similarly, if a user issues a command to sign a ngessa
the ideal system looks up whether this user should have tiretse
key. If yes, it stores that this message has been signedhistkey.
Later tests are simply look-ups in this database. A sendatiper
makes an entry known to other participants, i.e., it addsllesrto
the entry. Recall that our ideal library is an entire reacgystem
and therefore contains an abstract network model. We dffeet
types of send commands, corresponding to three channel fgpe
a, i}, meaning secure, authentic (but not private), and insedure
types could be extended. Currently, our library contairtdiptkey
encryption and signatures, nonces, lists, and applicatata. We
have recently added symmetric authentication (still utipbbd).

The main differences between our ideal cryptographic fibra
and the standard Dolev-Yao model are the following. Somkeft
already exist in prior extensions of the Dolev-Yao model.

A

e Signature schemes are not “inverses” of encryption schemes

e Secure encryption schemes are necessarily probabibstit,
SO are most secure signature schemes. Hence if the sam

message is signed or encrypted several times, we distinguis
the versions by making different database entries.

Secure signature schemes often have memory. The standard
definition [34] does not even exclude that one signature di-
vulges the entire history of messages signed before. We have
to restrict this definition, but we allow a signature to diyeil

the number of previously signed messages, so that we include
the most efficient provably secure schemes under classical
assumptions like the hardness of factoring [34, 20,'21].

We cannot (easily) allow participants to send secret kegs ov
the network because then the simulation is not always pos-
sible? Fortunately, for public-key cryptosystems this is not
needed in typical protocols.

Encryption schemes cannot keep the length of arbitrary-clea
texts entirely secret. Typically one can even see the length
quite precisely because message expansion is minimized.
Hence we also allow this in the ideal system. A fixed-length
version would be an easy addition to the library, or can be im-
plemented on top of the library by padding to a fixed length.

I ) . . :
Adversaries may include incorrect messages in encrypted

parts of a message which the current recipient cannot de-
crypt, but may possibly forward to another recipient who,can
and will thus notice the incorrect format. Hence we also al-
low certain “garbage” terms in the ideal system.

1.3 Overview of the Real Cryptographic Li-
brary

The real cryptographic library offers its users the same-com
mands as the ideal one, i.e., honest users operate on argphig
objects via handles. This is quite close to standard APIsxer
isting implementations of cryptographic libraries thatlime key
storage. The database of the real system contains reabgrgphic
keys, ciphertexts, etc., and the commands are implemegteshb
cryptographic algorithms. Sending a term on an insecurarca
releases the actual bitstring to the adversary, who can toitvi
what he likes. The adversary can also insert arbitraryriitg
on non-authentic channels. The simulatability proof whlbe that
nevertheless, everything a real adversary can achievelsarba
achieved by an adversary in the ideal system, or otherwiserth
derlying cryptography can be broken.

We base the implementation of the commands on arbitrary se-
cure encryption and signature systems according to starugp-
tographic definitions. However, we “idealize” the cryptaghic
objects and operations by measures similar to robust pbtte:
sign [3].

e All objects are tagged with a type field so that, e.g., signa-
tures cannot also be acceptable ciphertexts or keys.

e Several objects are also tagged with their parameters, e.g.
signatures with the public key used.

e Randomized operations are randomized completely. For in-
stance, as the ideal system represents several signatures u
der the same message with the same key as different, the real

!Memory-less schemes exist with either lower efficiency area
on stronger assumptions (e.g., [31, 23, 30]). We could aelch tto

the library as an additional primitive.

2The primitives become “committing”. This is well-known fro

individual simulation proofs. It also explains why [2] isstected

&0 passive attacks.



system has to guarantee that thgl}f be different, except for
small error probabilities. Even probabilistic encrypsoere
randomized additionally because they are not always suffi-
ciently random for keys chosen by the adversary.

The reason to tag signatures with the public key needed ifyver
them is that the usual definition of a secure signature sclizes
not exclude “signature stealing:” Létksy,, pkss,) denote the key
pair of a correct participant. With ordinary signatures eneaisary
might be able to compute a valid key pdiks., pks,) such that
signatures that pass the test wjths;, also pass the test withks,, .
Thus, if a correct participant receives an encrypted sigeainm,
it might acceptmn as being signed by the adversary, although the
adversary never saw. It is easy to see that this would result in
protocols that could not be simulated. Our modification pres
this anomaly.

For the additional randomization of signatures, we incladan-
dom stringr in the message to be signed. Alternatively we could
replacer by a counter, and if a signature scheme is strongly ran-
domized already we could omit Ciphertexts are randomized by
including the same random strimgn the message to be encrypted
and in the ciphertext. The outerprevents collisions among ci-
phertexts from honest participants, the inmegnsures continued
non-malleability.

2. PRELIMINARY DEFINITIONS

We briefly sketch the definitions from [49]. gystentonsists of
several possiblstructures A structure consists of a séf of con-
nected correct machines and a sub%etf free ports, callegpec-
ified ports A machine is a probabilistic IO automaton (extended
finite-state machine) in a slightly refined model to allow qbex-
ity considerations. For these machines Turing-machineegens
are defined, and the complexity of those is measured in tefras o
common security parametér given as the initial work-tape con-
tent of every machine. Readers only interested in usingdeal i
cryptographic library in larger protocols only need norpdster-
ministic 10 automata.

In a standard real cryptographic systerthe structures are de-
rived from one intended structure and a trust model congjsif an
access structurdCC and a channel model. Here ACC contains
the possible set®( of indices of uncorrupted machines among the
intended ones, ang designates whether each channel is secure,
authentic (but not private) or insecure. In a typical ideatem,
each structure contains only one machirté calledtrusted host

Each structure is complemented ta@enfigurationby an arbi-
trary usermachineH andadversarymachineA. H connects only
to ports inS andA to the rest, and they may interact. The set of
configurations of a systerfiys is calledConf(Sys). The general
scheduling model in [49] gives each connectioffrom an out-
put portc! to an input poric?) a buffer, and the machine with the
corresponding clock port”! can schedule a message there when
it makes a transition. In real asynchronous cryptograpystesns,
network connections are typically scheduled Ay A configura-
tion is a runnable system, i.e., for eaklone gets a well-defined
probability space ofuns. Theview of a machine in a run is the
restriction to all in- and outputs this machine sees anchitrnal
states. Formally, the viewiew .,,s (M) of a machineM in a con-
figuration conf is afamily of random variablesvith one element
for each security parameter valie

2.1 Simulatability

Simulatability is the cryptographic notion of secure impkn-
tation. For reactive systems, it means that whatever mighpén

vl H H ;
s v s
M, A, M, 1 A,

Figure 1: Simulatability: The two views of H must be indistin-
guishable.

to an honest user in a real systefys,., can also happen in the
given ideal systenbys,,: For every structuré M1, S) € Sys ..
every polynomial-time usel, and every polynomial-time adver-
sary A1, there exists a polynomial-time adversaky on a corre-
sponding ideal structuréMs, S) € Sys, such that the view of
H is computationally indistinguishable in the two configioas.
This is illustrated in Figure 1. Indistinguishability is allvknown
cryptographic notion from [54].

Definition 1. (Computational Indistinguishability) Two families
(varg ) ken and(var, ) ken of random variables on common domains
Dy, arecomputationally indistinguishablg =) iff for every algo-
rithm Dis (the distinguisher) that is probabilistic polynomial-8m
in its first input,

|P(Dis(1%, var;,) = 1) — P(Dis(1*, var},) = 1)| € NEGL,

where NEGL denotes the set of alhegligible functions i.e.,
g: N — R>¢ € NEGL iff for all positive polynomials(,
FkoVk > ko: g(k) < 1/Q(k).

Intuitively, given the security parameter and an elemenseh ac-
cording to eithewary, or var}, Dis tries to guess which distribution
the element came from.

Definition 2. (Simulatability) Let system$ys
given. We saySys,.,,
polynomial-time configuratiomonf, = SHA: € Conf(Sys,..),
there exists a polynomial-time configuratiennf ., SHA; €
Conf(Sysiy) (with the sameH) such that viewons, (H)
VieW cons, (H).

real andSySid be
> Sys (at least as secure a#f for every

~
~

For the cryptographic library, we even show blackbox siraila
bility, i.e., A2 consists of a simulato§im that depends only on
(M, S) and usesA; as a blackbox submachine. An essential
feature of this definition of simulatability is a composititheo-
rem [49], which essentially says that one can design andepaov
larger system based on the ideal systgm,,, and then securely
replaceSys;q by the real systen§ys,.,,.

2.2 Notation

We write “:=" for deterministic and ¢-" for probabilistic as-
signment, and £-g" for uniform random choice from a set. By
x = y++ for integer variables:, y we meany := y + 1;x := y.
The length of a message is denoted agm|, and | is an er-
ror element available as an addition to the domains and sange
of all functions and algorithms. The list operation is dexbgs
l:= (x1,...,z;), and the arguments are unambiguously retriev-
able ag[i], with I[i] = | if ¢ > j. A databaseD is a set of func-
tions, called entries, each over a finite domain calledmatteis. For
an entryz € D, the value at an attributelt is writtenx.att. For
a predicatepred involving attributes,D[pred] means the subset of
entries whose attributes fulfifired. If D[pred] contains only one
element, we use the same notation for this element. Adding an
entryx to D is abbreviated : < z.



3. IDEAL CRYPTOGRAPHIC LIBRARY

The ideal cryptographic library consists of a trusted fdst )
for every subset{ of a set{1,...,n} of users. It has a poih.,?
for inputs from and a pordut,,! for outputs to each user € H
and foru = a, denoting the adversary.

As mentioned in Section 1.2, we do not assume encryption sys-
tems to hide the length of the message. Furthermore, higber p
tocols may need to know the length of certain terms even far ho
est participants. Thus the trusted host is parameterizeétdositain
length functions denoting the length of a correspondingevat the
real system. The tuple of these functions is contained irstesy
parameter.

For simulatability by a polynomial-time real system, thead
cryptographic library has to be polynomial-time. It themef con-
tains explicit bounds on the message lengths, the numbdg-of s
natures per key, and the number of accepted inputs at eath por
They are also contained in the system paramgtefhe underly-
ing 10 automata model guarantees that a machine can enfacbe s
bounds without additional Turing steps even if an advers#yg to
send more data. For all details, we refer to the full versij.[

3.1 States

The main data structure @fH(’H) is a databas®. The entries
of D are abstract representations of the data produced duriysy a s
tem run, together with the information on who knows thesa.dat
Each entryr € D is of the form

(ind, type, arg, hndy, , . . ., hnd.,, , hnda, len)

whereH = {ui,...,un} and:

e ind € Ny is called theindexof x. We write D[¢] instead of
Dlind = 1].

type € typeset := {data,list, nonce, ske, pke, enc, sks,
pks, sig, garbage} identifies thetypeof z. Future extensions
of the library can extend this set.

arg = (a1,az,...,a;)is apossibly emptiist of arguments

hnd,, € No U {|} foru € H U {a} identifies howu knows
this entry. The valua represents the adversary, anal,, =

| indicates that: does not know this entry. A valuend,, #

| is called thehandlefor « to entryz. We always use a
superscript hnd” for handles and usually denote a handle to
an entryD[i] by "™

.

len € Ny denotes théengthof the abstract entry. It is com-
puted byTH(H) using the given length functions from the
system parametdr.

Initially, D is empty. TH(H) keeps a variableize denoting the
current number of elements iB. New entriesc always receive the
indexind := size++, andz.ind is never changed. For eache
H U {a}, TH(H) maintains a countecurhnd, (current handle)
overNj initialized with0, and each new handle farwill be chosen
asi™ := curhnd,++.

3.2 Inputs and their Evaluation

Each inputc at a portin,,? with w € H U {a} should be a list
(cmd,z1,...,z;). We usually write ity «— cmd(x1,...,x;)
with a variabley designating the result thafH(H) returns at
out,!. The valuecmd should be a command string, contained in
one of the following foucommand setsCommands in the first two
sets are available for both the user and the adversary, thisliast
two sets model special adversary capabilities and are colypdaed

for u = a. The command sets can be enlarged by future extensions
of the library.

3.2.1 Basic Commands

First, we have a sésic_cmds of basic commandsEach basic
command represents one cryptographic operation; anpiteams
similar to the Dolev-Yao model are built up or decomposed bg-a
guence of commands. For instance there is a comrgamchonce
to create a noncesncrypt to encrypt a message, afist to com-
bine several messages into a list. Moreover, there are coasna
store andretrieve to store real-world messages (bitstrings) in the
library and to retrieve them by a handle. Thus other commaads
assume that everything is addressed by handles. We only l&ts
to be signed and transferred, because the list-operatcasve-
nient place to concentrate all verifications that no seteens are
put into messages. Altogether, we have

basic_cmds := {get_type, get_len, store, retrieve, list, list_proj,
gen_nonce, gen_sig_keypair, sign, verify, pk_of _sig, msg_of _sig,
gen_enc_keypair, encrypt, decrypt, pk_of _enc}.

The commands not yet mentioned have the following meaning:
get_type and get_len retrieve the type and abstract length of a
messagelist_proj retrieves a handle to theth element of a list;
gen_sig_keypair andgen_enc_keypair generate key pairs for signa-
tures and encryption, respectively, initially with harglfer only
the usern: who input the commandign, verify, anddecrypt have
the obvious purpose, amtk_of _sig, msg_of__sig; andpk_of _enc re-
trieve a public key or message, respectively, from a sigeaitici-
phertext. (Retrieving public keys will be possible in thalreryp-
tographic library because we tag signatures and ciphsrtgith
public keys as explained above.)

We only present the details of hoWH () evaluates such basic
commands based on its abstract state for two examples, genee
eration and encryption; see the full version [10] for the ptete
definition. We assume that the command is entered at ampgtt
with v € H U {a}. Basic commands afecal, i.e., they produce
a result at porbut,! and possibly update the databa3e but do
not produce outputs at other ports. They also do not touctlesan
for participantsv # w. The functionsnonce_len*, enc_len*, and
max_len are length functions and the message-length bound from
the system parametér.

For nonces,TH(H) just creates a new entry with typ@nce,
no arguments, a handle for userand the abstract nonce length.
This models that in the real system nonces are randomly ohose
bitstrings of a certain length, which should be all difféarand not
guessable by anyone else thamnitially. It outputs the handle to
Uu.

¢ Nonce Generationn"™ «— gen_nonce().
Setn™ .= curhnd,++ and

D < (ind := size++, type := nonce, arg := (),

hnd,, :=n", len := nonce_len* (k)).

The inputs for public-key encryption are handles to the joutey

and the plaintext listTH(H) verifies the types (recall the notation
DIpred]) and verifies that the ciphertext will not exceed the maxi-
mum length. If everything is ok, it makes a new entry of type,

with the indices of the public key and the plaintext as argutsiea
handle for uset:, and the computed length. The fact that each such
entry is new models probabilistic encryption, and the arguois
model the highest layer of the corresponding Dolev-Yao term



e Public-Key Encryptionc"™™ «— encrypt(pk™, i").
Let pk := D[hnd, = pk™ A type = pke].ind and
l := D[hnd, = 1" A type list].ind and length :=
enc_len*(k, D[l].len). If length > max_len(k) or pk = |
orl = |, then return|. Else set™ := curhnd, ++ and

D <

(ind := size++, type := enc, arg := (pk, 1),
hnd, = ch"d, len := length).

3.2.2 Honest Send Commands

Secondly, we have a sefend_cmds := {send_s,send_a,
send_i} of honest send commanésr sending messages on chan-
nels of different degrees of security. As an example we pitebe
details of the most important case, insecure channels.

e send_i(v, ™), forv e {1,...,n}.

Let ™ := Dlhnd,, = ™ A type = list].ind. If I"* # |,
output(u, v, i, ind2hnd, (")) atout,!.

The used algorithnnd2hnd,, retrieves the handle for userto
the entry with the given index if there is one, otherwise #tigss a
new such handle asirhind, ++. Thus this command means that the

3.3 A Small Example

Assume that a cryptographic protocol has to perform the step
U — V: eNCpke, (signsks” (m, N1), N2),

wherem is an input message andl;, N> are two fresh nonces.
Given our library, this is represented by the following sege
of commands input at poih,?. We assume that has already
received a handipkei™ to the public encryption key of, and
created signature keys, which gave him a harél€".

m"? — store(m).
N — gen_nonce().
I — list(m", NT™).
sig™™ — sign(sks™, [4nd),
Ni™ « gen_nonce().

B — list(sigh™, Nind).
enc™ «— encrypt(pkei™ 15",
m™? — list(enc™).

. send_i(v, m"™).

©oNoGOA~ONE

Note that the entire term is constructed by a local inteoaatf user
u and the ideal library, i.e., the adversary does not learthamy

databaseD now stores that this message is known to the adversary, about this interaction until Step 8. In Step 9, the advergatg an

and that the adversary learns by the output that useanted to
send this message to user

output (u, v, i, m™™) with a handlem ™ for him to the resulting

entry. In the real system described below, the sequencepatsn

Most protocols should only use the other two send commands, for constructing and sending this term is identical, but cegpto-

i.e., secret or authentic channels, for key distributiorihat be-

graphic operations are used to build up a bitstringintil Step 8,

ginning. As the channel type is part of the send-command name andm is sent tov via a real insecure channel in Step 9.

syntactic checks can ensure that a protocol designed véttdtal
cryptographic library fulfills such requirements.

3.2.3 Local Adversary Commands

Thirdly, we have a setdv_local_cmds := {adv_garbage,
adv_invalid_ciph, adv_transform_sig, adv_parse} of local adver-
sary commands They model tolerable imperfections of the real
system, i.e., actions that may be possible in real systemthat
are not required. First, an adversary may créatalid entriesof
a certain length; they obtain the tygarbage. Secondly,invalid

ciphertextsare a special case because participants not knowing the

secret key can reasonably ask for their type and query thiliq
key, hence they cannot be of tygerbage. Thirdly, the security
definition of signature schemes does not exclude that thersalry
transforms signatureby honest participants into other valid sig-

4. REAL CRYPTOGRAPHIC LIBRARY

The real system is parameterized by a digital signaturensetse
and a public-key encryption scherfie The ranges of all functions
are{0,1}* U {|}. The signature scheme has to be secure against
existential forgery under adaptive chosen-message attg8z.
This is the accepted security definition for general-puepsign-
ing. The encryption scheme has to fulfill that two equal-teng
messages are indistinguishable even in adaptive choplartéxt
attacks. Chosen-ciphertext security has been introducig®] and
formalized as “IND-CCAZ2” in [13]. Itis the accepted defiwiti for
general-purpose encryption. An efficient encryption syssecure
in this sense is [22]. Just like the ideal system, the reakayss
parameterized by a tuplg’ of length functions and bounds.

natures on the same message with the same public key. Finally4 1  Structures

we allow the adversary to retrieve all information that wera
explicitly require to be hidden, which is denoted by a comdhan
adv_parse. This command returns the type and usually all the ab-
stract arguments of a value (with indices replaced by hapdéeg.,
parsing a signature yields the public key for testing thimature,
the signed message, and the value of the signature couettfars
this message. Only for ciphertexts where the adversary does
know the secret key, parsing only returns the length of teartéxt
instead of the cleartext itself.

3.2.4 Adversary Send Commands

Fourthly, we have a setdv_send_cmds := {adv_send.s,
adv_send_a, adv_send_i} of adversary send commandsyain mod-
eling different degrees of security of the channels usedoirrast
to honest send commands, the sender of a message is anraalditio
input parameter. Thus for insecure channels the adversarpre-
tend that a message is sent by an arbitrary honest user.

The intended structure of the real cryptographic libramsists
of n machineg{My, ..., M, }. EachM,, has portdn,? andout,,!,
so that the same honest users can connect to the ideal arehthe r
library. EachM, has three connectionset,,,.,» to eachM, for
z € {s,a,i}. They are called network connections and the corre-
sponding ports network ports. Network connections arechded
by the adversary.

The actual system is a standard cryptographic system agdefin
in [49] and sketched in Section 2. Any subset of the machingg m
be corrupted, i.e., any sét C {1,...,n} can denote the indices
of correct machines. The channel model means that in anlactua
structure, an honest intended recipient gets all messagpatat
network ports of typa(secret) and (authentic) and the adversary
gets all messages output at ports of typandi (insecure). Fur-
thermore, the adversary makes all inputs to a network pastpef
i. This is shown in Figure 2.
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Figure 2: Connections from a correct machine to another in the
real system.

4.2 States of a Machine

The main data structure o, is a databasé®,, that contains
implementation-specific data such as ciphertexts and it
produced during a system run, together with the handles ford
the type as in the ideal system, and possibly additionatriateat-
tributes. Thus each entwy € D,, is of the form

(hndw, word, type, add_arg).

e hnd, € Ny isthehandleof z and consecutively numbers all
entries inD,,.

e word € {0,1}*, calledword, is the real cryptographic rep-
resentation of.

o type € typeset U {null} is thetypeof z, wherenull denotes
that the entry has not yet been parsed.

e add_arg is a list ofadditional argumentsTypically it is (),
only for signing keys it contains the signature counter.

Similar to the ideal systemniyl,, maintains a counteturhnd,
over Ny denoting the current number of elementdin. New en-
triesz always receivéind, := curhnd,++, andxz.hnd, is never
changed.

4.3 Inputs and their Evaluation
Now we describe how,, evaluates individual inputs. Inputs at

portin,? should be basic commands and honest send commands

as in the ideal system, while network inputs can be arbithétry
strings. Often a bitstrings has to be parsed. This is cagptoyea
functional algorithmparse, which outputs a paiftype, arg) of a
type etypeset and a list of real arguments, i.e., of bitstrings. This
corresponds to the top level of a term, similar to the abstac
guments in the ideal databage By “parsem"” we abbrevi-
ate thatM,, calls (type, arg) «— parse(D,[m"].word), assigns
Dy, [m"™].type := type if it was still null, and may then userg.

4.3.1 Basic Commands

Basic commands are agdircal, i.e., they do not produce out-
puts at network ports. The basic commands are implementtteby
underlying cryptographic operations with the modificasionoti-
vated in Section 1.3. For general unambiguousness, notahly
cryptographic objects are tagged, but also data and ligtsld8 to
the ideal system, we only show two examples of the evaluaifon
basic commands, and additionally how ciphertexts are garsk
other commands can be found in the full version [10].

In nonce generation, a real nonaeis generated by tagging a
random bitstring:’ of a given length with its typ@once. Further,
a new handle fot is assigned and the handle, the warcand the
type are stored without additional arguments.

e Nonce Generationn™ «— gen_nonce().

Let ' g {0,1}"°nceten(®) = (nonce,n’), n™ =
curhnd,++ andD,, <= (n"™™ n, nonce, ()).

For the encryption command, &, (m) denote probabilistic
encryption of a stringn with the public keypk in the underlying
encryption systenf. The parameters are first parsed in case they
have been received over the network, and their types arBedbri
Then the second component of the (tagged) public-key waittkis
actual public keypk, while the messagkis used as itis. Further, a
fresh random value is generated for additional randomization as
explained in Section 1.3.

Recall that has to be included both inside the encryption and in
the final tagged ciphertext'.

e Encryption:c™ — encrypt(pk"™™, ("),
Parsepk™ and I"™. If D,[pk"™].type # pke or
D, [I"].type # list, return |. Else setpk :=
Dy[pk™ . word[2], | = Dy[").word, r
{0, 1}rencelen(®) “encrypte «— Epi((r,1)), and setc* :=
(enc, pk,c, 7). If ¢ = | or|c*| > max_len(k) thenreturn|,
else set™ := curhnd,++andD,, :< (", ¢*, enc, ()).

R

Parsing a ciphertext verifies that the components and lsragth
as inc* above, and outputs the corresponding tagged public key,
whereas the message is only retrieved by a decryption cochman

4.3.2 Send Commands and Network Inputs

Send commands simply output real messages at the appeopriat
network ports. We show this for an insecure channel.

e send_i(v, ™) forv € {1,...,n}.

Parsel™ if necessary. IfD,[I"].type = list, output
Dy, [lh”d].word at portnety,,.i!.

Upon receiving a bitstringat a network porhet,, .., 7, machine
M., parses it and verifies that it is a list. If yes, and i§ new,M,,
stores it inD,, using a new handI&™, else it retrieves the existing
handlel™. Then it outputgw, , I"™) at portout,,!.

5. SECURITY PROOF

The security claim is that the real cryptographic librarpésse-
cure as the ideal cryptographic library, so that protocods@d on
the basis of the deterministic, Dolev-Yao-like ideal lityr@an be
safely implemented with the real cryptographic library. fdomu-
late the theorem, we need additional notation: £g4°;* denote
the ideal cryptographic library for participants and with length
functions and bound#, and Sys‘;{’ygf;" ., the real cryptographic
library for n participants, based on a secure signature sch&me
and a secure encryption schefieand with length functions and
boundsL’. Let RPar be the set of valid parameter tuples for the
real system, consisting of the numbeg N of participants, secure
signature and encryption schemg&sand £, and length functions
and boundd.’. For (n,S,&, L) € RPar, let Sys?*J% |, be the
resulting real cryptographic library. Further, let theresponding
length functions and bounds of the ideal system be formalzea
function L := R2lpar(S, &, L"), and |etSys:{f'£d be the ideal cryp-
tographic library with parameters and L. Using the notation of
Definition 2, we then have

THEOREM 1. (Security of Cryptographic Library) For all pa-
rameters(n, S, €, L') € RPar, we have

cry,real
5Y8$.5.8,1/

whereL := R2lpar(S, &, L’).

cry,id
2 Sysn,L )



For proving this theorem, we define a simuladah;; such that
even the combination of arbitrary polynomial-time usdrand an
arbitrary polynomial-time adversa#y cannot distinguish the com-
bination of the real machinesl,, from the combinationTH(H)
andSim (for all setsH indicating the correct machines). We first
sketch the simulator and then the proof of correct simutatio

5.1 Simulator

BasicallySim# has to translate real messages from the real ad-
versaryA into handles asTH(H) expects them at its adversary
input portin,? and vice versa; see Figure 3. In both directions,
Simy, has to parse an incoming messages completely because it
can only construct the other version (abstract or real)obottip.

This is done by recursive algorithms. In some cases, thelaioru
cannot produce any corresponding message. We collect¢hsss
in so-callederror setsand show later that they cannot occur at all

corresponding abstract term in the databas€tdf#). This
finally yields the handlé¢"™. Furthermorereal2id enters all

new subterms intd),. For building up the abstract term,
real2id makes extensive use of the special capabilities of the
adversary modeled iTH(7). In the real system, the bit-
string may, e.g., contain a transformed signature, i.eeva n
signature for a message for which the correct user has al-
ready created another signature. Such a transformation of a
signature is not excluded by the definition of secure sigeatu
schemes, hence it might occur in the real system. Therefore
the simulator also has to be able to insert such a transformed
signature into the database ®H(*), which explains the
need for the commanaldv_transform_signature. Similarly,

the adversary might send invalid ciphertexts or simply bit-
strings that do not yield a valid type when being parsed. All
these cases can be covered by using the special capabilities

or only with negligible probability.

H
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in,llout, «ee
=t Y «Basiccmds @« — — — — — — — — — |

The only case for which no command exists is a forged signa-
ture under a new message. This leads the simulator to abort.
(Such runs fall into an error set which is later shown to be
negligible.)

sAdvemds | Sim_(A) | As all the commands used hbig2real and real2id are local,
TH, | Semdomds | . | these algorithms give uninterrupted dialogues betwiien, and
i | Simg, net. (@ | TH(H), which do not show up in the views @&f andH.
Foms - out, | J c-o-my T A Two important properties have to be shown about the simulato
1P : Results of cms| t Do | [Tret,, @ | before the bisimulation. First, the simulator has to be potyial-
Msg. here: FL=—== Meghae T time. Otherwise, the joint machil’ffimH(A) of Sim; andA might
(u, v, x, 1) word | not be a valid polynomial-time adversary on the ideal systget-

ondly, it has to be shown that the interaction betw@et(+) and
Simy in the recursive algorithms cannot fail because one of the
machines reaches its runtime bound. The proof of both ptieger

The state ofsim+ mainly consists of a databage,, similar to is quite involved, using an analysis of possible recursieptlas de-
the databaseB.,, but storing the knowledge of the adversary. The pending on the number of existing handles (see [10]).

behavior ofSimy is sketched as follows. . .
ehavior ofSims is sketched as follows 5.2 Proof of Correct Simulation

e Inputs fromTH(H). Assume thaSims receives an input Given the simulator, we show that arbitrary polynomialdim
(u, v, z,1™) from TH(H). If a bitstring! for I"™ already usersH and an arbitrary polynomial-time adversakycannot dis-
exists inD,, i.e., this message is already known to the adver- tinguish the combination of the real machihg, from the com-
sary, the simulator immediately outputsit portnet,, , . !. bination of TH(H) and Sim«. The standard technique in non-
Otherwise, it first constructs such a bitstrihgith a recur- cryptographic distributed systems for rigorously provthgt two
sive algorithmid2real. This algorithm decomposes the ab- systems have identical visible behaviors is a bisimulati@n, one
stract term using basic commands and the adversary com-defines a mapping between the respective states and shows tha
mandadv_parse. At the same timeid2real builds up a cor- identical inputs in mapped states retain the mapping anduge
responding real bitstring using real cryptographic openast identical outputs. We need a probabilistic bisimulationéiese the
and enters all new message parts ibtpto recognize them real system and the simulator are probabilistic, i.e., idahin-
when they are reused, both By () and byA. puts should yield mapped states with the correct probagsland

Mostly, the simulator can construct subterms exactly lile t ~ identically distributed outputs. (For the former, we indesse map-
correct machines would do in the real system. Only for en- PiNgs, not arbitrary relations for the bisimulation.) Irtpresence
cryptions with a public key of a correct machingiv_parse of cryptography and active attacks however, a normal priibab
does not yield the plaintext; thus there the simulator eptsry ~ Pisimulation is still insufficient for three crucial reasorFirst, the
a fixed message of equal length. This simulation presup- adversary might succeed in attacking the real system witera v
poses that all new message parts are of the standard formatsSmall probability, while this is impossible in the ideal &s. This
not those resulting from local adversary commands; this is Means that we have to cope wélror probabilities Secondly, en-

proven correct in the bisimulation. cryption only gives computational indistinguishabilityhich can-
not be captured by a bisimulation, because the actual vaiubs

two systems may be quite different. Thirdly, the adversarghin
guess a random value, e.g., a nonce that has already beéedcrea
by some machine but that the adversary has ideally not yet see
(Formally, “ideally not yet seen” just means that the bidation
fails if the adversary sends a certain value which alreadst®in

the databases but for which there is no command to give theradv
sary a handle.) In order to perform a rigorous reduction fioo
this case, we have to show that partial informationabout this

Figure 3: Ports and in- and output types of the simulator.

e Inputs fromA. Now assume th&8ims; receives a bitstring
from A ata portnet., .. 7. If  is not a valid listSim aborts
the transition. Otherwise it translatemto a corresponding
handlel™ by an algorithmreal2id, and outputs the abstract
sending commanddv_send_z (w, u, I"™?) at portin,!.

If a handlel"™ for [ already exists iD., thenreal2id reuses
that. Otherwise it recursively parses a real bitstring gisie
functional parsing algorithm. At the same time, it buildsaup
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Figure 4: Overview of the proof of correct simulation.

value has already leaked to the adversary because the vakie w
contained in a nested term, or because certain operationklwo
leak partial information. For instance, here the proof widail if
we allowed arbitrary signatures according to the definitb{84],
which might divulge previously signed messages, or if werditd
additionally randomize probabilistic ciphertexts madéwikeys of
the adversary.

We meet these challenges by first factoring out the com ozl
aspects by a special treatment of ciphertexts. Then we us&a n
bisimulation technique that includes a static informadilonv anal-
ysis, and is followed by the remaining cryptographic rehuns.
The rigorous proof takes 30 pages [10]; hence we can onlyaive
very brief overview here, see also Figure 4.

e Introducing encryption machinesWe use the two encryp-
tion machinesEncy and Encsim,7¢ from [49] to handle the
encryption and decryption needs of the system. Roughly, the
first machine calculates the correct encryption of every-mes
sagem, whereas the second one always encrypts the fixed
message!™! and answers decryption requests for the result-
ing ciphertexts by table look-up. By [49Ency is at least
as secure aBncsim,7¢. We rewrite the machinelt,, such
that they usdncy (Step 1 in Figure 4); this yields modified
machinesM’,. We then replac&ncs; by its idealized coun-
terpartEncsim,~ (Step 2 in Figure 4) and use the composition
theorem to show that the original system is at least as secure
as the resulting system.

e Combined systemWe now want to compare the combina-
tion My of the machine$/, andEncsim,» with the combi-
nation THSim4, of the machine§ H(H) andSim,. How-
ever, there is no direct invariant mapping between the state

of these two joint machines. Hence we defining an interme-
diate systen€s with a state space combined from both these
systems (Step 3 in Figure 4).

Bisimulations with error sets and information-flow anaysi
We show that the joint view dfl andA is equal in interac-
tion with the combined machin€ and the two machines
THSim4 andM+, except for certain runs, which we collect
in error sets We show this by performing two bisimulations
simultaneously (Step 4 in Figure 4). Transitivity and sym-
metry of indistinguishability then yield the desired redofr
THSim» andM« . Besides several normal state invariants of
Cy, we also define and prove an information-flow invariant
on the variables of .

Reduction proofsWe show that the aggregated probability
of the runs in error sets is negligible, as we could otherwise
break the underlying cryptography. l.e., we perform reduc-
tion proofs against the security definitions of the pringty
For signature forgeries and collisions of nonces or cipher-
texts, these are relatively straightforward proofs. Ferftct
that the adversary cannot guess “official” nonces as well as
additional randomizers in signatures and ciphertext, vee us
the information-flow invariant on the variables®©f, to show
that the adversary has no partial information about such val
ues in situations where correct guessing would put the run in
an error set. This proves thist;, is computationally at least
as secure as the ideal system (Step 5 in Figure 4).

Finally, simulatability is transitive [49]. Hence the aingl real
system is also as secure as the ideal system (Step 6 in Figure 4
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