
A Composable Cryptographic Library with Nested
Operations

(Extended Abstract)

Michael Backes
IBM Research Division
Rüschlikon, Switzerland

mbc@zurich.ibm.com

Birgit Pfitzmann
IBM Research Division
Rüschlikon, Switzerland

bpf@zurich.ibm.com

Michael Waidner
IBM Research Division
Rüschlikon, Switzerland

wmi@zurich.ibm.com

ABSTRACT
We present the first idealized cryptographic library that can be used
like the Dolev-Yao model for automated proofs of cryptographic
protocols that use nested cryptographic operations, whilecoming
with a cryptographic implementation that is provably secure under
active attacks.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; F.1.2 [Theory of Computation]:
Computation by Abstract Devices, Modes of Computation

General Terms
Security, Theory, Verification

Keywords
Cryptography, Simulatability, Security Analysis of Protocols,
Cryptographically Composable Operators

1. INTRODUCTION
Many practically relevant cryptographic protocols like SSL/TLS,

S/MIME, IPSec, or SET use cryptographic primitives like signa-
ture schemes or encryption in a black-box way, while adding many
non-cryptographic features. Vulnerabilities have accompanied the
design of such protocols ever since early authentication protocols
like Needham-Schroeder [43, 25], over carefully designed de-facto
standards like SSL and PKCS [52, 16], up to current widely de-
ployed products like Microsoft Passport [29]. However, proving
the security of such protocols has been a very unsatisfactory task
for a long time.

One possibility was to take the cryptographic approach. This
means reduction proofs between the security of the overall system
and the security of the cryptographic primitives, i.e., oneshows that
if one could break the overall system, one could also break one of
the underlying cryptographic primitives with respect to their cryp-
tographic definitions, e.g., adaptive chosen-message security for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’03,October 27–30, 2003, Washington, DC, USA.
Copyright 2003 ACM 1-58113-738-9/03/0010 ...$5.00.

signature schemes. For authentication protocols, this approach was
first used in [15]. In principle, proofs in this approach are as rigor-
ous as typical proofs in mathematics. In practice, however,human
beings are extremely fallible with this type of proofs. Thisis not
due to the cryptography, but to the distributed-systems aspects of
the protocols. It is well-known from non-cryptographic distributed
systems that many wrong protocols have been published even for
very small problems. Hand-made proofs are highly error-prone be-
cause following all the different cases how actions of different ma-
chines interleave is extremely tedious. Humans tend to takewrong
shortcuts and do not want to proof-read such details in proofs by
others. If the protocol contains cryptography, this obstacle is even
much worse: Already a rigorous definition of the goals gets more
complicated, and often not only trace properties (integrity) have to
be proven but also secrecy. Further, in principle the complexity-
theoretic reduction has to be carried out across all these cases, and
it is not at all trivial to do this rigorously. In consequence, there
is almost no real cryptographic proof of a larger protocol, and sev-
eral times supposedly proven, relatively small systems were later
broken, e.g., [47, 26].

The other possibility was to use formal methods. There one
leaves the tedious parts of proofs to machines, i.e., model check-
ers or automatic theorem provers. This means to code the cryp-
tographic protocols into the language of such tools, which may
need more or less start-up work depending on whether the toolal-
ready supports distributed systems or whether interactionmodels
have to be encoded first. None of these tools, however, is currently
able to deal with reduction proofs. Nobody even thought about
this for a long time, because one felt that protocol proofs could be
based on simpler, idealized abstractions from cryptographic prim-
itives. Almost all these abstractions are variants of the Dolev-Yao
model [27], which represents all cryptographic primitivesas opera-
tors of a term algebra with cancellation rules. For instance, public-
key encryption is represented by operatorsE for encryption andD
for decryption with one cancellation rule,D(E(m)) = m for all
m. Encrypting a messagem twice in this model does not yield an-
other message from the basic message space but the termE(E(m)).
Further, the model assumes that two terms whose equality cannot
be derived with the cancellation rules are not equal, and every term
that cannot be derived is completely secret. However, originally
there was no foundation at all for such assumptions about real cryp-
tographic primitives, and thus no guarantee that protocolsproved
with these tools were still secure when implemented with real cryp-
tography. Although no previously proved protocol has been broken
when implemented with standard provably secure cryptosystems,
this was clearly an unsatisfactory situation, and artificial counterex-
amples can be constructed.

Three years ago, efforts started to get the best of both worlds.
Essentially, [46, 48] started to define general cryptographic mod-
els that support idealization that is secure in arbitrary environments
and under arbitrary active attacks, while [2] started to justify the
Dolev-Yao model as far as one could without such a model. Both
directions were significantly extended in subsequent papers, in par-
ticular [1, 49, 19, 5].

Nevertheless, this paper is the first that offers a provably secure
variant of the Dolev-Yao model for proofs that people typically
make with the Dolev-Yao model, because for the first time we cover
both active attacks and nested cryptographic operations. This new
property combination is essential: First, most cryptographic proto-
cols are broken by active attacks, e.g., man-in-the-middleattacks or
attacks where an adversary reuses a message from one protocol step
in a different protocol step where it suddenly gets a different se-
mantics. Such attacks are not covered by [2, 1]. Secondly, the main
use of the Dolev-Yao model is to represent nested protocol mes-
sages likeEpkev (signsksu

(m, N1), N2), wherem denotes an arbi-
trary message andN1, N2 two nonces. No previous idealization
proved in the reactive cryptographic models contains abstractions
from cryptographic primitives (here mainly encryption andsigna-
tures, but also the nonces and the list operation) that can beused in
such nested terms. Existing abstractions are either too high-level,
e.g., the secure channels in [49, 5] combine encryption and signa-
tures in a fixed way. Or they need immediate interaction with the
adversary [19, 18], i.e., the adversary learns the structure of every
term any honest party ever builds, and even every signed message.
This abstraction is not usable for a term as above because onemay
want to show thatm is secret because of the outer encryption, but
the abstraction givesm to the adversary. (A similar immediate ap-
plication of the model of [49] to such primitives would avoidthis
problem, but instead keep all signatures and ciphertexts inthe sys-
tem, so that nesting is also not possible.) Finally, there exist some
semi-abstractions which still depend on cryptographic details [39,
49]. Thus they are not suitable for abstract protocol representations
and proof tools, but we use such a semi-abstraction of public-key
encryption as a submodule below.

The first decision in the design of an ideal library that supports
both nesting and general active attacks was how we can represent
an idealized cryptographic term and the corresponding realmes-
sage in thesameway to a higher protocol. This is necessary for
using the reactive cryptographic models and their composition the-
orems. We do this by handles. In the ideal system, these handles
essentially point to Dolev-Yao-like terms, while in the real system
they point to real cryptographic messages. Our model for storing
the terms belonging to the handles is stateful and in the ideal sys-
tem comprises the knowledge of who knows which terms. Thus
our overall ideal cryptographic library corresponds more to “the
CSP Dolev-Yao model” or “the Strand-space Dolev-Yao model”
than the pure algebraic Dolev-Yao model. Once one has the idea of
handles, one has to consider whether one can put the exact Dolev-
Yao terms under them or how one has to or wants to deviate from
them in order to allow a provably secure cryptographic realization,
based on a more or less general class of underlying primitives. An
overview of these deviations is given in Section 1.2, and Section 1.3
surveys how the cryptographic primitives are augmented to give a
secure implementation of the ideal library.

The vast majority of the work was to make a credible proof
that the real cryptographic library securely implements the ideal
one. This is a hand-made proof based on cryptographic primi-
tives and with many distributed-systems aspects, and thus with all
the problems mentioned above for cryptographic proofs of large
protocols. Indeed we needed a novel proof technique consisting

of a probabilistic, imperfect bisimulation with an embedded static
information-flow analysis, followed by cryptographic reductions
proofs for so-called error sets of traces where the bisimulation did
not work. As this proof needs to be made only once, and is in-
tended to be the justification for later basing many protocolproofs
on the ideal cryptographic library and proving them with higher
assurance using automatic tools, we carefully worked out all the
tedious details, and we encourage some readers to double-check
the 68-page full version of this paper [10]. Based on our experi-
ence with making this proof and the errors we found by making it,
we strongly discourage the reader against accepting idealizations
of cryptographic primitives where a similar security property, sim-
ulatability, is claimed but only the first step of the proof, the defini-
tion of a simulator, is made.

1.1 Further Related Literature
Both the cryptographic and the idealizing approach at proving

cryptographic systems started in the early 80s. Early examples of
cryptographic definitions and reduction proofs are [33, 34]. Ap-
plied to protocols, these techniques are at their best for relatively
small protocols where there is still a certain interaction between
cryptographic primitives, e.g., [14, 51]. The early methods of au-
tomating proofs based on the Dolev-Yao model are summarized
in [37]. More recently, such work concentrated on using existing
general-purpose model checkers [40, 42, 24] and theorem provers
[28, 45], and on treating larger protocols, e.g., [12].

Work intended to bridge the gap between the cryptographic ap-
proach and the use of automated tools started independentlywith
[46, 48] and [2]. In [2], Dolev-Yao terms, i.e., with nested opera-
tions, are considered specifically for symmetric encryption. How-
ever, the adversary is restricted to passive eavesdropping. Conse-
quently, it was not necessary to define a reactive model of a sys-
tem, its honest users, and an adversary, and the security goals were
all formulated as indistinguishability of terms. This was extended
in [1] from terms to more general programs, but the restriction to
passive adversaries remains, which is not realistic in mostpracti-
cal applications. Further, there are no theorems about composi-
tion or property preservation from the abstract to the real system.
Several papers extended this work for specific models or specific
properties. For instance, [35] specifically considers strand spaces
and information-theoretically secure authentication only. In [38] a
deduction system for information flow is based on the same opera-
tions as in [2], still under passive attacks only.

The approach in [46, 48] was from the other end: It starts witha
general reactive system model, a general definition of cryptograph-
ically secure implementation by simulatability, and a composition
theorem for this notion of secure implementation. This workis
based on definitions of securefunction evaluation, i.e., the com-
putation of one set of outputs from one set of inputs [32, 41, 11,
17]; earlier extensions towards reactive systems were either without
real abstraction [39] or for quite special cases [36]. The approach
was extended from synchronous to asynchronous systems in [49,
19]. All the reactive works come with more or less worked-out
examples of abstractions of cryptographic systems, and first tool-
supported proofs were made based on such an abstraction [5, 4]
using the theorem prover PVS [44]. However, even with a com-
position theorem this does not automatically give a cryptographic
library in the Dolev-Yao sense, i.e., with the possibility to nest ab-
stract operations, as explained above. Our cryptographic library
overcomes these problems. It supports nested operations inthe in-
tuitive sense; operations that are performed locally are not visible
to the adversary. It is secure against arbitrary active attacks, and
works in the context of arbitrary surrounding interactive protocols.

This holds independently of the goals that one wants to proveabout
the surrounding protocols; in particular, property preservation the-
orems for the simulatability definition we use have been proved for
integrity, liveness, and non-interference [4, 9, 6, 8].

We have already exemplified the usefulness of the cryptographic
library by conducting the first cryptographically sound security
proof of the well-known Needham-Schroeder-Lowe protocol [7].
Since the proof relies on idealizations of cryptography it has all the
advantages explained in the text; in particular, the proof is suited for
formal proof tools. Simultaneously and independently to this work,
another cryptographically sound security proof of this protocol was
invented in [53]. This proof is done from scratch in the crypto-
graphic setting and is hence vulnerable to the problems mentioned
before. However, it is fair to mention that this proof establishes
the security property of matching conversations whereas our proof
currently only strives for a weaker authentication requirement.

1.2 Overview of the Ideal Cryptographic Li-
brary

The ideal cryptographic library offers its users abstract crypto-
graphic operations, such as commands to encrypt or decrypt ames-
sage, to make or test a signature, and to generate a nonce. All
these commands have a simple, deterministic semantics. In areac-
tive scenario, this semantics is based on state, e.g., of whoalready
knows which terms. We store state in a “database”. Each entry
has a type, e.g., “signature”, and pointers to its arguments, e.g., a
key and a message. This corresponds to the top level of a Dolev-
Yao term; an entire term can be found by following the pointers.
Further, each entry contains handles for those participants who al-
ready know it. Thus the database index and these handles serve as
an infinite, but efficiently constructible supply of global and local
names for cryptographic objects. However, most libraries have ex-
port operations and leave message transport to their users (“token-
based”). An actual implementation of the simulatable library might
internally also be structured like this, but higher protocols are only
automatically secure if they do not use this export functionexcept
via the special send operations.

The ideal cryptographic library does not allow cheating. For in-
stance, if it receives a command to encrypt a messagem with a cer-
tain key, it simply makes an abstract entry in a database for the ci-
phertext. Each entry further contains handles for those participants
who already know it. Another user can only ask for decryptionof
this ciphertext if he has handles to both the ciphertext and the se-
cret key. Similarly, if a user issues a command to sign a message,
the ideal system looks up whether this user should have the secret
key. If yes, it stores that this message has been signed with this key.
Later tests are simply look-ups in this database. A send operation
makes an entry known to other participants, i.e., it adds handles to
the entry. Recall that our ideal library is an entire reactive system
and therefore contains an abstract network model. We offer three
types of send commands, corresponding to three channel types {s,
a, i}, meaning secure, authentic (but not private), and insecure. The
types could be extended. Currently, our library contains public-key
encryption and signatures, nonces, lists, and applicationdata. We
have recently added symmetric authentication (still unpublished).

The main differences between our ideal cryptographic library
and the standard Dolev-Yao model are the following. Some of them
already exist in prior extensions of the Dolev-Yao model.

• Signature schemes are not “inverses” of encryption schemes.

• Secure encryption schemes are necessarily probabilistic,and
so are most secure signature schemes. Hence if the same

message is signed or encrypted several times, we distinguish
the versions by making different database entries.

• Secure signature schemes often have memory. The standard
definition [34] does not even exclude that one signature di-
vulges the entire history of messages signed before. We have
to restrict this definition, but we allow a signature to divulge
the number of previously signed messages, so that we include
the most efficient provably secure schemes under classical
assumptions like the hardness of factoring [34, 20, 21].1

• We cannot (easily) allow participants to send secret keys over
the network because then the simulation is not always pos-
sible.2 Fortunately, for public-key cryptosystems this is not
needed in typical protocols.

• Encryption schemes cannot keep the length of arbitrary clear-
texts entirely secret. Typically one can even see the length
quite precisely because message expansion is minimized.
Hence we also allow this in the ideal system. A fixed-length
version would be an easy addition to the library, or can be im-
plemented on top of the library by padding to a fixed length.

• Adversaries may include incorrect messages in encrypted
parts of a message which the current recipient cannot de-
crypt, but may possibly forward to another recipient who can,
and will thus notice the incorrect format. Hence we also al-
low certain “garbage” terms in the ideal system.

1.3 Overview of the Real Cryptographic Li-
brary

The real cryptographic library offers its users the same com-
mands as the ideal one, i.e., honest users operate on cryptographic
objects via handles. This is quite close to standard APIs forex-
isting implementations of cryptographic libraries that include key
storage. The database of the real system contains real cryptographic
keys, ciphertexts, etc., and the commands are implemented by real
cryptographic algorithms. Sending a term on an insecure channel
releases the actual bitstring to the adversary, who can do with it
what he likes. The adversary can also insert arbitrary bitstrings
on non-authentic channels. The simulatability proof will show that
nevertheless, everything a real adversary can achieve can also be
achieved by an adversary in the ideal system, or otherwise the un-
derlying cryptography can be broken.

We base the implementation of the commands on arbitrary se-
cure encryption and signature systems according to standard cryp-
tographic definitions. However, we “idealize” the cryptographic
objects and operations by measures similar to robust protocol de-
sign [3].

• All objects are tagged with a type field so that, e.g., signa-
tures cannot also be acceptable ciphertexts or keys.

• Several objects are also tagged with their parameters, e.g.,
signatures with the public key used.

• Randomized operations are randomized completely. For in-
stance, as the ideal system represents several signatures un-
der the same message with the same key as different, the real

1Memory-less schemes exist with either lower efficiency or based
on stronger assumptions (e.g., [31, 23, 30]). We could add them to
the library as an additional primitive.
2The primitives become “committing”. This is well-known from
individual simulation proofs. It also explains why [2] is restricted
to passive attacks.

system has to guarantee that theywill be different, except for
small error probabilities. Even probabilistic encryptions are
randomized additionally because they are not always suffi-
ciently random for keys chosen by the adversary.

The reason to tag signatures with the public key needed to verify
them is that the usual definition of a secure signature schemedoes
not exclude “signature stealing:” Let(sksh , pksh) denote the key
pair of a correct participant. With ordinary signatures an adversary
might be able to compute a valid key pair(sksa , pksa) such that
signatures that pass the test withpksh also pass the test withpksa .
Thus, if a correct participant receives an encrypted signature onm,
it might acceptm as being signed by the adversary, although the
adversary never sawm. It is easy to see that this would result in
protocols that could not be simulated. Our modification prevents
this anomaly.

For the additional randomization of signatures, we includea ran-
dom stringr in the message to be signed. Alternatively we could
replacer by a counter, and if a signature scheme is strongly ran-
domized already we could omitr. Ciphertexts are randomized by
including the same random stringr in the message to be encrypted
and in the ciphertext. The outerr prevents collisions among ci-
phertexts from honest participants, the innerr ensures continued
non-malleability.

2. PRELIMINARY DEFINITIONS
We briefly sketch the definitions from [49]. Asystemconsists of

several possiblestructures. A structure consists of a setM of con-
nected correct machines and a subsetS of free ports, calledspec-
ified ports. A machine is a probabilistic IO automaton (extended
finite-state machine) in a slightly refined model to allow complex-
ity considerations. For these machines Turing-machine realizations
are defined, and the complexity of those is measured in terms of a
common security parameterk, given as the initial work-tape con-
tent of every machine. Readers only interested in using the ideal
cryptographic library in larger protocols only need normal, deter-
ministic IO automata.

In a standard real cryptographic system, the structures are de-
rived from one intended structure and a trust model consisting of an
access structureACC and a channel modelχ. HereACC contains
the possible setsH of indices of uncorrupted machines among the
intended ones, andχ designates whether each channel is secure,
authentic (but not private) or insecure. In a typical ideal system,
each structure contains only one machineTH calledtrusted host.

Each structure is complemented to aconfigurationby an arbi-
trary usermachineH andadversarymachineA. H connects only
to ports inS andA to the rest, and they may interact. The set of
configurations of a systemSys is calledConf(Sys). The general
scheduling model in [49] gives each connectionc (from an out-
put portc! to an input portc?) a buffer, and the machine with the
corresponding clock portc/! can schedule a message there when
it makes a transition. In real asynchronous cryptographic systems,
network connections are typically scheduled byA. A configura-
tion is a runnable system, i.e., for eachk one gets a well-defined
probability space ofruns. The view of a machine in a run is the
restriction to all in- and outputs this machine sees and its internal
states. Formally, the viewviewconf (M) of a machineM in a con-
figurationconf is a family of random variableswith one element
for each security parameter valuek.

2.1 Simulatability
Simulatability is the cryptographic notion of secure implemen-

tation. For reactive systems, it means that whatever might happen

�
�

�

�

�
� �

�

�

�
�

�

Figure 1: Simulatability: The two views of H must be indistin-
guishable.

to an honest user in a real systemSys real can also happen in the
given ideal systemSys id: For every structure(M1, S) ∈ Sys real,
every polynomial-time userH, and every polynomial-time adver-
saryA1, there exists a polynomial-time adversaryA2 on a corre-
sponding ideal structure(M2, S) ∈ Sys id such that the view of
H is computationally indistinguishable in the two configurations.
This is illustrated in Figure 1. Indistinguishability is a well-known
cryptographic notion from [54].

Definition 1. (Computational Indistinguishability) Two families
(vark)k∈N and(var′k)k∈N of random variables on common domains
Dk arecomputationally indistinguishable(“≈”) iff for every algo-
rithm Dis (the distinguisher) that is probabilistic polynomial-time
in its first input,

|P (Dis(1k, vark) = 1) − P (Dis(1k, var′k) = 1)| ∈ NEGL,

where NEGL denotes the set of allnegligible functions, i.e.,
g : N → R≥0 ∈ NEGL iff for all positive polynomialsQ,
∃k0∀k ≥ k0 : g(k) ≤ 1/Q(k).

Intuitively, given the security parameter and an element chosen ac-
cording to eithervark or var′k, Dis tries to guess which distribution
the element came from.

Definition 2. (Simulatability) Let systemsSys real andSys id be
given. We saySys real ≥ Sys id (at least as secure as) iff for every
polynomial-time configurationconf 1 = SHA1 ∈ Conf(Sys real),
there exists a polynomial-time configurationconf 2 = SHA2 ∈
Conf(Sys id) (with the sameH) such that viewconf 1(H) ≈
viewconf

2
(H).

For the cryptographic library, we even show blackbox simulata-
bility, i.e., A2 consists of a simulatorSim that depends only on
(M1,S) and usesA1 as a blackbox submachine. An essential
feature of this definition of simulatability is a composition theo-
rem [49], which essentially says that one can design and prove a
larger system based on the ideal systemSys id, and then securely
replaceSys id by the real systemSys real.

2.2 Notation
We write “:=” for deterministic and “←” for probabilistic as-

signment, and “←R” for uniform random choice from a set. By
x := y++ for integer variablesx, y we meany := y + 1; x := y.
The length of a messagem is denoted as|m|, and ↓ is an er-
ror element available as an addition to the domains and ranges
of all functions and algorithms. The list operation is denoted as
l := (x1, . . . , xj), and the arguments are unambiguously retriev-
able asl[i], with l[i] = ↓ if i > j. A databaseD is a set of func-
tions, called entries, each over a finite domain called attributes. For
an entryx ∈ D, the value at an attributeatt is writtenx.att . For
a predicatepred involving attributes,D[pred] means the subset of
entries whose attributes fulfillpred . If D[pred] contains only one
element, we use the same notation for this element. Adding an
entryx to D is abbreviatedD :⇐ x.

3. IDEAL CRYPTOGRAPHIC LIBRARY
The ideal cryptographic library consists of a trusted hostTH(H)

for every subsetH of a set{1, . . . , n} of users. It has a portinu?
for inputs from and a portoutu ! for outputs to each useru ∈ H
and foru = a, denoting the adversary.

As mentioned in Section 1.2, we do not assume encryption sys-
tems to hide the length of the message. Furthermore, higher pro-
tocols may need to know the length of certain terms even for hon-
est participants. Thus the trusted host is parameterized with certain
length functions denoting the length of a corresponding value in the
real system. The tuple of these functions is contained in a system
parameterL.

For simulatability by a polynomial-time real system, the ideal
cryptographic library has to be polynomial-time. It therefore con-
tains explicit bounds on the message lengths, the number of sig-
natures per key, and the number of accepted inputs at each port.
They are also contained in the system parameterL. The underly-
ing IO automata model guarantees that a machine can enforce such
bounds without additional Turing steps even if an adversarytries to
send more data. For all details, we refer to the full version [10].

3.1 States
The main data structure ofTH(H) is a databaseD. The entries

of D are abstract representations of the data produced during a sys-
tem run, together with the information on who knows these data.
Each entryx ∈ D is of the form

(ind , type , arg , hndu1
, . . . , hndum

, hnd a, len)

whereH = {u1, . . . , um} and:

• ind ∈ N0 is called theindexof x. We writeD[i] instead of
D[ind = i].

• type ∈ typeset := {data, list, nonce, ske, pke, enc, sks,
pks, sig, garbage} identifies thetypeof x. Future extensions
of the library can extend this set.

• arg = (a1, a2, . . . , aj) is a possibly emptylist of arguments.

• hndu ∈ N0 ∪ {↓} for u ∈ H ∪ {a} identifies howu knows
this entry. The valuea represents the adversary, andhndu =
↓ indicates thatu does not know this entry. A valuehndu 6=
↓ is called thehandle for u to entry x. We always use a
superscript “hnd” for handles and usually denote a handle to
an entryD[i] by ihnd.

• len ∈ N0 denotes thelengthof the abstract entry. It is com-
puted byTH(H) using the given length functions from the
system parameterL.

Initially, D is empty. TH(H) keeps a variablesize denoting the
current number of elements inD. New entriesx always receive the
index ind := size++, andx.ind is never changed. For eachu ∈
H ∪ {a}, TH(H) maintains a countercurhndu (current handle)
overN0 initialized with0, and each new handle foru will be chosen
asihnd := curhndu++.

3.2 Inputs and their Evaluation
Each inputc at a portinu? with u ∈ H ∪ {a} should be a list

(cmd , x1, . . . , xj). We usually write ity ← cmd(x1, . . . , xj)
with a variabley designating the result thatTH(H) returns at
outu !. The valuecmd should be a command string, contained in
one of the following fourcommand sets. Commands in the first two
sets are available for both the user and the adversary, whilethe last
two sets model special adversary capabilities and are only accepted

for u = a. The command sets can be enlarged by future extensions
of the library.

3.2.1 Basic Commands
First, we have a setbasic cmds of basic commands. Each basic

command represents one cryptographic operation; arbitrary terms
similar to the Dolev-Yao model are built up or decomposed by ase-
quence of commands. For instance there is a commandgen nonce

to create a nonce,encrypt to encrypt a message, andlist to com-
bine several messages into a list. Moreover, there are commands
store and retrieve to store real-world messages (bitstrings) in the
library and to retrieve them by a handle. Thus other commandscan
assume that everything is addressed by handles. We only allow lists
to be signed and transferred, because the list-operation isa conve-
nient place to concentrate all verifications that no secret items are
put into messages. Altogether, we have

basic cmds := {get type, get len, store, retrieve, list, list proj,
gen nonce, gen sig keypair, sign, verify, pk of sig, msg of sig,

gen enc keypair, encrypt, decrypt, pk of enc}.

The commands not yet mentioned have the following meaning:
get type and get len retrieve the type and abstract length of a
message;list proj retrieves a handle to thei-th element of a list;
gen sig keypair andgen enc keypair generate key pairs for signa-
tures and encryption, respectively, initially with handles for only
the useru who input the command;sign, verify, anddecrypt have
the obvious purpose, andpk of sig, msg of sig; andpk of enc re-
trieve a public key or message, respectively, from a signature or ci-
phertext. (Retrieving public keys will be possible in the real cryp-
tographic library because we tag signatures and ciphertexts with
public keys as explained above.)

We only present the details of howTH(H) evaluates such basic
commands based on its abstract state for two examples, noncegen-
eration and encryption; see the full version [10] for the complete
definition. We assume that the command is entered at a portinu?
with u ∈ H ∪ {a}. Basic commands arelocal, i.e., they produce
a result at portoutu ! and possibly update the databaseD, but do
not produce outputs at other ports. They also do not touch handles
for participantsv 6= u. The functionsnonce len∗, enc len∗, and
max len are length functions and the message-length bound from
the system parameterL.

For nonces,TH(H) just creates a new entry with typenonce,
no arguments, a handle for useru, and the abstract nonce length.
This models that in the real system nonces are randomly chosen
bitstrings of a certain length, which should be all different and not
guessable by anyone else thanu initially. It outputs the handle to
u.

• Nonce Generation:nhnd ← gen nonce().

Setnhnd := curhndu++ and

D :⇐ (ind := size++, type := nonce, arg := (),

hndu := nhnd, len := nonce len
∗(k)).

The inputs for public-key encryption are handles to the public key
and the plaintext list.TH(H) verifies the types (recall the notation
D[pred]) and verifies that the ciphertext will not exceed the maxi-
mum length. If everything is ok, it makes a new entry of typeenc,
with the indices of the public key and the plaintext as arguments, a
handle for useru, and the computed length. The fact that each such
entry is new models probabilistic encryption, and the arguments
model the highest layer of the corresponding Dolev-Yao term.

• Public-Key Encryption:chnd ← encrypt(pkhnd, lhnd).

Let pk := D[hndu = pkhnd ∧ type = pke].ind and
l := D[hndu = lhnd ∧ type = list].ind and length :=
enc len∗(k, D[l].len). If length > max len(k) or pk = ↓
or l = ↓, then return↓. Else setchnd := curhndu++ and

D :⇐ (ind := size++, type := enc, arg := (pk , l),

hndu := chnd, len := length).

3.2.2 Honest Send Commands
Secondly, we have a setsend cmds := {send s, send a,

send i} of honest send commandsfor sending messages on chan-
nels of different degrees of security. As an example we present the
details of the most important case, insecure channels.

• send i(v, lhnd), for v ∈ {1, . . . , n}.

Let l ind := D[hndu = lhnd ∧ type = list].ind . If l ind 6= ↓,
output(u, v, i, ind2hnda(l

ind)) atouta!.

The used algorithmind2hndu retrieves the handle for useru to
the entry with the given index if there is one, otherwise it assigns a
new such handle ascurhndu++. Thus this command means that the
databaseD now stores that this message is known to the adversary,
and that the adversary learns by the output that useru wanted to
send this message to userv.

Most protocols should only use the other two send commands,
i.e., secret or authentic channels, for key distribution atthe be-
ginning. As the channel type is part of the send-command name,
syntactic checks can ensure that a protocol designed with the ideal
cryptographic library fulfills such requirements.

3.2.3 Local Adversary Commands
Thirdly, we have a setadv local cmds := {adv garbage,

adv invalid ciph, adv transform sig, adv parse} of local adver-
sary commands. They model tolerable imperfections of the real
system, i.e., actions that may be possible in real systems but that
are not required. First, an adversary may createinvalid entriesof
a certain length; they obtain the typegarbage. Secondly,invalid
ciphertextsare a special case because participants not knowing the
secret key can reasonably ask for their type and query their public
key, hence they cannot be of typegarbage. Thirdly, the security
definition of signature schemes does not exclude that the adversary
transforms signaturesby honest participants into other valid sig-
natures on the same message with the same public key. Finally,
we allow the adversary to retrieve all information that we donot
explicitly require to be hidden, which is denoted by a command
adv parse. This command returns the type and usually all the ab-
stract arguments of a value (with indices replaced by handles), e.g.,
parsing a signature yields the public key for testing this signature,
the signed message, and the value of the signature counter used for
this message. Only for ciphertexts where the adversary doesnot
know the secret key, parsing only returns the length of the cleartext
instead of the cleartext itself.

3.2.4 Adversary Send Commands
Fourthly, we have a setadv send cmds := {adv send s,

adv send a, adv send i} of adversary send commands, again mod-
eling different degrees of security of the channels used. Incontrast
to honest send commands, the sender of a message is an additional
input parameter. Thus for insecure channels the adversary can pre-
tend that a message is sent by an arbitrary honest user.

3.3 A Small Example
Assume that a cryptographic protocol has to perform the step

u→ v : encpkev (signsksu

(m, N1), N2),

wherem is an input message andN1, N2 are two fresh nonces.
Given our library, this is represented by the following sequence
of commands input at portinu?. We assume thatu has already
received a handlepkehnd

v to the public encryption key ofv, and
created signature keys, which gave him a handleskshnd

u .

1. mhnd ← store(m).
2. Nhnd

1 ← gen nonce().
3. lhnd

1 ← list(mhnd, Nhnd
1).

4. sighnd ← sign(skshnd
u , lhnd

1).
5. Nhnd

2 ← gen nonce().
6. lhnd

2 ← list(sighnd, Nhnd
2).

7. enchnd ← encrypt(pkehnd
v , lhnd

2).
8. mhnd ← list(enchnd).
9. send i(v, mhnd).

Note that the entire term is constructed by a local interaction of user
u and the ideal library, i.e., the adversary does not learn anything
about this interaction until Step 8. In Step 9, the adversarygets an
output (u, v, i, mhnd

a) with a handlemhnd
a for him to the resulting

entry. In the real system described below, the sequence of inputs
for constructing and sending this term is identical, but real crypto-
graphic operations are used to build up a bitstringm until Step 8,
andm is sent tov via a real insecure channel in Step 9.

4. REAL CRYPTOGRAPHIC LIBRARY
The real system is parameterized by a digital signature schemeS

and a public-key encryption schemeE . The ranges of all functions
are{0, 1}+ ∪ {↓}. The signature scheme has to be secure against
existential forgery under adaptive chosen-message attacks [34].
This is the accepted security definition for general-purpose sign-
ing. The encryption scheme has to fulfill that two equal-length
messages are indistinguishable even in adaptive chosen-ciphertext
attacks. Chosen-ciphertext security has been introduced in [50] and
formalized as “IND-CCA2” in [13]. It is the accepted definition for
general-purpose encryption. An efficient encryption system secure
in this sense is [22]. Just like the ideal system, the real system is
parameterized by a tupleL′ of length functions and bounds.

4.1 Structures
The intended structure of the real cryptographic library consists

of n machines{M1, . . . , Mn}. EachMu has portsinu? andoutu !,
so that the same honest users can connect to the ideal and the real
library. EachMu has three connectionsnetu,v,x to eachMv for
x ∈ {s, a, i}. They are called network connections and the corre-
sponding ports network ports. Network connections are scheduled
by the adversary.

The actual system is a standard cryptographic system as defined
in [49] and sketched in Section 2. Any subset of the machines may
be corrupted, i.e., any setH ⊆ {1, . . . , n} can denote the indices
of correct machines. The channel model means that in an actual
structure, an honest intended recipient gets all messages output at
network ports of types(secret) anda (authentic) and the adversary
gets all messages output at ports of typea and i (insecure). Fur-
thermore, the adversary makes all inputs to a network port oftype
i. This is shown in Figure 2.

�
�

�
�

�
�

�
�

�

�

��
�

���
�

��
�

���
�

	
�

�
�
�����

�
�
�����

�
�
����� �
�

�����

�

�
�
�����

�

Figure 2: Connections from a correct machine to another in the
real system.

4.2 States of a Machine
The main data structure ofMu is a databaseDu that contains

implementation-specific data such as ciphertexts and signatures
produced during a system run, together with the handles foru and
the type as in the ideal system, and possibly additional internal at-
tributes. Thus each entryx ∈ Du is of the form

(hndu ,word , type , add arg).

• hndu ∈ N0 is thehandleof x and consecutively numbers all
entries inDu.

• word ∈ {0, 1}+, calledword, is the real cryptographic rep-
resentation ofx.

• type ∈ typeset ∪ {null} is thetypeof x, wherenull denotes
that the entry has not yet been parsed.

• add arg is a list ofadditional arguments. Typically it is (),
only for signing keys it contains the signature counter.

Similar to the ideal system,Mu maintains a countercurhndu

overN0 denoting the current number of elements inDu. New en-
triesx always receivehndu := curhndu++, andx.hndu is never
changed.

4.3 Inputs and their Evaluation
Now we describe howMu evaluates individual inputs. Inputs at

port inu? should be basic commands and honest send commands
as in the ideal system, while network inputs can be arbitrarybit-
strings. Often a bitstrings has to be parsed. This is captured by a
functional algorithmparse, which outputs a pair(type , arg) of a
type∈typeset and a list of real arguments, i.e., of bitstrings. This
corresponds to the top level of a term, similar to the abstract ar-
guments in the ideal databaseD. By “parsemhnd” we abbrevi-
ate thatMu calls (type , arg) ← parse(Du[mhnd].word), assigns
Du[mhnd].type := type if it was still null, and may then usearg .

4.3.1 Basic Commands
Basic commands are againlocal, i.e., they do not produce out-

puts at network ports. The basic commands are implemented bythe
underlying cryptographic operations with the modifications moti-
vated in Section 1.3. For general unambiguousness, not onlyall
cryptographic objects are tagged, but also data and lists. Similar to
the ideal system, we only show two examples of the evaluationof
basic commands, and additionally how ciphertexts are parsed. All
other commands can be found in the full version [10].

In nonce generation, a real noncen is generated by tagging a
random bitstringn′ of a given length with its typenonce. Further,
a new handle foru is assigned and the handle, the wordn, and the
type are stored without additional arguments.

• Nonce Generation:nhnd ← gen nonce().

Let n′ ←R {0, 1}nonce len(k), n := (nonce, n′), nhnd :=
curhndu++ andDu :⇐ (nhnd, n, nonce, ()).

For the encryption command, letEpk (m) denote probabilistic
encryption of a stringm with the public keypk in the underlying
encryption systemE . The parameters are first parsed in case they
have been received over the network, and their types are verified.
Then the second component of the (tagged) public-key word isthe
actual public keypk , while the messagel is used as it is. Further, a
fresh random valuer is generated for additional randomization as
explained in Section 1.3.

Recall thatr has to be included both inside the encryption and in
the final tagged ciphertextc∗.

• Encryption:chnd ← encrypt(pkhnd, lhnd).

Parse pkhnd and lhnd. If Du[pkhnd].type 6= pke or
Du[lhnd].type 6= list, return ↓. Else set pk :=
Du[pkhnd].word [2], l := Du[lhnd].word , r ←R

{0, 1}nonce len(k), encryptc ← Epk ((r, l)), and setc∗ :=
(enc, pk , c, r). If c∗ = ↓ or |c∗| > max len(k) then return↓,
else setchnd := curhndu++ andDu :⇐ (chnd, c∗, enc, ()).

Parsing a ciphertext verifies that the components and lengths are
as inc∗ above, and outputs the corresponding tagged public key,
whereas the message is only retrieved by a decryption command.

4.3.2 Send Commands and Network Inputs
Send commands simply output real messages at the appropriate

network ports. We show this for an insecure channel.

• send i(v, lhnd) for v ∈ {1, . . . , n}.

Parselhnd if necessary. IfDu[lhnd].type = list, output
Du[lhnd].word at portnetu,v,i!.

Upon receiving a bitstringl at a network portnetw,u,x?, machine
Mu parses it and verifies that it is a list. If yes, and ifl is new,Mu

stores it inDu using a new handlelhnd, else it retrieves the existing
handlelhnd. Then it outputs(w, x, lhnd) at portoutu !.

5. SECURITY PROOF
The security claim is that the real cryptographic library isas se-

cure as the ideal cryptographic library, so that protocols proved on
the basis of the deterministic, Dolev-Yao-like ideal library can be
safely implemented with the real cryptographic library. Toformu-
late the theorem, we need additional notation: LetSys

cry,id

n,L denote
the ideal cryptographic library forn participants and with length
functions and boundsL, andSys

cry,real

n,S,E,L′ the real cryptographic
library for n participants, based on a secure signature schemeS
and a secure encryption schemeE , and with length functions and
boundsL′. Let RPar be the set of valid parameter tuples for the
real system, consisting of the numbern ∈ N of participants, secure
signature and encryption schemesS andE , and length functions
and boundsL′. For (n,S ,E , L′) ∈ RPar , let Sys

cry,real

n,S,E,L′ be the
resulting real cryptographic library. Further, let the corresponding
length functions and bounds of the ideal system be formalized by a
functionL := R2Ipar(S ,E , L′), and letSys

cry,id

n,L be the ideal cryp-
tographic library with parametersn andL. Using the notation of
Definition 2, we then have

THEOREM 1. (Security of Cryptographic Library) For all pa-
rameters(n,S ,E , L′) ∈ RPar , we have

Sys
cry,real

n,S,E,L′ ≥ Sys
cry,id

n,L ,

whereL := R2Ipar(S ,E , L′).

For proving this theorem, we define a simulatorSimH such that
even the combination of arbitrary polynomial-time usersH and an
arbitrary polynomial-time adversaryA cannot distinguish the com-
bination of the real machinesMu from the combinationTH(H)
andSimH (for all setsH indicating the correct machines). We first
sketch the simulator and then the proof of correct simulation.

5.1 Simulator
BasicallySimH has to translate real messages from the real ad-

versaryA into handles asTH(H) expects them at its adversary
input port ina? and vice versa; see Figure 3. In both directions,
SimH has to parse an incoming messages completely because it
can only construct the other version (abstract or real) bottom-up.
This is done by recursive algorithms. In some cases, the simulator
cannot produce any corresponding message. We collect thesecases
in so-callederror setsand show later that they cannot occur at all
or only with negligible probability.

���
�����

���

�����

���
�

	�
�
���

�

�

	�
�

�

��	
�

�

��	
�
���

�

��
�

���������

������

���������

�����������
���

��������������	��

�����������	���

�� ������	��

�������	��

����!���	��

���
�����

���

Figure 3: Ports and in- and output types of the simulator.

The state ofSimH mainly consists of a databaseDa, similar to
the databasesDu , but storing the knowledge of the adversary. The
behavior ofSimH is sketched as follows.

• Inputs fromTH(H). Assume thatSimH receives an input
(u, v, x, lhnd) from TH(H). If a bitstring l for lhnd already
exists inDa, i.e., this message is already known to the adver-
sary, the simulator immediately outputsl at portnetu,v,x !.
Otherwise, it first constructs such a bitstringl with a recur-
sive algorithmid2real. This algorithm decomposes the ab-
stract term using basic commands and the adversary com-
mandadv parse. At the same time,id2real builds up a cor-
responding real bitstring using real cryptographic operations
and enters all new message parts intoDa to recognize them
when they are reused, both byTH(H) and byA.

Mostly, the simulator can construct subterms exactly like the
correct machines would do in the real system. Only for en-
cryptions with a public key of a correct machine,adv parse

does not yield the plaintext; thus there the simulator encrypts
a fixed message of equal length. This simulation presup-
poses that all new message parts are of the standard formats,
not those resulting from local adversary commands; this is
proven correct in the bisimulation.

• Inputs fromA. Now assume thatSimH receives a bitstringl
from A at a portnetu,v,x?. If l is not a valid list,SimH aborts
the transition. Otherwise it translatesl into a corresponding
handlelhnd by an algorithmreal2id, and outputs the abstract
sending commandadv send x (w, u, lhnd) at portina!.

If a handlelhnd for l already exists inDa, thenreal2id reuses
that. Otherwise it recursively parses a real bitstring using the
functional parsing algorithm. At the same time, it builds upa

corresponding abstract term in the database ofTH(H). This
finally yields the handlelhnd. Furthermore,real2id enters all
new subterms intoDa. For building up the abstract term,
real2id makes extensive use of the special capabilities of the
adversary modeled inTH(H). In the real system, the bit-
string may, e.g., contain a transformed signature, i.e., a new
signature for a message for which the correct user has al-
ready created another signature. Such a transformation of a
signature is not excluded by the definition of secure signature
schemes, hence it might occur in the real system. Therefore
the simulator also has to be able to insert such a transformed
signature into the database ofTH(H), which explains the
need for the commandadv transform signature. Similarly,
the adversary might send invalid ciphertexts or simply bit-
strings that do not yield a valid type when being parsed. All
these cases can be covered by using the special capabilities.

The only case for which no command exists is a forged signa-
ture under a new message. This leads the simulator to abort.
(Such runs fall into an error set which is later shown to be
negligible.)

As all the commands used byid2real and real2id are local,
these algorithms give uninterrupted dialogues betweenSimH and
TH(H), which do not show up in the views ofA andH.

Two important properties have to be shown about the simulator
before the bisimulation. First, the simulator has to be polynomial-
time. Otherwise, the joint machineSimH(A) of SimH andA might
not be a valid polynomial-time adversary on the ideal system. Sec-
ondly, it has to be shown that the interaction betweenTH(H) and
SimH in the recursive algorithms cannot fail because one of the
machines reaches its runtime bound. The proof of both properties
is quite involved, using an analysis of possible recursion depths de-
pending on the number of existing handles (see [10]).

5.2 Proof of Correct Simulation
Given the simulator, we show that arbitrary polynomial-time

usersH and an arbitrary polynomial-time adversaryA cannot dis-
tinguish the combination of the real machineMu from the com-
bination of TH(H) and SimH. The standard technique in non-
cryptographic distributed systems for rigorously provingthat two
systems have identical visible behaviors is a bisimulation, i.e., one
defines a mapping between the respective states and shows that
identical inputs in mapped states retain the mapping and produce
identical outputs. We need a probabilistic bisimulation because the
real system and the simulator are probabilistic, i.e., identical in-
puts should yield mapped states with the correct probabilities and
identically distributed outputs. (For the former, we indeed use map-
pings, not arbitrary relations for the bisimulation.) In the presence
of cryptography and active attacks however, a normal probabilistic
bisimulation is still insufficient for three crucial reasons. First, the
adversary might succeed in attacking the real system with a very
small probability, while this is impossible in the ideal system. This
means that we have to cope witherror probabilities. Secondly, en-
cryption only gives computational indistinguishability,which can-
not be captured by a bisimulation, because the actual valuesin the
two systems may be quite different. Thirdly, the adversary might
guess a random value, e.g., a nonce that has already been created
by some machine but that the adversary has ideally not yet seen.
(Formally, “ideally not yet seen” just means that the bisimulation
fails if the adversary sends a certain value which already exists in
the databases but for which there is no command to give the adver-
sary a handle.) In order to perform a rigorous reduction proof in
this case, we have to show that nopartial informationabout this

�����

�
�

�

�
�

�
�

�����

�
�

�

��
�

��
�

���
�

�����
�
�

	

�

��
�

��
�

���

��
�

	

	
� 	

���
�

�����
�
�

�

��
�

	

�����
�
�

�

�����
�

�
�

����������

�����������

��� �
�������!�����

�
�

"�����#��� $���%�
��&������

$#��%�
��&������

'��

(��

Figure 4: Overview of the proof of correct simulation.

value has already leaked to the adversary because the value was
contained in a nested term, or because certain operations would
leak partial information. For instance, here the proof would fail if
we allowed arbitrary signatures according to the definitionof [34],
which might divulge previously signed messages, or if we didnot
additionally randomize probabilistic ciphertexts made with keys of
the adversary.

We meet these challenges by first factoring out the computational
aspects by a special treatment of ciphertexts. Then we use a new
bisimulation technique that includes a static information-flow anal-
ysis, and is followed by the remaining cryptographic reductions.
The rigorous proof takes 30 pages [10]; hence we can only givea
very brief overview here, see also Figure 4.

• Introducing encryption machines.We use the two encryp-
tion machinesEncH andEncsim,H from [49] to handle the
encryption and decryption needs of the system. Roughly, the
first machine calculates the correct encryption of every mes-
sagem, whereas the second one always encrypts the fixed
message1|m| and answers decryption requests for the result-
ing ciphertexts by table look-up. By [49],EncH is at least
as secure asEncsim,H. We rewrite the machinesMu such
that they useEncH (Step 1 in Figure 4); this yields modified
machinesM′

u. We then replaceEncH by its idealized coun-
terpartEncsim,H (Step 2 in Figure 4) and use the composition
theorem to show that the original system is at least as secure
as the resulting system.

• Combined system.We now want to compare the combina-
tion MH of the machinesM′

u andEncsim,H with the combi-
nationTHSimH of the machinesTH(H) andSimH. How-
ever, there is no direct invariant mapping between the states

of these two joint machines. Hence we defining an interme-
diate systemCH with a state space combined from both these
systems (Step 3 in Figure 4).

• Bisimulations with error sets and information-flow analysis.
We show that the joint view ofH andA is equal in interac-
tion with the combined machineCH and the two machines
THSimH andMH, except for certain runs, which we collect
in error sets. We show this by performing two bisimulations
simultaneously (Step 4 in Figure 4). Transitivity and sym-
metry of indistinguishability then yield the desired result for
THSimH andMH. Besides several normal state invariants of
CH, we also define and prove an information-flow invariant
on the variables ofCH.

• Reduction proofs.We show that the aggregated probability
of the runs in error sets is negligible, as we could otherwise
break the underlying cryptography. I.e., we perform reduc-
tion proofs against the security definitions of the primitives.
For signature forgeries and collisions of nonces or cipher-
texts, these are relatively straightforward proofs. For the fact
that the adversary cannot guess “official” nonces as well as
additional randomizers in signatures and ciphertext, we use
the information-flow invariant on the variables ofCH to show
that the adversary has no partial information about such val-
ues in situations where correct guessing would put the run in
an error set. This proves thatMH is computationally at least
as secure as the ideal system (Step 5 in Figure 4).

Finally, simulatability is transitive [49]. Hence the original real
system is also as secure as the ideal system (Step 6 in Figure 4).

6. REFERENCES
[1] M. Abadi and J. Jürjens. Formal eavesdropping and its

computational interpretation. InProc. 4th International
Symposium on Theoretical Aspects of Computer Software
(TACS), pages 82–94, 2001.

[2] M. Abadi and P. Rogaway. Reconciling two views of
cryptography: The computational soundness of formal
encryption. InProc. 1st IFIP International Conference on
Theoretical Computer Science, volume 1872 ofLecture
Notes in Computer Science, pages 3–22. Springer, 2000.

[3] R. Anderson and R. Needham. Robustness principles for
public key protocols. InAdvances in Cryptology: CRYPTO
’95, volume 963 ofLecture Notes in Computer Science,
pages 236–247. Springer, 1995.

[4] M. Backes and C. Jacobi. Cryptographically sound and
machine-assisted verification of security protocols. InProc.
20th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), volume 2607 ofLecture Notes in
Computer Science, pages 675–686. Springer, 2003.

[5] M. Backes, C. Jacobi, and B. Pfitzmann. Deriving
cryptographically sound implementations using composition
and formally verified bisimulation. InProc. 11th Symposium
on Formal Methods Europe (FME 2002), volume 2391 of
Lecture Notes in Computer Science, pages 310–329.
Springer, 2002.

[6] M. Backes and B. Pfitzmann. Computational probabilistic
non-interference. InProc. 7th European Symposium on
Research in Computer Security (ESORICS), volume 2502 of
Lecture Notes in Computer Science, pages 1–23. Springer,
2002.

[7] M. Backes and B. Pfitzmann. A cryptographically sound
security proof of the Needham-Schroeder-Lowe public-key
protocol. To appear inProc. of 23rd Conference on
foundations of software technology and theoretical computer
science (FSTTCS). Preliminary version available from IACR
Cryptology ePrint Archive 2003/121, 2003.

[8] M. Backes and B. Pfitzmann. Intransitive non-interference
for cryptographic purposes. InProc. 24th IEEE Symposium
on Security & Privacy, pages 140–152, 2003.

[9] M. Backes, B. Pfitzmann, M. Steiner, and M. Waidner.
Polynomial fairness and liveness. InProc. 15th IEEE
Computer Security Foundations Workshop (CSFW), pages
160–174, 2002.

[10] M. Backes, B. Pfitzmann, and M. Waidner. A universally
composable cryptographic library. IACR Cryptology ePrint
Archive 2003/015, Jan. 2003.
http://eprint.iacr.org/.

[11] D. Beaver. Secure multiparty protocols and zero knowledge
proof systems tolerating a faulty minority.Journal of
Cryptology, 4(2):75–122, 1991.

[12] G. Bella, F. Massacci, and L. C. Paulson. The verification of
an industrial payment protocol: The set purchase phase. In
Proc. 9th ACM Conference on Computer and
Communications Security, pages 12–20, 2002.

[13] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway.
Relations among notions of security for public-key
encryption schemes. InAdvances in Cryptology: CRYPTO
’98, volume 1462 ofLecture Notes in Computer Science,
pages 26–45. Springer, 1998.

[14] M. Bellare, T. Kohno, and C. Namprempre. Authenticated
encryption in ssh: Provably fixing the ssh binary packet
protocol. InProc. 9th ACM Conference on Computer and
Communications Security, pages 1–11, 2002.

[15] M. Bellare and P. Rogaway. Entity authentication and key
distribution. InAdvances in Cryptology: CRYPTO ’93,
volume 773 ofLecture Notes in Computer Science, pages
232–249. Springer, 1994.

[16] D. Bleichenbacher. Chosen ciphertext attacks against
protocols based on the RSA encryption standard PKCS. In
Advances in Cryptology: CRYPTO ’98, volume 1462 of
Lecture Notes in Computer Science, pages 1–12. Springer,
1998.

[17] R. Canetti. Security and composition of multiparty
cryptographic protocols.Journal of Cryptology,
3(1):143–202, 2000.

[18] R. Canetti. A unified framework for analyzing security of
protocols. IACR Cryptology ePrint Archive 2000/067, Dec.
2001.http://eprint.iacr.org/.

[19] R. Canetti. Universally composable security: A new
paradigm for cryptographic protocols. InProc. 42nd IEEE
Symposium on Foundations of Computer Science (FOCS),
pages 136–145, 2001.

[20] R. Cramer and I. Damgård. Secure signature schemes based
on interactive protocols. InAdvances in Cryptology:
CRYPTO ’95, volume 963 ofLecture Notes in Computer
Science, pages 297–310. Springer, 1995.

[21] R. Cramer and I. Damgård. New generation of secure and
practical RSA-based signatures. InAdvances in Cryptology:
CRYPTO ’96, volume 1109 ofLecture Notes in Computer
Science, pages 173–185. Springer, 1996.

[22] R. Cramer and V. Shoup. Practical public key cryptosystem
provably secure against adaptive chosen ciphertext attack. In
Advances in Cryptology: CRYPTO ’98, volume 1462 of
Lecture Notes in Computer Science, pages 13–25. Springer,
1998.

[23] R. Cramer and V. Shoup. Signature schemes based on the
strong RSA assumption. InProc. 6th ACM Conference on
Computer and Communications Security, pages 46–51, 1999.

[24] Z. Dang and R. Kemmerer. Using the ASTRAL model
checker for cryptographic protocol analysis. InProc.
DIMACS Workshop on Design and Formal Verification of
Security Protocols, 1997.http:
//dimacs.rutgers.edu/Workshops/Security/.

[25] D. E. Denning and G. M. Sacco. Timestamps in key
distribution protocols.Communications of the ACM,
24(8):533–536, 1981.

[26] Y. Desmedt and K. Kurosawa. How to break a practical mix
and design a new one. InAdvances in Cryptology:
EUROCRYPT 2000, volume 1807 ofLecture Notes in
Computer Science, pages 557–572. Springer, 2000.

[27] D. Dolev and A. C. Yao. On the security of public key
protocols.IEEE Transactions on Information Theory,
29(2):198–208, 1983.

[28] B. Dutertre and S. Schneider. Using a PVS embedding of
CSP to verify authentication protocols. InProc.
International Conference on Theorem Proving in Higher
Order Logics (TPHOL), volume 1275 ofLecture Notes in
Computer Science, pages 121–136. Springer, 1997.

[29] D. Fisher. Millions of .Net Passport accounts put at risk.
eWeek, May 2003. (Flaw detected by Muhammad Faisal
Rauf Danka).

[30] R. Gennaro, S. Halevi, and T. Rubin. Secure hash-and-sign
signatures without the random oracle. InAdvances in
Cryptology: EUROCRYPT ’99, volume 1592 ofLecture
Notes in Computer Science, pages 123–139. Springer, 1999.

[31] O. Goldreich. Two remarks concerning the
Goldwasser-Micali-Rivest signature scheme. InAdvances in
Cryptology: CRYPTO ’86, volume 263 ofLecture Notes in
Computer Science, pages 104–110. Springer, 1986.

[32] S. Goldwasser and L. Levin. Fair computation of general
functions in presence of immoral majority. InAdvances in
Cryptology: CRYPTO ’90, volume 537 ofLecture Notes in
Computer Science, pages 77–93. Springer, 1990.

[33] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 28:270–299,
1984.

[34] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive chosen-message
attacks.SIAM Journal on Computing, 17(2):281–308, 1988.

[35] J. D. Guttman, F. J. Thayer Fabrega, and L. Zuck. The
faithfulness of abstract protocol analysis: Message
authentication. InProc. 8th ACM Conference on Computer
and Communications Security, pages 186–195, 2001.

[36] M. Hirt and U. Maurer. Player simulation and general
adversary structures in perfect multiparty computation.
Journal of Cryptology, 13(1):31–60, 2000.

[37] R. Kemmerer, C. Meadows, and J. Millen. Three systems for
cryptographic protocol analysis.Journal of Cryptology,
7(2):79–130, 1994.

[38] P. Laud. Semantics and program analysis of computationally
secure information flow. InProc. 10th European Symposium
on Programming (ESOP), pages 77–91, 2001.

[39] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A
probabilistic poly-time framework for protocol analysis.In
Proc. 5th ACM Conference on Computer and
Communications Security, pages 112–121, 1998.

[40] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. InProc. 2nd International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 1055 ofLecture
Notes in Computer Science, pages 147–166. Springer, 1996.

[41] S. Micali and P. Rogaway. Secure computation. InAdvances
in Cryptology: CRYPTO ’91, volume 576 ofLecture Notes in
Computer Science, pages 392–404. Springer, 1991.

[42] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of
cryptographic protocols using murφ. In Proc. 18th IEEE
Symposium on Security & Privacy, pages 141–151, 1997.

[43] R. Needham and M. Schroeder. Using encryption for
authentication in large networks of computers.
Communications of the ACM, 12(21):993–999, 1978.

[44] S. Owre, N. Shankar, and J. M. Rushby. PVS: A prototype
verification system. InProc. 11th International Conference
on Automated Deduction (CADE), volume 607 ofLecture
Notes in Computer Science, pages 748–752. Springer, 1992.

[45] L. Paulson. The inductive approach to verifying
cryptographic protocols.Journal of Cryptology,
6(1):85–128, 1998.

[46] B. Pfitzmann, M. Schunter, and M. Waidner. Cryptographic
security of reactive systems. Presented at the DERA/RHUL
Workshop on Secure Architectures and Information Flow,
1999, Electronic Notes in Theoretical Computer Science
(ENTCS), March 2000.
http://www.elsevier.nl/cas/tree/store/
tcs/free/noncas/pc/menu.htm.

[47] B. Pfitzmann and M. Waidner. How to break and repair a
“provably secure” untraceable payment system. InAdvances
in Cryptology: CRYPTO ’91, volume 576 ofLecture Notes in
Computer Science, pages 338–350. Springer, 1992.

[48] B. Pfitzmann and M. Waidner. Composition and integrity
preservation of secure reactive systems. InProc. 7th ACM
Conference on Computer and Communications Security,
pages 245–254, 2000.

[49] B. Pfitzmann and M. Waidner. A model for asynchronous
reactive systems and its application to secure message
transmission. InProc. 22nd IEEE Symposium on Security &
Privacy, pages 184–200, 2001.

[50] C. Rackoff and D. R. Simon. Non-interactive
zero-knowledge proof of knowledge and chosen ciphertext
attack. InAdvances in Cryptology: CRYPTO ’91, volume
576 ofLecture Notes in Computer Science, pages 433–444.
Springer, 1992.

[51] P. Rogaway. Authenticated-encryption with associated-data.
In Proc. 9th ACM Conference on Computer and
Communications Security, pages 98–107, 2002.

[52] D. Wagner and B. Schneier. Analysis of the SSL 3.0
protocol. InProc. 2nd USENIX Workshop on Electronic
Commerce, pages 29–40, 1996.

[53] B. Warinschi. A computational analysis of the
Needham-Schroeder-(Lowe) protocol. InProc. 16th IEEE
Computer Security Foundations Workshop (CSFW), pages
248–262, 2003.

[54] A. C. Yao. Theory and applications of trapdoor functions. In
Proc. 23rd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 80–91, 1982.

